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Abstract

In this paper, a synthesis approach based on the anti-
windup control will be developped. The proposed ap-
proach consists in designing a nominal controller and
then adding an extra anti-wind up compensator which
ensures the absolute stability of the closed loop system
against sector bounded nonlinearity. This approach is
applied to design the steering control system for the
ROV Phanthom 500.

1 Introduction

Linear systems with input nonlinearities occur very often
in practice. A typical example is an underwater vehicle
with speed saturated thrusters. In the control loop their
effect is that the actual command input of the system dif-
fers from the controller output. In some cases, the pro-
peller nonlinearity may be neglected while in other their
effect may be considerable, leading to instability or per-
formance degradation if ignored when designing the con-
troller. In many designs, the saturation problem is implic-
itly taken into account with numerous synthesis steps and
extensive simulations to check that the actuators never sat-
urate. These approaches involve numerous trial and error
synthesis/validation iterations but lead to prohibitive de-
sign time. To ensure the global stability of the closed loop
system, the designed controller often induces poor control
performances.

An alternative is a two step design procedure. A nom-
inal linear controller which ensures tight closed loop sys-
tem performance for the system neglecting the nonlinear-
ity is synthesized. Then an anti-windup compensator is

designed such that :

• when the system does not saturate, the response co-
incides with the linear unconstrained response ;

• when the nonlinearity is ”excited”, the closed loop
stability is ensured and the performance objective is
kept at an acceptable level.

The objective of this paper is to propose a simple anti-
windup design method ensuring local stability and per-
formance (reference tracking, disturbance rejection) for
a linear system with sector nonlinearities. The proposed
method is strongly related to absolute stability problem
and is based on the local version of the standard Circle
Criterion. This anti-windup control method is applied to
design the steering controller of the Remotely Operated
Vehicle (ROV) Phantom 500. The advantages of the pro-
posed control design technique are demonstrated.

2 Steering Control Problem of an Underwater Vehi-
cle with Speed Speed Saturated Thrusters

In this paper we study the control system for a Phantom
500 underwater robot. The Phantom 500 vehicle1 has an
open frame structure (see figure 1). This ROV is actuated
by two horizontal thrusters for surge and yaw motion, and
a vertical thruster for heave motion. Roll and pitch dy-
namics are not controlled but are intrinsically stable.

1Phantom is an underwater robot produced by Deep Ocean Engineer-
ing, Palo Alto, USA. This vehicle is used in the research projects of the
Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis
(I3S)through a special education/research arrangement.
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Figure 1: Phantom 500 underwater vehicle.

For the purposes of on-board sensor based-
identification and of control design we consider three
non-interacting (or lightly interacting) dynamics for the
surge speed motion, the steering motion and the diving
motion. In the sequel we consider only motion of the
underwater vehicle in the horizontal plane.

The steering and the longitudinal speed models are de-
rived from the general Newton-Equation expressed in the
body reference frame. The interested reader is refered
to [4] for futher details on the modeling aspects. The surge
motion is described by the following transfert function

u(s)
au(s)

=
1

αus + 1
, (1)

whereu is surge speed andau is surge acceleration. The
heading dynamics is modelled as

ψ(s)
r(s)

=
1
s

,
r(s)
ar(s)

=
1

αrs + 1
, (2)

whereψ is heading angle,r is yaw rate speed, andar rate
acceleration. In many standard operating conditions, the
propeller trust can be expressed asτ = cτn|n| wheren is
the propeller rotation speed. Thus, considering a vehicle
equipped with a left thruster and a right thruster the surge
and rate accelerations can be written

au = δul|nl|nl + δur|nr|nr,

ar = δrl|nl|nl + δrr|nr|nr,
(3)

wherenl is the left propeller rotation speed andnr is the
right propeller rotation speed. Parametersδul, δur, δrl

and δrr depends oncτ and geometric characteristics of
the vehicle. The vehicle motion in the horizontal plane is
described by equations (1), (2) and (3).

