Isomorphic Boolean networks and dense interaction graphs

Aymeric Picard Marchetto and Adrien Richard

I3S laboratory, Université Côte d'Azur, CNRS, France

AUTOMATA \& WAN 2021
Marseille, July 12-17

A Boolean network (BN) with n components is a function

$$
\begin{aligned}
f:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) .
\end{aligned}
$$

A Boolean network (BN) with n components is a function

$$
\begin{aligned}
& \qquad \begin{aligned}
f:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) .
\end{aligned} \\
& \text { Global transition function }
\end{aligned}
$$

Locale transition functions

$$
f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}
$$

A Boolean network (BN) with n components is a function

$$
\begin{aligned}
f:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) .
\end{aligned}
$$

x	$f(x)$		
000	010		
001	010		
010	111		$f_{1}(x)=x_{2}$
011	110		$f_{2}(x)=\overline{x_{1}}$
100	000		$f_{3}(x)=x_{2} \wedge \overline{x_{3}}$
101	000		
110	101		
111	100		

Dynamics $\Gamma(f)$

The interaction graph of f is the digraph on $\{1, \ldots, n\}$ with

$$
j \rightarrow i \quad \Longleftrightarrow \quad f_{i} \text { depends on component } j \text {. }
$$

The interaction graph of f is the digraph on $\{1, \ldots, n\}$ with

$$
j \rightarrow i \quad \Longleftrightarrow \quad f_{i} \text { depends on component } j \text {. }
$$

x	$f(x)$		
000	010		
001	010		
010	111		$f_{1}(x)=x_{2}$
011	110		$f_{2}(x)=\overline{x_{1}}$
100	000		$f_{3}(x)=x_{2} \wedge \overline{x_{3}}$
101	000		
110	101		
111	100		

Interaction graph

BNs are classical models for gene networks [Kauffman 69, Thomas 73]. A typical situation in this context:

- the interaction graph is known,
- the dynamics is unknown.

BNs are classical models for gene networks [Kauffman 69, Thomas 73]. A typical situation in this context:

- the interaction graph is known,
- the dynamics is unknown.

Main question

What does the interaction graph say on the dynamics?

BNs are classical models for gene networks [Kauffman 69, Thomas 73]. A typical situation in this context:

- the interaction graph is known,
- the dynamics is unknown.

Main question

What does the interaction graph say on the dynamics?
Robert's Theorem [1980]
If the interaction graph of f is acyclic, then f^{n} is a constant function.

BNs are classical models for gene networks [Kauffman 69, Thomas 73]. A typical situation in this context:

- the interaction graph is known,
- the dynamics is unknown.

Main question

What does the interaction graph say on the dynamics?
Robert's Theorem [1980]
If the interaction graph of f is acyclic, then f^{n} is a constant function.

Inverse question
What does the dynamics say on the interaction graph?

BNs are classical models for gene networks [Kauffman 69, Thomas 73].
A typical situation in this context:

- the interaction graph is known,
- the dynamics is unknown.

Main question

What does the interaction graph say on the dynamics?
Robert's Theorem [1980]
If the interaction graph of f is acyclic, then f^{n} is a constant function.

Inverse question
What does the dynamics say on the interaction graph?

Example

If f^{n} is a constant function, what can be said on the interaction graph?

Two BNs are isomorphic if their dynamics are isomorphic.

Definition

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Definition

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Inverse question
 What can be said on $\mathcal{G}(f)$?

Definition

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Inverse question

What can be said on $\mathcal{G}(f)$?

Observation:

1. If $f=\mathrm{cst}$ then $\mathcal{G}(f)$ contains a unique digraph:

Definition

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Inverse question

What can be said on $\mathcal{G}(f)$?

Observation:

1. If $f=\mathrm{cst}$ then $\mathcal{G}(f)$ contains a unique digraph:

$$
\begin{equation*}
\text { (1) (2) } 3 \text {. } \tag{n}
\end{equation*}
$$

2. If $f=\mathrm{id}$ then $\mathcal{G}(f)$ contains a unique digraph:

Definition

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Inverse question

What can be said on $\mathcal{G}(f)$?

Observation:

1. If $f=\mathrm{cst}$ then $\mathcal{G}(f)$ contains a unique digraph:
(1) (2) 3 .
(n)
2. If $f=$ id then $\mathcal{G}(f)$ contains a unique digraph:

$$
\begin{array}{lllll}
1 & 2 & 3 & \cdots & \frac{n}{\sigma} \\
\pi & \frac{\pi}{\sigma} & & &
\end{array}
$$

Question: Are there other f such that $|\mathcal{G}(f)|=1$?

Theorem 1
If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\overleftrightarrow{K}_{n} \in \mathcal{G}(f)$.
\hookrightarrow If the interaction graph of f is $\stackrel{\leftrightarrow}{K}_{n}$, then f can be isomorphic to any BN which is not a constant or the identity.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\overleftrightarrow{K}_{n} \in \mathcal{G}(f)$.
\hookrightarrow If the interaction graph of f is $\stackrel{\leftrightarrow}{K}_{n}$, then f can be isomorphic to any BN which is not a constant or the identity.
\hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains $\overleftrightarrow{K}_{n}$?

