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Abstract

We consider a product X of n finite intervals of integers, a map F from X to
itself, the asynchronous state transition graph Γ(F ) on X that Thomas proposed
as a model for the dynamics of a network of n genes, and the interaction graph
G(F ) that describes the topology of the system in terms of positive and negative
interactions between its n components. Then, we establish an upper bound on the
number of fixed points for F , and more generally on the number of attractors in
Γ(F ), which only depends on X and on the topology of the positive circuits of G(F ).
This result generalizes the following discrete version of Thomas’ conjecture recently
proved by Richard and Comet: If G(F ) has no positive circuit, then Γ(F ) has a
unique attractor. This result also generalizes a result on the maximal number of
fixed points in Boolean networks obtained by Aracena, Demongeot and Goles. The
interest of this work in the context of gene network modeling is briefly discussed.

Key words: Discrete dynamical system, Discrete Jacobian matrix, Interaction
graph, Positive circuit, Fixed point, Gene network.

1 Introduction

We are interested in the number of fixed points, and more generally in the
number of attractors, in discrete dynamical systems used to model genetic
regulatory networks. These networks are often symbolically described by biol-
ogists in terms of interaction graphs . These are directed graphs where vertices
correspond to genes and where edges are labeled with a sign: a positive (resp.
negative) edge from j to i means that the protein encoded by gene j activates
(resp. represses) the synthesis of the protein encoded by gene i. These graphs
are then used as a basis to generate dynamical models describing the temporal
evolution of the concentration of the encoded proteins; see [1] for a literature
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review. Unfortunately, these models require informations on the strength of
the interactions that are most often unavailable. One is thus faced with the
following difficult problem: Which dynamical properties of a gene network can
be inferred from its interaction graph (in the absence of information on the
strength of the interactions)?

The biologist René Thomas stated a well-known conjecture providing a partial
answer to this question [2]: The presence of a positive circuit in the interaction
graph is a necessary condition for the presence of multiple stable states (a
circuit is positive if it contains an even number of negative edges). At this
stage, it is worth noting that the number of stable states is a key feature of
gene network dynamics: according to an idea of Delbrück [3], the presence of
multiple stable states is one possible mechanism for biological differentiation.

Thomas’ conjecture has been proven in differential frameworks [4–9], and,
more recently, in discrete frameworks [10,11] in which the concentration level
of each protein is assumed to evolve inside a finite interval of integers, {0, 1}
in the Boolean case. Such discrete frameworks are increasingly used to model
gene networks because reliable experimental data are mostly qualitative and
the sigmoidal shape of genetic regulations leads to a natural discretization
of concentrations [12–16]. Furthermore, discrete descriptions allow the use of
powerful computational tools; see for instance [17,18].

In this paper, we establish, in the general discrete framework proposed in [10],
an upper bound on the number of attractors that the dynamics of a network
contain, according to the set of states of the network and the topology of
the positive circuits of its interaction graph. This result generalizes, and is
proved with, the discrete version of Thomas’ conjecture established by Richard
and Comet [10]. This result also generalizes a result, obtained by Aracena,
Demongeot and Goles [19,20], on the maximal number of fixed points in a
particular class of Boolean networks.

The paper is organized as follows. In Section 2, we consider a product X of n
finite intervals of integers, a map F from X to itself, and the directed graph
Γ(F ) on X, called asynchronous state transition graph of F , that Thomas pro-
posed as a model for the dynamics of a network of n genes. The fixed points
of F then correspond to the stable states of the system and are seen as par-
ticular attractors of Γ(F ). In Section 3, we associate with F local interaction
graphs based on the discrete Jacobian matrix of F , and we define the global
interaction graph G(F ) of the system as the union of all the local interaction
graphs. In Section 4, we state and prove the main result (Theorem 2), and
we successively derive from it: an upper bound on the number of attractors in
Γ(F ) that only depends on X and on the positive circuits of the local interac-
tion graphs associated with F (Corollary 1); and a less accurate upper bound
that only depends on X and on the positive circuits of G(F ) (Corollary 2).
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Final comments are provided in Section 5. These concern the influence of con-
nections between positive circuits and the interest of the established bounds
in the context of Thomas’ logical method [14,21–23] which is one of the most
commonly used discrete modeling methods for gene networks.