The model parameters values were obtained using a
maximum likelihood identification method, see [2]




αr

δrl

δrr


 =




0.75
−6.21 10−6

−5.74 10−6


 ,




αu

δul

δur


 =




0.44
2.74 10−5

−1.04 10−5


 .

Note that the plant nonlinear behaviour is induced by the
propellers characteristics, see (3). The input static non-
linearities of these two plants can be cancelled using a
static feedforward precompensator which computes the
required propeller speeds

nr
l = sign

(
δura

r
r − δrra

r
u

δurδrl − δrrδul

) √∣∣∣∣
δura

r
r − δrra

r
u

δurδrl − δrrδul

∣∣∣∣,

nr
r = sign

(
δula

r
r − δrla

r
u

δulδrr − δrlδur

) √∣∣∣∣
δula

r
r − δrla

r
u

δulδrr − δrlδur

∣∣∣∣,
(4)

from the required accelerationsar
u andar

r. This is an in-
put linearisation technique, see [7]. The left and right
propellers are speed controlled, see [2]. This approach
is valid if we assume that the speed controlled propeller
dynamics is faster than the horizontal motion dynamics
(time-scale separation principle). The horizontal plane
motion of the Phantom 500 with the precompensator is
shown in figure 2. Thus, the precompensator in se-
ries with the plant is approximated by two linear decou-
pled models given by (1), (2) wherear

u → au and
ar

r → ar. Saturation phenomenon acting on the pro-
pellers speed (propeller speed is limited in magnitude to
nsat = 1000 rpm) induces input static nonlinearities for
the global dynamics. In the sequel of the paper, we con-
sider only the control problem for the heading motion and
consequently we fixar

u = 0. For the sake of simplic-
ity we setu = ar

r and the induced input nonlinearity
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Figure 2: Surge and heading dynamics with the precompensator.

v = ar = ϕ(u) is defined as follows:

u ≤ −u2 ϕ(u) = −ϕsat,

−u2 < u < −u1 ϕ(u) = −u1 + α(u + u1),

−u1 ≤ u ≤ u1 ϕ(u) = u,

u1 < u < u2 ϕ(u) = u1 + α(u− u1),

u ≥ u2 ϕ(u) = ϕsat.

(5)

The parameters ofϕ are

u1 = |δurδrl − δrrδul|
max (|δur| , |δul|)n2

sat,

u2 = |δurδrl − δrrδul|
min (|δur| , |δul|)n2

sat,

ψsat = (|δrl|+ |δrr|)n2
sat,

α = ϕsat − u1
u2 − u1

.

In summary, the heading dynamics controlled by the static
precompensator is described by

v = ϕ(u), (6)

and
ψ(s)
v(s)

, =
1

p(αrs + 1)
. (7)

In the sequel we will design the linear controller for the
system defined by (6), (7). This system is a linear system
subject to an input nonlinearity as depicted on figure 3.

v yu 1

s( s+1)ar

j(.)

Figure 3: Linear system subject to an input nonlinearity.

3 Stability analysis

In this section we consider a system represented as a feed-
back connection of a linear dynamical system (defined
by transfert functionTqp) and a nonlinear functionϕ as
shown in figure 4.

q

j(.)

T  (s)q  p

pe=0
+

-

Figure 4: Linear system and a nonlinear interconnection.

Tqp(s) is a stricty proper single-input single-output
transfer function.ϕ(.) is a memoryless, possibly time-
varying, nonlinearity which is piecewise continuous int
and locally Lipchitz iny. The nonlinearityϕ is required
to satisfy the following sector condition[a b]:

(ϕ(t, q)− aq) (ϕ(t, q)− bq) ≤ 0, ∀t ≥ 0, ∀q ∈ [α β].
(8)

The nonlinearity defined in (5) is plotted in figure 5. Note
that if |u(t)| ≤ umax with umax > u2, thenϕ belongs to
the sector[ψsat/umax 1].
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Figure 5: Static input nonlinearity.