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
\hookrightarrow If the interaction graph of f is $\overleftrightarrow{K}_{n}$, then f can be isomorphic to any BN which is not a constant or the identity.
\hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains $\stackrel{\leftrightarrow}{K}_{n}$?

Theorem 2

If $n \geq 5$, then some digraph in $\mathcal{G}(f)$ is not $\overleftrightarrow{K}_{n}$.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
\hookrightarrow If the interaction graph of f is $\overleftrightarrow{K}_{n}$, then f can be isomorphic to any BN which is not a constant or the identity.
\hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains $\stackrel{\leftrightarrow}{K}_{n}$?

Theorem 2

If $n \geq 5$, then some digraph in $\mathcal{G}(f)$ is not $\overleftrightarrow{K}_{n}$.

Corollary: If $n \geq 5$ we have $|\mathcal{G}(f)|=1$ iff f is a constant or the identity.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\overleftrightarrow{K}_{n} \in \mathcal{G}(f)$.
\hookrightarrow If the interaction graph of f is $\overleftrightarrow{K}_{n}$, then f can be isomorphic to any BN which is not a constant or the identity.
\hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains $\stackrel{\leftrightarrow}{K}_{n}$?

Theorem 2

If $n \geq 5$, then some digraph in $\mathcal{G}(f)$ is not $\overleftrightarrow{K}_{n}$.

Corollary: If $n \geq 5$ we have $|\mathcal{G}(f)|=1$ iff f is a constant or the identity.
\hookrightarrow At least, is there f such that each digraph in $\mathcal{G}(f)$ has many arcs?

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\overleftrightarrow{K}_{n} \in \mathcal{G}(f)$.
\hookrightarrow If the interaction graph of f is $\overleftrightarrow{K}_{n}$, then f can be isomorphic to any BN which is not a constant or the identity.
\hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains $\stackrel{\leftrightarrow}{K}_{n}$?

Theorem 2

If $n \geq 5$, then some digraph in $\mathcal{G}(f)$ is not $\overleftrightarrow{K}_{n}$.

Corollary: If $n \geq 5$ we have $|\mathcal{G}(f)|=1$ iff f is a constant or the identity.
\hookrightarrow At least, is there f such that each digraph in $\mathcal{G}(f)$ has many arcs?

Theorem 3

For $n \geq 1$ there is f such that any digraph in $\mathcal{G}(f)$ has at least $n^{2} / 9$ arcs.

Theorem 1
If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
Proof (sketch). We have $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$ whenever:

1. $\Gamma(f)$ has $2 n$ limit cycles of length $=1$,
2. $\Gamma(f)$ has n limit cycles of length ≥ 3,
3. $\Gamma(f)$ has an independent set of size $\geq 2 n$.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
Proof (sketch). We have $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$ whenever:

1. $\Gamma(f)$ has $2 n$ limit cycles of length $=1$,
2. $\Gamma(f)$ has n limit cycles of length ≥ 3,
3. $\Gamma(f)$ has an independent set of size $\geq 2 n$.

In any case one condition is satisfied.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
Proof (sketch). We have $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$ whenever:

1. $\Gamma(f)$ has $2 n$ limit cycles of length $=1$,
2. $\Gamma(f)$ has n limit cycles of length ≥ 3,
3. $\Gamma(f)$ has an independent set of size $\geq 2 n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha<2 n$ limit cycles of length $=1$,
- $\Gamma(f)$ has $\beta<n$ limit cycles of length ≥ 3.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
Proof (sketch). We have $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$ whenever:

1. $\Gamma(f)$ has $2 n$ limit cycles of length $=1$,
2. $\Gamma(f)$ has n limit cycles of length ≥ 3,
3. $\Gamma(f)$ has an independent set of size $\geq 2 n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha<2 n$ limit cycles of length $=1$,
- $\Gamma(f)$ has $\beta<n$ limit cycles of length ≥ 3.

Let Γ^{\prime} obtained by deleting in $\Gamma(f)$ one vertex in each LC of length $\neq 2$.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
Proof (sketch). We have $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$ whenever:

1. $\Gamma(f)$ has $2 n$ limit cycles of length $=1$,
2. $\Gamma(f)$ has n limit cycles of length ≥ 3,
3. $\Gamma(f)$ has an independent set of size $\geq 2 n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha<2 n$ limit cycles of length $=1$,
- $\Gamma(f)$ has $\beta<n$ limit cycles of length ≥ 3.

Let Γ^{\prime} obtained by deleting in $\Gamma(f)$ one vertex in each LC of length $\neq 2$.

- Γ^{\prime} has $2^{n}-\alpha-\beta$ vertices.

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
Proof (sketch). We have $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$ whenever:

1. $\Gamma(f)$ has $2 n$ limit cycles of length $=1$,
2. $\Gamma(f)$ has n limit cycles of length ≥ 3,
3. $\Gamma(f)$ has an independent set of size $\geq 2 n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha<2 n$ limit cycles of length $=1$,
- $\Gamma(f)$ has $\beta<n$ limit cycles of length ≥ 3.