2 Asynchronous state transition graph and attractors

Let X =
∏n
i=1 Xi be a product of n finite intervals of integers, each of cardi-

nality strictly greater than 1, and consider a map F from X to itself,

x = (x1, . . . , xn) ∈ X 7→ F (x) = (f1(x), . . . , fn(x)) ∈ X.

In the following definition, we attach to F a directed graph on X, called
asynchronous state transition graph of F . According to Thomas [14,21–23],
this state transition graph can be seen as a model for the dynamics of a
network of n genes: the set of vertices X is the set of possible states for the
network (each interval Xi corresponds to the set of possible concentration
levels for the protein encoded by gene i), and each path corresponds to a
possible evolution of the system. Asynchronous state transition graphs can
also be seen as discretizations of piecewise-linear differential systems; see for
instance [13–15].

Definition 1 We call asynchronous state transition graph of F , and we de-
note by Γ(F ), the directed graph whose set of vertices is X and that contains
an edge from x to y if there exists i ∈ {1, . . . , n} such that

y = x+ ei and xi < fi(x) or y = x− ei and xi > fi(x),

where ei is the n-tuple whose components are all 0 except the ith, which is 1.

[fi(x) can be seen as the level toward which the concentration xi of the protein
encoded by gene i evolves at state x: there exists a transition starting from
x that allows the ith component to increase (resp. decrease) if and only if
xi < fi(x) (resp. xi > fi(x)).]

The fixed points of F have no successor in Γ(F ) and naturally correspond to
the stable states of the system. In the next definition, we introduce a notion
of attractor which extends, in a natural way, the notion of stable state.

Definition 2 A trap domain of Γ(F ) is a non-empty subset A ⊆ X such that,
for all edges (x, y) of Γ(F ), if x ∈ A then y ∈ A. An attractor of Γ(F ) is a
smallest trap domain with respect to the inclusion relation.

In other words, the attractors of Γ(F ) are the smallest subsets of states that
the system cannot leave. They extend the notion of stable state in the sense
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that x is a fixed point of F if and only if {x} is an attractor of Γ(F ). Note
also that there always exists at least one attractor (since X is a trap domain).
Other basic observations follow: (i) from each state, there is a path that leads
to an attractor (this is why one can say that attractors perform, in a weak
sense, an attraction); (ii) attractors are strongly connected components; and
(iii) attractors are mutually disjointed.

3 Discrete Jacobian matrix, interaction graph and positive circuit

In this section, we define the interaction graph of the network whose dynamics
are described by Γ(F ). We proceed as in [10] by first introducing a discrete
Jacobian matrix for F based on a notion of discrete directional derivative (the
notion of discrete Jacobian matrix was first considered by Robert [24–26] in
the Boolean case, i.e. when X is the n-dimensional hypercube {0, 1}n).

LetX ′ be the set of couples (x, v) such that x ∈ X, v ∈ {−1, 1}n and x+v ∈ X.

Definition 3 For all (x, v) ∈ X ′, we call Jacobian matrix of F evaluated at x
along the directional vector v the n×n matrix F ′(x, v) = (f ′ij(x, v)) defined by

f ′ij(x, v) =
fi(x+ vjej)− fi(x)

vj
(i, j = 1, . . . , n).

[If vj is positive (resp. negative), then f ′ij(x, v) may be seen as the right (resp.
left) partial derivative of fi with respect to the jth variable evaluated at x. In
both cases, f ′ij(x, v) is a natural discrete analogue of (∂fi/∂xj)(x).]

An interaction graph is here a directed graph whose set of vertices is {1, . . . , n}
and where each edge is provided with a sign. More formally, each edge is char-
acterized by a triple (j, s, i) where j (resp. i) is the initial (resp. final) vertex
and where s ∈ {−1, 1} is the sign of the edge. Let G and G ′ be interaction
graphs with edge sets E and E ′, respectively. G is a subgraph of G ′ if E ⊆ E ′.
We denote by G ∪ G ′ the interaction graph whose set of edges is E ∪ E ′.

