Isomorphic Boolean networks and dense interaction graphs

Aymeric Picard Marchetto and Adrien Richard

13S laboratory, Université Côte d'Azur, CNRS, France

AUTOMATA & WAN 2021

Marseille, July 12-17

A **Boolean network** (BN) with n components is a function

$$f: \{0,1\}^n \to \{0,1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x)).$$

A **Boolean network** (BN) with n components is a function

A **Boolean network** (BN) with n components is a function

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x)).$$

Dynamics $\Gamma(f)$

The **interaction graph** of f is the digraph on $\{1, \ldots, n\}$ with

 $j \rightarrow i \quad \iff \quad f_i \text{ depends on component } j.$

The **interaction graph** of f is the digraph on $\{1, \ldots, n\}$ with

$$j \rightarrow i \quad \iff \quad f_i \text{ depends on component } j.$$

- the interaction graph is known,
- the dynamics is unknown.

- the interaction graph is known,
- the dynamics is unknown.

Main question

What does the interaction graph say on the dynamics?

- the interaction graph is known,
- the dynamics is unknown.

Main question

What does the interaction graph say on the dynamics?

Robert's Theorem [1980]

If the interaction graph of f is acyclic, then f^n is a constant function.

- the interaction graph is known,
- the dynamics is unknown.

Main question

What does the interaction graph say on the dynamics?

Robert's Theorem [1980]

If the interaction graph of f is acyclic, then f^n is a constant function.

Inverse question

What does the dynamics say on the interaction graph?

- the interaction graph is known,
- the dynamics is unknown.

Main question

What does the interaction graph say on the dynamics?

Robert's Theorem [1980]

If the interaction graph of f is acyclic, then f^n is a constant function.

Inverse question

What does the dynamics say on the interaction graph?

Example

If f^n is a constant function, what can be said on the interaction graph?

Two BNs are **isomorphic** if their dynamics are isomorphic.

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Inverse question

What can be said on $\mathcal{G}(f)$?

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Inverse question

What can be said on $\mathcal{G}(f)$?

Observation:

1. If $f = \operatorname{cst}$ then $\mathcal{G}(f)$ contains a unique digraph:

$$(1) \quad (2) \quad (3) \quad \cdots \quad (n)$$

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Inverse question

What can be said on $\mathcal{G}(f)$?

Observation:

1. If $f = \operatorname{cst}$ then $\mathcal{G}(f)$ contains a unique digraph:

$$(1) \quad (2) \quad (3) \quad \cdots \quad (n)$$

2. If f = id then $\mathcal{G}(f)$ contains a unique digraph:

We denote $\mathcal{G}(f)$ the set of interaction graphs of the BNs isomorphic to f.

Inverse question

What can be said on $\mathcal{G}(f)$?

Observation:

1. If $f = \operatorname{cst}$ then $\mathcal{G}(f)$ contains a unique digraph:

$$(1) \quad (2) \quad (3) \quad \cdots \quad (n)$$

2. If f = id then $\mathcal{G}(f)$ contains a unique digraph:

Question: Are there other f such that $|\mathcal{G}(f)| = 1$?

If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

If $n \ge 5$ and f is not a constant or the identity, then $\tilde{K}_n \in \mathcal{G}(f)$.

 $\hookrightarrow \text{ If the interaction graph of } f \text{ is } \overset{\leftrightarrow}{K_n}\text{, then } f \text{ can be isomorphic to } any \text{ BN which is not a constant or the identity.}$

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

 \hookrightarrow If the interaction graph of f is K_n , then f can be isomorphic to any BN which is not a constant or the identity.

 \hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains \breve{K}_n ?

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

- \hookrightarrow If the interaction graph of f is K_n , then f can be isomorphic to any BN which is not a constant or the identity.
- \hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains \breve{K}_n ?

Theorem 2

If $n \geq 5$, then some digraph in $\mathcal{G}(f)$ is not K_n .

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

- \hookrightarrow If the interaction graph of f is K_n , then f can be isomorphic to any BN which is not a constant or the identity.
- \hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains K_n ?

Theorem 2

If $n \geq 5$, then some digraph in $\mathcal{G}(f)$ is not K_n .

Corollary: If $n \ge 5$ we have $|\mathcal{G}(f)| = 1$ iff f is a constant or the identity.