Theorem (Circle Criterion, [6]). Consider an inter-
connected system(Tqp, ϕ) whereTqp(p) describes the lin-
ear part, and nonlinear functionϕ satisfies the sector con-
dition (8) on the interval[α β]. Then the system is abso-
lutely stable if one of the following conditions is satisfied,
as appropriate:

1. If 0 < a < b, the Nyquist plot ofTqp(jω) does not
enter the diskD(a, b) and encircles itm times in the
counterclockwise direction, wherem is the number
of poles ofTqp(s) with positive real parts.

2. If 0 = a < b, Tqp(p) is Hurwitz and the Nyquist plot
of Tqp(jω) lies to the right of the lines = −1/b.

3. If a < 0 < b, Tqp(p) is Hurwitz and the Nyquist plot
of Tqp(jω) lies in the interior of the diskD(a, b).

The Circle Criterion allows to analyse the absolute sta-
blility using only the Nyquist plot ofTqp(p). This crite-
rion will be use to analyse the stability of the closed loop
system in the sequel of this paper in section 5.

4 Nominal controller design

In this section, we suppose that for a given reference sig-
nalψr we have

|u(t)| ≤ umax.

In this context,v = ψ(u) = u and the system defined
by (6), (7) reduces to the linear part (7).

Under this assumption we can consider the classical
feedback loop show in figure 6.

K (s)n
u y=yr=yr +

- G(s)+
-d

e

Figure 6: Nominal closed loop control problem.

Kn(s) is the linear part of the controller andG(p) is
the transfer function describing the heading dynamics in
series with the precompensator. Signalsr = ψr andd are,
respectively, the reference signal and the input perturba-
tion signal ;u is the input command signal ;ε is the error
signal andy = ψ is the measured output. Our objective is
to determineKn(s) using a robust design method based
on H∞ optimisation. This approach is strongly related
to classical synthesis methods.H∞-based design meth-
ods were previously applied to AUV control in [1], [5],
[3]. The key point of the approach consists in shaping the
main closed loop transfer functions defined as

[
ε(s)
u(s)

]
=

[
1

1+G(s)K(s)
G(s)

1+G(s)K(s)
K(s)

1+G(s)K(s)
K(s)G(s)

1+G(s)K(s)

] [
r(s)
d(s)

]
,

=
[

Tεr(s) Tεd(s)
Tur(s) Tud(s)

] [
r(s)
d(s)

]
.

The closed loop system behavior is entirely determined
by the four different (closed-loop) transfer functions
Tεr(s), Tεd(s), Tur(s), and Tud(s) . Examination of
the frequency responses provides some crucial informa-
tion about the closed loop system properties, see [3]. We
choose the convenient synthesis framework illustrated in
figure 7
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K (s)n

u

r

+
-G(s)

e

W (s)2

W (s)1w1
z1

z2

e

u

Figure 7:Kn synthesis problem: anH∞ standard repre-
sentation.

This block diagram represents theStandardH∞ Syn-
thesis Problem. LetTzw(s) be the transfer matrix between
z andw in figure 7. The synthesis objectives are :

• to ensure closed loop stability,

• to fix a gain between the inputw and the outputz for
a fixed valueγ : ‖Tzw(s)‖∞ < γ.

Its numerical solution is based on the Glover and Doyle
algorithm presented in [5] and involves the resolution of
two Riccati equations. We seek a controllerKn that sta-
bilizes the closed loop system and ensures that theH∞
norm of transfer matrixTzw(s) is bounded by one :

‖Tzw(s)‖∞ =
∥∥∥∥

W1(s)Tεr(s)
W2(s)Tur(s)

∥∥∥∥
∞

< γ

If the previous inequality is enforced, then every block of
the transfer matrixTzw(s) has a norm bounded by one.
We obtain for all frequenciesω

|Tεr(jω)| < γ |W1(jω)|−1
,

|Tur(jω)| < γ |W2(jω)|−1
.

The choice of the weighting functionsW1(s) andW2(s)
allows to shape two closed loop transfer functions. The
weighting functions were fixed to

W1(s) = 0.5
(

s + 0.5
s + 5 10−4

)2

,

W2(s) = 10−6
(

s + 10
s + 1000

)3

.