Definition 4 We call interaction graph of F evaluated at (x, v) ∈ X ′, and
we denoted by GF (x, v), the interaction graph that contains a positive (resp.
negative) edge from j to i if f ′ij(x, v) is positive (resp. negative).

[To illustrate this definition, assume that f ′ij(x, v) is positive and that vj = 1.
Then, fi(x) < fi(x+ej), and therefore we can say that, at state x, an increase
of xj induces an increase of fi, that is, an increase in the level toward which the
ith component of the system evolves. In other words, j acts as an activator of i,
and we have a positive edge from j to i in GF (x, v).]
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In the following definition, we characterize a subgraph GF (x, v) of GF (x, v)
whose interest is twofold. Firstly, this subgraph will allow us to obtain stronger
results (Remark 4). Secondly, this subgraph only depends on Γ(F ) [10], and
thanks to this property, we will be able to: (i) define without possible ambi-
guity the interaction graph of the network whose dynamics are described by
Γ(F ) (Definition 6 and Remark 2), and (ii) interpret the obtained results in the
context of Thomas’ logical method (Sections 5.2 and 5.3). We refer the reader
to [10] for an illustration of the definition of GF (x, v) and further comments.

Definition 5 We call interaction graph of F evaluated at (x, v) ∈ X ′ with
thresholds, and we denote by GF (x, v), the interaction graph that contains a
positive (resp. negative) edge from j to i if f ′ij(x, v) is positive (resp. negative)
and if fi(x) and fi(x+ vjej) are on both sides of the threshold t = xi + vi/2.

Here, we say that a and b are on both sides of c if a < c < b or b < c < a.

Remark 1 In the Boolean case, we have GF (x, v) = GF (x, v), but in the
general discrete case, GF (x, v) is often a strict subgraph of GF (x, v) since the
additional condition “on both sides of the threshold” is rather strong.

As in [8,10,11], we define the global interaction graph of the system as the
union of all the local interaction graphs.

Definition 6 We call global interaction graph of F , and we denote by G(F ),
the interaction graph defined by G(F ) =

⋃
(x,v)∈X ′ GF (x, v).

Remark 2 Since GF (x, v) only depends on Γ(F ), the global interaction graph
G(F ) only depends on Γ(F ) and can be seen as the interaction graph of the
network whose dynamics are described by Γ(F ). The following basic property
highlights the fact that G(F ) only depends on Γ(F ): G(F ) has a positive
(resp. negative) edge from j to i if and only if, for all maps H : X → X such
that Γ(H) = Γ(F ), there exists (x, v) ∈ X ′ such that hij(x, v) is positive
(resp. negative).

We now recall the notions of positive circuit and of positive feedback vertex set.

Definition 7 A positive circuit in an interaction graph G is a non-empty
sequence of edges, say (j1, s1, i1), (j2, s2, i2), . . . , (jr, sr, ir), such that: ik = jk+1

for 1 ≤ k < r (the sequence is a path); ir = j1 (the path is a circuit); the
vertices jk are mutually distinct (the circuit is elementary); and the product
of the signs sk is positive (even number of negative edges).

Definition 8 [19] A positive feedback vertex set of an interaction graph G is
a subset I ⊆ {1, . . . , n} such that each positive circuit of G has a vertex in I.

Note that: (i) the vertex set of G is always a positive feedback vertex set of G;
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(ii) the empty set is a positive feedback vertex set of G if and only if G has no
positive circuit; and (iii) if G is a subgraph of G ′ then all the positive feedback
vertex sets of G ′ are positive feedback vertex sets of G.

A last definition is needed to state the main result.

Definition 9 Let G be a map defined on X ′ and whose images are interaction
graphs. For each i ∈ {1, . . . , n}, we denote by Ti(G) the set of real numbers t
such that i belongs to a positive circuit of G(x, v) for at least one (x, v) ∈ X ′
such that t = xi + vi/2.

Observe that |Ti(G)| is always strictly less than |Xi|.

4 Positive circuits and attractors

As before, let X =
∏n
i=1 Xi be a product of n finite intervals of integers, each

of cardinality strictly greater than 1, and let F be a map from X to itself.