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

 \hookrightarrow If the interaction graph of f is K_n , then f can be isomorphic to any BN which is not a constant or the identity.

 \hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains K_n ?

Theorem 2

If $n \geq 5$, then some digraph in $\mathcal{G}(f)$ is not K_n .

Corollary: If $n \ge 5$ we have $|\mathcal{G}(f)| = 1$ iff f is a constant or the identity.

 \hookrightarrow At least, is there f such that each digraph in $\mathcal{G}(f)$ has many arcs?

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

 \hookrightarrow If the interaction graph of f is K_n , then f can be isomorphic to any BN which is not a constant or the identity.

 \hookrightarrow Is there f such that $\mathcal{G}(f)$ only contains K_n ?

Theorem 2

If $n \geq 5$, then some digraph in $\mathcal{G}(f)$ is not K_n .

Corollary: If $n \ge 5$ we have $|\mathcal{G}(f)| = 1$ iff f is a constant or the identity.

 \hookrightarrow At least, is there f such that each digraph in $\mathcal{G}(f)$ has many arcs?

Theorem 3

For $n \ge 1$ there is f such that any digraph in $\mathcal{G}(f)$ has at least $n^2/9$ arcs.

Theorem 1 If $n \geq 5$ and f is not a constant or the identity, then $\stackrel{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

Proof (sketch). We have $\vec{K}_n \in \mathcal{G}(f)$ whenever:

- 1. $\Gamma(f)$ has 2n limit cycles of length = 1,
- 2. $\Gamma(f)$ has n limit cycles of length ≥ 3 ,
- 3. $\Gamma(f)$ has an independent set of size $\geq 2n$.

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

Proof (sketch). We have $\vec{K}_n \in \mathcal{G}(f)$ whenever:

- 1. $\Gamma(f)$ has 2n limit cycles of length = 1,
- 2. $\Gamma(f)$ has n limit cycles of length ≥ 3 ,
- 3. $\Gamma(f)$ has an independent set of size $\geq 2n$.

In any case one condition is satisfied.

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

Proof (sketch). We have $\vec{K}_n \in \mathcal{G}(f)$ whenever:

- 1. $\Gamma(f)$ has 2n limit cycles of length = 1,
- 2. $\Gamma(f)$ has n limit cycles of length ≥ 3 ,
- 3. $\Gamma(f)$ has an independent set of size $\geq 2n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha < 2n$ limit cycles of length = 1,
- $\Gamma(f)$ has $\beta < n$ limit cycles of length ≥ 3 .

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

Proof (sketch). We have $\vec{K}_n \in \mathcal{G}(f)$ whenever:

- 1. $\Gamma(f)$ has 2n limit cycles of length = 1,
- 2. $\Gamma(f)$ has n limit cycles of length ≥ 3 ,
- 3. $\Gamma(f)$ has an independent set of size $\geq 2n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha < 2n$ limit cycles of length = 1,
- $\Gamma(f)$ has $\beta < n$ limit cycles of length ≥ 3 .

Let Γ' obtained by deleting in $\Gamma(f)$ one vertex in each LC of length $\neq 2$.

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

Proof (sketch). We have $\vec{K}_n \in \mathcal{G}(f)$ whenever:

- 1. $\Gamma(f)$ has 2n limit cycles of length = 1,
- 2. $\Gamma(f)$ has n limit cycles of length ≥ 3 ,
- 3. $\Gamma(f)$ has an independent set of size $\geq 2n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha < 2n$ limit cycles of length = 1,
- $\Gamma(f)$ has $\beta < n$ limit cycles of length ≥ 3 .

Let Γ' obtained by deleting in $\Gamma(f)$ one vertex in each LC of length $\neq 2$.

- Γ' has $2^n - \alpha - \beta$ vertices.

If $n \geq 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

Proof (sketch). We have $\vec{K}_n \in \mathcal{G}(f)$ whenever:

- 1. $\Gamma(f)$ has 2n limit cycles of length = 1,
- 2. $\Gamma(f)$ has n limit cycles of length ≥ 3 ,
- 3. $\Gamma(f)$ has an independent set of size $\geq 2n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha < 2n$ limit cycles of length = 1,
- $\Gamma(f)$ has $\beta < n$ limit cycles of length ≥ 3 .