The choice ofW1(s) leads to a reasonable bandwidth, en-
sures a modulus margin of1/2 and guarantees a relative

steady state error less that10−3. Choice ofW2(s) allows
to decrease the controller magnitude for large frequencies.
Extra dynamics of the designed controller which are not
necessary to control the plant where removed. We obtain
a second order controller with transfer function

Kn(s) = −6.66 10−2 (s + 1.71)(s− 7.54)
(s + 0.84)2 + (1.812)

,

and γ = 0.92 . Figure 8 shows the Bode diagram of
the closed loop transfer functionTεr(s) and the template
W1(s)−1 . The weighting function shapes the closed
loop transfer function in the low frequencies domain and
ensures a correct modulus margin, and a bandwidth of
0.4 rd/s . The frequency response of the closed loop
transfer functionTur(s) and of the templateW2(s)−1

are plotted in Fig 9. Remark that the weighting func-
tion shapes the closed loop transfer function in the high
frequency domain and ensures a correct input command
level.

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

w (rd/s)

20logγ|W
1
(jω)|−1 

20log|Tε r
(jω)|−1 

Figure 8: Sensitivity performance (Tεr(s) andW1(s)−1

Bode diagram).
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Figure 9: Control bandwidth (Tur(s) andW2(s)−1 Bode
diagram).

5 Anti-windup controller design

In this section we propose the anti-windup control struc-
ture shown in figure 10. Comparing to the closed loop
drawn in figure 6, the nonlinearity bloc is taken into ac-
count. The objective is to design the anti-windup com-
pensatorKaw(p) ensuring absolute stability for the sector
nonlinearity. We have considered that the nonlinearityϕ
is in the sector[a b]. In order to recast this synthesis prob-
lem into a systematicH∞ based design, the loop trans-
formation shown in figure 10 is performed, where

Γ =
b− a

2
, Γ =

a + b

2
.

This interconnection has to be compared with the feed-
back connection of a linear dynamical system and a non-
linear function as shown in figure 4.−T̄qp represents the
linear part of the closed loop, excluding the nonlinearity
ϕ. This loop transformation leads to the new nonlinearity

ϕ̄(q̄) = Π−1 (ϕ(q̄)− Γq̄)|q=q̃

residing in sector[−1 1]. The loop shifted linear part of
the system becomes

T̄q̄p̄(s) =
(
1 + T̄qp(s)Γ

)−1
Tqp(s)Π.

To ensure absolute stability (see Theorem in section 3),
T̄q̄p̄(s) has to be Hurwitz and the Nyquist plot of̄Tq̄p̄(s)

must lie in the interior of the diskD(−1, 1), which im-
poses that ∥∥T̄q̄p̄(s)

∥∥
∞ < 1.

q

e=0

+

-

j(.)

P

p q

P
-1

G

G

-

-
+

+

j(.)

p
q

T  (p)q  p

T  (p)q  p

Figure 11: A loop transformation.

H∞ standard synthesis framework can be used to en-
sure this frequency constraint and to shape closed loop
transfer function. A convenient synthesis block diagram
is shown in figure 12.

K (s)n

ua  w

r

+
G(s) -

e uun

+
+

K (s)a  w

qp
W (s)1

w1

w2

z1

z2

P

G
- +

p q

Figure 12:Kaw synthesis problem: anH∞ standard rep-
resentation.

Let T̄zw(s) be the transfer matrix betweenz andw in
figure 12. We seek a controller transfer functionKaw that
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K (s)n

ua  w

y=yr=yr +
-

G(s)+
-d

e qun+
+

K (s)a  w

-p

+ -

j(.)