We are interested in the relationships between the local interaction graphs
GF (x, v) and the number of attractors in Γ(F ). The following discrete version
of Thomas’ conjecture gives such a relation.

Theorem 1 [10] If GF (x, v) has no positive circuit for all (x, v) ∈ X ′, then
Γ(F ) has a unique attractor.

The next theorem extends the previous one by providing, without any condi-
tion on the local interaction graphs GF (x, v), an upper bound on the number
of attractors in Γ(F ) that only depends on the map GF (defined on X ′).

Theorem 2 If I is a positive feedback vertex set of GF (x, v) for all (x, v) ∈
X ′, then the number of attractors in Γ(F ) is at most

∏

i∈I

(
|Ti(GF )|+ 1

)

(with the usual convention that this product equals 1 if I is empty).

Proof −We reason by induction on I. Suppose I to be, for every (x, v) ∈ X ′,
a positive feedback vertex set of GF (x, v).

Base case. If I = ∅, this means that there is no (x, v) ∈ X ′ such that GF (x, v)
has a positive circuit. So, following Theorem 1, Γ(F ) has at most one attractor
and the theorem holds.

Induction step. Suppose that I 6= ∅. The induction hypothesis is the following:
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Induction hypothesis: Let F̃ be a map from X to itself. If Ĩ is a positive
feedback vertex set of GF̃ (x, v) for all (x, v) ∈ X ′, and if Ĩ is strictly included
in I, then Γ(F̃ ) has at most

∏
i∈Ĩ(|Ti(GF̃ )|+ 1) attractors.

Without loss of generality, suppose that 1 ∈ I. Let P be the partition of
X1 whose elements Y are the maximal intervals of X1 (with respect to the
inclusion relation) verifying

∀t ∈ T1(GF ), t < min(Y ) or max(Y ) < t. (1)

Note that, by definition,
|P| = |T1(GF )|+ 1. (2)

Let Y be any interval of P, and consider the map F̃ = (f̃1, . . . , f̃n) : X → X
defined by f̃i = fi for i > 1 and by

∀x ∈ X, f̃1(x) =





min(Y ) if f1(x) < min(Y )

f1(x) if f1(x) ∈ Y
max(Y ) if f1(x) > max(Y ).

Then, for all x, y ∈ X,

f̃i(x) < f̃i(y) ⇒ fi(x) ≤ f̃i(x) < f̃i(y) ≤ fi(y) (i = 1, . . . , n). (3)

Indeed, this is obvious for i > 1, and for i = 1 it is sufficient to note that:

f̃1(x) < f̃1(y) ⇒ f̃1(x) < max(Y ) ⇒ f1(x) ≤ f̃1(x);

f̃1(x) < f̃1(y) ⇒ min(Y ) < f̃1(y) ⇒ f̃1(y) ≤ f1(y).

Now, we prove that, for all (x, v) ∈ X ′,

GF̃ (x, v) is a subgraph of GF (x, v). (4)

Let (x, v) ∈ X ′ and suppose (j, s, i) to be an edge of GF̃ (x, v). According to (3),
f̃ ′ij(x, v) and f ′ij(x, v) have the same sign (here s), and fi(x) and fi(x+vjej) are

on both sides of xi+vi/2 since f̃i(x) and f̃i(x+vjej) are. In other words, (j, s, i)
is an edge of GF (x, v). So (4) is proved and, as an immediate consequence,

Ti(GF̃ ) ⊆ Ti(GF ) (i = 1, . . . , n). (5)

Then, for all (x, v) ∈ X ′, we have the following:

GF̃ (x, v) has no positive circuit involving vertex 1. (6)
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Indeed, suppose, by contradiction, that vertex 1 belongs to a positive circuit
of GF̃ (x, v). Let j be the predecessor of 1 in this circuit, and let t = x1 + v1/2.
By definition, t ∈ T1(GF̃ ), and from (5) it follows that t ∈ T1(GF ). We then
deduce, from (1) and the fact that the images of f̃1 are in Y , that f̃1(x) and
f̃1(x + vjej) are not on both sides of t. In other words, there is no edge from
j to 1 in GF̃ (x, v), a contradiction.