Let Γ^{\prime} obtained by deleting in $\Gamma(f)$ one vertex in each LC of length $\neq 2$.

- Γ^{\prime} has $2^{n}-\alpha-\beta$ vertices.
- Γ^{\prime} is bipartite, so it has an independent set of size at least

$$
\left(2^{n}-\alpha-\beta\right) / 2 \geq\left(2^{n}-3 n+2\right) / 2 \geq 2 n .
$$

Theorem 1

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
Proof (sketch). We have $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$ whenever:

1. $\Gamma(f)$ has $2 n$ limit cycles of length $=1$,
2. $\Gamma(f)$ has n limit cycles of length ≥ 3,
3. $\Gamma(f)$ has an independent set of size $\geq 2 n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha<2 n$ limit cycles of length $=1$,
- $\Gamma(f)$ has $\beta<n$ limit cycles of length ≥ 3.

Let Γ^{\prime} obtained by deleting in $\Gamma(f)$ one vertex in each LC of length $\neq 2$.

- Γ^{\prime} has $2^{n}-\alpha-\beta$ vertices.
- Γ^{\prime} is bipartite, so it has an independent set of size at least

$$
\left(2^{n}-\alpha-\beta\right) / 2 \geq\left(2^{n}-3 n+2\right) / 2 \geq 2 n .
$$

So $\Gamma(f)$ has an independent set of size $\geq 2 n$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\overleftarrow{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\overleftrightarrow{\overleftrightarrow{K}}_{n} \in \mathcal{G}(f)$.

$$
\begin{aligned}
& f(1100)=0100 \\
& f(0100)=1011
\end{aligned}
$$

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\overleftrightarrow{\overleftrightarrow{K}}_{n} \in \mathcal{G}(f)$.

$$
\begin{aligned}
& f(1100)=0100 \\
& f(0100)=1011
\end{aligned}
$$

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\overleftrightarrow{K}_{n} \in \mathcal{G}(f)$.

$$
\begin{aligned}
& f(1100)=0100 \\
& f(0100)=1011
\end{aligned}
$$

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

$$
\begin{aligned}
& f(0110)=0010 \\
& f(0010)=1101
\end{aligned}
$$

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

$$
\begin{aligned}
& f(0110)=0010 \\
& f(0010)=1101
\end{aligned}
$$

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

$$
\begin{aligned}
& f(1001)=1000 \\
& f(1000)=0111
\end{aligned}
$$

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

$$
\begin{aligned}
& f(1001)=1000 \\
& f(1000)=0111
\end{aligned}
$$

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

$$
\begin{aligned}
& f(1001)=1000 \\
& f(1000)=0111
\end{aligned}
$$

Lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Conclusions and perspectives

The interaction graph is not invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Conclusions and perspectives

The interaction graph is not invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \geq 5$ and $f \neq \mathrm{cst}$, id, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.

Conclusions and perspectives

The interaction graph is not invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \geq 5$ and $f \neq \mathrm{cst}$, id, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
$\overleftrightarrow{K}_{n}$ is "universal": if the interaction graph of f is $\overleftrightarrow{K}_{n}$, then f can be isomorphic to almost all the BNs.

Conclusions and perspectives

The interaction graph is not invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \geq 5$ and $f \neq \mathrm{cst}$, id, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
$\overleftrightarrow{K}_{n}$ is "universal": if the interaction graph of f is $\overleftrightarrow{K}_{n}$, then f can be isomorphic to almost all the BNs.

Conversely, is there a "universal" BN, that is, f such that $\mathcal{G}(f)$ contains almost all the interaction graphs?

Conclusions and perspectives

The interaction graph is not invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \geq 5$ and $f \neq \mathrm{cst}$, id, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
$\overleftrightarrow{K}_{n}$ is "universal": if the interaction graph of f is $\overleftrightarrow{K}_{n}$, then f can be isomorphic to almost all the BNs.

Conversely, is there a "universal" BN, that is, f such that $\mathcal{G}(f)$ contains almost all the interaction graphs?

Conjecture. Let $g(n)$ the max of $|\mathcal{G}(f)|$ for f with n components. Then

$$
\lim _{n \rightarrow \infty} g(n)=2^{n^{2}}
$$

Conclusions and perspectives

The interaction graph is not invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \geq 5$ and $f \neq \operatorname{cst}$, id, then $\stackrel{\leftrightarrow}{K}_{n} \in \mathcal{G}(f)$.
$\overleftrightarrow{K}_{n}$ is "universal": if the interaction graph of f is $\overleftrightarrow{K}_{n}$, then f can be isomorphic to almost all the BNs.

Conversely, is there a "universal" BN, that is, f such that $\mathcal{G}(f)$ contains almost all the interaction graphs?

Conjecture. Let $g(n)$ the max of $|\mathcal{G}(f)|$ for f with n components. Then

$$
\lim _{n \rightarrow \infty} g(n)=2^{n^{2}}
$$

Thank you!