Figure 10: Anti-windup controller structure.

stabilizes the closed loop system and ensures that theH∞
norm of transfer matrix̄Tzw(s) is bounded bȳγ :

‖T̄zw(s)‖∞ =
∥∥∥∥

T̄q̃p̄(s) Tq̄r(s)
W̄1(s)T̄εp̄(s) W̄1(s)T̄εr(s)

∥∥∥∥
∞

< γ̄

If the previous inequality is enforced, then

∥∥T̄q̄p̄(p)
∥∥
∞ < γ̄,

which ensures absolute stability for the closed loop ifγ̄ ≤
1. Moreover

∥∥W̄1(s)T̄εr(s)
∥∥
∞ < γ̄,

and the choice of the weighting functions̄W1(s) allows to
shape the sensitivity transfer function̄Tεr(s) in the same
way as in section 4. We obtain for all frequenciesω

∣∣T̄εr(jω)
∣∣ < γ̄

∣∣W̄1(jω)
∣∣−1

.

The performance weighting function is fixed to

W̄1(s) = 0.34
(

s + 0.001
s + 0.5

)2

,

and the consider thatϕ is in sector[0.1 1], i.e. umax =
10ϕsat. The designed controller has extra dynamics
which are not necessary to control the plant. These ex-
tra states are removed using controller reduction models
based on balanced state space representation and control-
lability and observability grammians. We obtain a second
order controller with transfer function

Kaw(s) = 1.14
(s + 0.59)(s + 2.22)
(s + 0.47)(s + 3.21)

,

and γ̄ = 0.98. We can check in figure 13 that for all
frequenciesω whe have

∣∣T̄q̃p̃(jω)
∣∣ < 1.

10
−2

10
−1

10
0

10
1

10
2

−6

−5

−4

−3

−2

−1

0

ω (rd/s)

20log|T
qp

(jω)| − − 

Figure 13:T̄q̃p̃(s) Bode diagram.

The absolute stability is ensured for the interconnection
(T̄q̃p̃, ϕ̄). It implies (loop transformation) that the inter-
connection(T̄qp, ϕ) is also absolutely stable.

To evaluate the loop performance, we consider the
transfer functionT̄ k

εr(s) which describes the relation be-
tween the reference input signalr and the output error sig-
nal ε defined in figure 10 when the nonlinearity reduces
to a simple gaink, i.e. ϕ(q) = kq. Note that for the
casek = 0 we obtainT̄ 0

εr(s) = T̄εr(s). Fig 14 shows
the Bode diagram of the closed loop transfer functions
T̄ k

εr(s) for selected values ofk ∈ [a b] and the template
γ̄W̄1(s)−1. We can check that the sensitivity performance
is ensuredrobustly: for all values ofk ∈ [a b] the follow-
ing frequency constraint (for all frequenciesω) is ensured∣∣T k

εr(jω)
∣∣ < γ̄

∣∣W̄1(jω)
∣∣−1

. The loop bandwidth is about
0.4 rd/s and the modulus margin isMM = 1/2.
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Figure 14: Sensitivity performance : T̄ k
εr(s) and

γ̄W̄1(s)−1 Bode diagram.

Figure 15 shows the headingψ time response for the
closed loop system shown in figure 10. The magnitude
of the reference step is180◦. The achieved setting time is
16 s and there is no overshoot. The command inputu time
response is plotted in figure 16. Note that the signaluaw

is zero when the nonlinearity is not ’excited’, i.e. when
|u(t)| < u1.

6 Concluding remarks

In this paper we presented the design of the steering con-
troller of an underwater vehicle subject to speed saturated
propellers nonlinearities. Neglecting the speed saturation,
an input linearization technique allows to obtain a prec-
ompensator which linearizes the surge and heading dy-
namics. By taking into account the speed saturation phe-
nomena, the aggregated system (precompensator with the
surge and heading dynamics) includes a sector bounded
non linearity. The linear part of the steering control sys-
tem was designed using a two-step synthesis procedure.
First a nominal controller synthesis ensures performance
of the closed loop system when the input nonlinearity is
not ”excited”. Then, the anti-windup compensator is de-
signed in order to guarantee the absolute stability of the
closed loop system when the sector bounded nonlinear-
ity is ”excited”. Numerical experiments demonstrate the
effectiveness of the approach.
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Figure 15: Headingψ step response.
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Figure 16: Control signalsu anduaw step response.
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