Let Ã be the set of attractors of Γ(F̃ ), and let

Ĩ = I \ {1}. (7)

Let (x, v) be any element of X ′. Since I is a positive feedback vertex set of
GF (x, v), and since GF̃ (x, v) is a subgraph of GF (x, v), I is also a positive
feedback vertex set of GF̃ (x, v). We then deduce from (6) that Ĩ is a positive
feedback vertex set of GF̃ (x, v). Since this holds for all (x, v) ∈ X ′, and since
Ĩ is strictly included in I, by induction hypothesis, we have

|Ã| ≤
∏

i∈Ĩ

(
|Ti(GF̃ )|+ 1

)
,

and from (5) we obtain:

|Ã| ≤
∏

i∈Ĩ

(
|Ti(GF )|+ 1

)
. (8)

Now, let A be the set of attractors of Γ(F ), and let AY be the set of A ∈ A
containing a point x such that x1 ∈ Y . We claim that:

∀A ∈ AY , there exists Ã ∈ Ã such that Ã ⊆ A. (9)

So let A ∈ AY , and consider the set Ā of x ∈ A such that x1 ∈ Y . We prove
that Ā is a trap domain of Γ(F̃ ). Suppose (x, y) to be an edge of Γ(F̃ ) such
that x ∈ Ā. By definition, there exists an index i such that y = x + ei and
xi < f̃i(x), or y = x− ei and xi > f̃i(x). We consider two cases:

1) Case i > 1. Then, y1 = x1 ∈ Y . Moreover, f̃i(x) = fi(x) so (x, y) is an
edge of Γ(F ). Hence y ∈ A (since x ∈ A), and we deduce that y ∈ Ā.

2) Case i = 1. Suppose that x1 < f̃1(x) (the proof is similar if x1 > f̃1(x)).
Then, x1 < y1 ≤ f̃1(x), and since x1 and f̃1(x) are in Y , we have y1 ∈ Y .
Moreover, min(Y ) ≤ x1 < f̃1(x) so x1 < f̃1(x) ≤ f1(x). Thus, (x, y) is an
edge of Γ(F ). Hence y ∈ A (since x ∈ A), and we deduce that y ∈ Ā.

Since y ∈ Ā in both cases, Ā is trap domain of Γ(F̃ ). Thus, there exists at
least one attractor Ã ∈ Ã such that Ã ⊆ Ā, and (9) holds, since Ā ⊆ A.
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Following (9), there exists a map H : AY → Ã such that H(A) ⊆ A for all
A ∈ AY . Since the attractors of Γ(F ) are mutually disjointed, the elements
of AY are mutually disjointed, and we deduce that the images of H are also
mutually disjointed. Consequently, H is an injection. So |AY | ≤ |Ã| and we
deduce from (8) that

|AY | ≤
∏

i∈Ĩ

(
|Ti(GF )|+ 1

)
.

Since this inequality holds for all Y ∈ P, and since A =
⋃
Y ∈PAY , we have:

|A| ≤
∑

Y ∈P
|AY | ≤

∑

Y ∈P

(∏

i∈Ĩ

(
|Ti(GF )|+ 1

))
= |P|

∏

i∈Ĩ

(
|Ti(GF )|+ 1

)
.

Using (2) and (7), we obtain:

|A| ≤
(
|T1(GF )|+ 1

)∏

i∈Ĩ

(
|Ti(GF )|+ 1

)
=
∏

i∈I

(
|Ti(GF )|+ 1

)
.

�

From the bound of Theorem 2 (which only depends on GF ) we now state: a
less accurate bound, which only depends on X and on the images of GF , and
which still generalizes Theorem 1 (Corollary 1); a bound, again less accurate,
which only depends on X and G(F ) (Corollary 2).

Corollary 1 If I is a positive feedback vertex set of GF (x, v) for every (x, v) ∈
X ′, then Γ(F ) has at most

∏
i∈I |Xi| attractors.

Proof−Straightforward from Theorem 2 and the fact that |Ti(GF )| < |Xi|. �

Corollary 2 If I is a positive feedback vertex set of G(F ), then Γ(F ) has at
most

∏
i∈I |Xi| attractors.