Let Γ' obtained by deleting in $\Gamma(f)$ one vertex in each LC of length $\neq 2$.

- Γ' has $2^n \alpha \beta$ vertices.
- Γ^\prime is bipartite, so it has an independent set of size at least

$$(2^n - \alpha - \beta)/2 \ge (2^n - 3n + 2)/2 \ge 2n.$$

If $n \ge 5$ and f is not a constant or the identity, then $K_n \in \mathcal{G}(f)$.

Proof (sketch). We have $\vec{K}_n \in \mathcal{G}(f)$ whenever:

- 1. $\Gamma(f)$ has 2n limit cycles of length = 1,
- 2. $\Gamma(f)$ has n limit cycles of length ≥ 3 ,
- 3. $\Gamma(f)$ has an independent set of size $\geq 2n$.

In any case one condition is satisfied. Indeed suppose that:

- $\Gamma(f)$ has $\alpha < 2n$ limit cycles of length = 1,
- $\Gamma(f)$ has $\beta < n$ limit cycles of length ≥ 3 .

Let Γ' obtained by deleting in $\Gamma(f)$ one vertex in each LC of length $\neq 2$.

- Γ' has $2^n \alpha \beta$ vertices.
- Γ^\prime is bipartite, so it has an independent set of size at least

$$(2^n - \alpha - \beta)/2 \ge (2^n - 3n + 2)/2 \ge 2n.$$

So $\Gamma(f)$ has an independent set of size $\geq 2n$.

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\stackrel{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(1100) = 0100f(0100) = 1011

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(1100) = 0100f(0100) = 1011

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(1100) = 0100f(0100) = 1011

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(0110) = 0010f(0010) = 1101

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(0110) = 0010f(0010) = 1101

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(0110) = 0010f(0010) = 1101

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(1001) = 1000f(1000) = 0111

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(1001) = 1000f(1000) = 0111

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

If $\Gamma(f)$ has n disjoint paths of length 2 then $K_n \in \mathcal{G}(f)$.

f(1001) = 1000f(1000) = 0111

If $\Gamma(f)$ has n limit cycles of length ≥ 3 then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

Stronger lemma

The interaction graph is *not* invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

The interaction graph is *not* invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \ge 5$ and $f \ne \operatorname{cst}$, id, then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

The interaction graph is *not* invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \ge 5$ and $f \ne \operatorname{cst}$, id, then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

 \vec{K}_n is *"universal"* : if the interaction graph of f is \vec{K}_n , then f can be isomorphic to almost all the BNs.

The interaction graph is *not* invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \ge 5$ and $f \ne \operatorname{cst}$, id, then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

 \ddot{K}_n is *"universal"* : if the interaction graph of f is \ddot{K}_n , then f can be isomorphic to almost all the BNs.

Conversely, is there a "universal" BN, that is, f such that $\mathcal{G}(f)$ contains almost all the interaction graphs?

The interaction graph is *not* invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \ge 5$ and $f \ne \operatorname{cst}$, id, then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

 \vec{K}_n is *"universal"* : if the interaction graph of f is \vec{K}_n , then f can be isomorphic to almost all the BNs.

Conversely, is there a "universal" BN, that is, f such that $\mathcal{G}(f)$ contains almost all the interaction graphs?

Conjecture. Let g(n) the max of $|\mathcal{G}(f)|$ for f with n components. Then

$$\lim_{n \to \infty} g(n) = 2^{n^2}.$$

The interaction graph is *not* invariant by isomorphism, and we study this phenomena, introducing $\mathcal{G}(f)$.

Theorem 1 If $n \ge 5$ and $f \ne \operatorname{cst}$, id, then $\overset{\leftrightarrow}{K}_n \in \mathcal{G}(f)$.

 \vec{K}_n is *"universal"* : if the interaction graph of f is \vec{K}_n , then f can be isomorphic to almost all the BNs.

Conversely, is there a "universal" BN, that is, f such that $\mathcal{G}(f)$ contains almost all the interaction graphs?

Conjecture. Let g(n) the max of $|\mathcal{G}(f)|$ for f with n components. Then

$$\lim_{n \to \infty} g(n) = 2^{n^2}.$$

Thank you!