Proof −Straightforward from Corollary 1 and the fact that each local inter-
action graph GF (x, v) is a subgraph of G(F ). �

Remark 3 Since the number of fixed points for F is less than or equal to the
number of attractors in Γ(F ), we have the following: If I is a positive feedback
vertex set of G(F ), then F has at most

∏
i∈I |Xi| fixed points . This property

has been proved by Aracena, Demongeot and Goles [19,20] in the Boolean
case and under the rather strong hypothesis that G(F ) does not contain both
a positive and a negative edge from one vertex to another (i.e. the entries of
the Jacobian matrix of F are either everywhere ≥ 0 or everywhere ≤ 0).

Remark 4 Since GF (x, v) is a subgraph of GF (x, v), Theorem 2 and Corol-
lary 1 remain true but become less strong when stated with GF instead of GF

(and for the same reasons, Corollary 2 remains true but becomes less strong
when stated with G (F ) =

⋃
(x,v)∈X ′ GF (x, v) instead of G(F )). To illustrate
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this, suppose that X = {0, 1, 2, . . . , b}n and that fi(x) = min(xi + 1, b) for
i = 1, . . . , n. Then, f ′ii(x, v) = 1 if xi < b and xi + vi < b, and f ′ii(x, v) = 0
otherwise. In other words, GF (x, v) has a positive edge from i to itself, and
hence a positive circuit of length 1 on i, whenever xi and xi + vi are < b. We
deduce that |Ti(GF )| = b − 1, and that there is no strict subset of {1, . . . , n}
that has the property to be, for all (x, v) ∈ X ′, a positive feedback vertex
set of GF (x, v). Consequently, the smallest upper bound given by Theorem 2
when stated with GF is bn. Now, it is easy to see that GF (x, v) has no edge for
every (x, v) ∈ X ′. So the smallest upper bound given by Theorem 2 is only 1.

5 Comments

5.1 Influence of connections between positive circuits

Corollary 2 is sufficient to highlight the fact that: “A high level of connection
between positive circuits leads to a small number of attractors”. Suppose, for
the sake of simplicity, that all the intervals Xi are of cardinality q, and let r
be the smallest number of vertices that a positive feedback vertex set of G(F )
can contain. Then, the smallest upper bound on the number of attractors in
Γ(F ) given by Corollary 2 is qr, and the more the positive circuits of G(F )
are connected, the smaller r is. Indeed, let us say that a vertex represents
a circuit when it belongs to this circuit. Then, r is the smallest number of
vertices allowing the representation of each positive circuit. Therefore, the
more the positive circuits are connected, the more it is possible to choose
vertices representing a number of positive circuits, and the smaller r is. For
instance, r is always ≤ the number p of positive circuits that G(F ) contains,
but r < p whenever G(F ) has connected positive circuits, and in the extremal
case where all the positive circuits of G(F ) share a same vertex, we have r = 1.

5.2 Thomas’ logical method

In practice, the dynamics of a gene network are often modeled from its interac-
tion graph G, typically by using Thomas’ logical method [14,22,23]. Basically,
Thomas associates with G a finite state space X and describes the behavior of
the interactions of G by logical parameters . Then, he deduces from the value
of these parameters a map F from X to itself whose asynchronous state tran-
sition graph describes possible dynamics for the network; see [17] for a formal
presentation.

This modeling method is coherent with our notion of interaction graph in the
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sense that, for all parameters values, the resulting map F has the property to
be such that G(F ) is a subgraph of G [27]. So, thanks to Corollary 2, we can
say, in the total absence of information on the value of the parameters, that
following Thomas’ logical method, the number of attractors in the dynamics
of the network is at most

µ(G, X) = min
I∈I(G)

∏

i∈I
|Xi|,

where I(G) is the set of positive feedback vertex sets of G. This result is of
practical interest since the value of the parameters is most often unknown and
difficult to estimate, and since the number of attractors is an important feature
of the dynamics of the network. For instance, if the network is known to control
a differentiation process into k cell types, one often considers that the dynamics
of the network have to contain at least k attractors. The bound µ(G, X) can
then be used to check whether the data of G and X are consistent with the
presence of k attractors (there is inconsistency whenever µ(G, X) < k).

5.3 Feedback circuit functionality

Finally, Theorem 2 is related to one of the main concepts raised by Thomas’
logical method: the concept of feedback circuit functionality [15,22,23,28].
Roughly speaking, it has been observed that some inequality constraints on
the logical parameters describing the behavior of the interactions of a posi-
tive (resp. negative) circuit of G often lead to dynamics that contain several
attractors (resp. that describe oscillations). For that reason, when these con-
straints are satisfied, the corresponding circuit is said to be functional. Even if
this notion is not well understood and often informally stated, it is often used
in practice to establish the value of the logical parameters; see for instance
[29–34].

A natural formalization of the notion of functional circuit, also proposed in
[27,35], is the following: given a map F fromX to itself whose interaction graph
G(F ) is a subgraph of G, a circuit C of G is functional at (x, v) ∈ X ′ if C is a
circuit of GF (x, v). It is then easy to see that the upper bound on the number
of attractors given by Theorem 2 depends only on the localization (inside X ′)
and on the connections of the functional positive circuits of the system. To our
knowledge, this is one of the first mathematical results relating the functional
circuits of the system to its global dynamical properties (for relations between
functional circuits and local dynamical properties, see the recent paper [35]).
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A Example

This appendix illustrates Theorem 2 for a very simple class of Boolean net-
works for which the computation of the bound of Theorem 2 is straightforward,
in the sense that it can be computed by regarding only the global interaction
graph of the network.

First observe that, in the Boolean case, Theorem 2 and Corollary 1 are equiv-
alent: they have the same conditions, and if I is a smallest subset of {1, . . . , n}
verifying these conditions, then |Ti(GF )| + 1 = |Xi| = 2 for all i ∈ I, so that
the conclusions are identical.

Now, let G be an interaction graph that does not have both a positive and a
negative edge from one vertex to another. For each vertex i, let G+

i (resp. G−i )
be the set of positive (resp. negative) predecessors of i in G, i.e. the set
of vertices j such that G has a positive (resp. negative) edge from j to i.
Let X = {0, 1}n, and let F be the map from X to itself defined from G by

fi(x) = min
(
{xj | j ∈ G+

i } ∪ {1− xj | j ∈ G−i } ∪ {1}
)

(i = 1, . . . , n).

So fi(x) = 1 if and only if, at state x, all the positive predecessors j of i are
present (xj = 1) and all the negative predecessors j of i are absent (xj = 0).
Observe that G(F ) = G.

Let C be a circuit of G. We say that a vertex j of G is a bad vertex for C
if G has a positive edge e and a negative edge e′, both starting from j, such
that e and e′ do not belong to C and such that the final vertices of e and e′

are distinct vertices of C. It is easy to see that C is a circuit of GF (x, v) for
at least one (x, v) ∈ X ′ if and only if C has no bad vertex. In this context,
Corollary 1 can thus be reformulated as follows:

If I is a set of vertices such that each positive circuit of G without
a bad vertex has a node in I, then Γ(F ) has at most 2|I| attractors.

(A.1)

For instance, suppose that G is as follows (arrows correspond to positive
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edges, and T-end arrows correspond to negative edges):

2 3 4

5 7

8 10

1

6

9

Then, G has 46 positive circuits (and no negative circuit), and a positive
feedback vertex sets of G of minimal cardinality is, for instance, {1, 3, 5, 6, 9}.
So the smallest upper bound on the number of attractors in Γ(F ) given by
Corollary 2 is 25 = 32. Now, in order to use A.1, consider the positive circuits
of G that do not involve vertex 6. There are four such circuits, and each of
these has a bad vertex (given in brackets):

1 2 1 (5)

3 4 7 3 (6)

5 8 5 (6)

9 10 9 (7)

We deduce that each positive circuit of G without a bad vertex has a node
in {6}. So according to the reformulation A.1 of Corollary 1, Γ(F ) has at
most 21 = 2 attractors. This bound is reached since (1, 0, 0, 0, 0, 0, 1, 1, 1, 0)
and (0, 1, 1, 1, 1, 1, 0, 0, 0, 1) are fixed points of F .
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