Isomorphic Boolean networks
and dense interaction graphs

Aymeric Picard Marchetto and Adrien Richard

I3S laboratory, Université Céte d'Azur, CNRS, France

AUTOMATA & WAN 2021
Marseille, July 12-17

1/10



A Boolean network (BN) with n components is a function

F{o,13" = {o,1}"
v = (@1 20) > [(@) = (fu(@),. . fal2)).
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A Boolean network (BN) with n components is a function

f:{0,1}" — {0,1}"
x=(x1,...,2,) = f(x)=(fi(z),..., fa(z)).

e

Global transition function

Locale transition functions
fi : {0,1}71 - {07 1}
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A Boolean network (BN) with n components is a function

f:{0,1}" — {0,1}"
x=(x1,...,2,) = f(x)=(fi(z),..., fa(z)).

011
r | f(x)
000 | 010 [110] [001
001 | 010
010 | 111 fi(r) = xo [101] [010
011 | 110 folx) ==1
100 | 000 fa(x) =22 N T3
o1 | 000 000 111
110 | 101
111 | 100 100

Dynamics T'(f)
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The interaction graph of f is the digraph on {1,...,n} with

j—1i <= f; depends on component j.
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The interaction graph of f is the digraph on {1,...,n} with

Adrien RICHARD

000
001
010
011
100
101
110
111

Jj—1

<=  f; depends on component j.

fi(z) = a2
fa(z) =77
f3(x) =z

somorphic Boolean networks

Interaction graph
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BNs are classical models for gene networks [Kauffman 69, Thomas 73].
A typical situation in this context:
- the interaction graph is known,

- the dynamics is unknown.
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BNs are classical models for gene networks [Kauffman 69, Thomas 73].
A typical situation in this context:
- the interaction graph is known,

- the dynamics is unknown.

Main question
What does the interaction graph say on the dynamics?

Robert’s Theorem [1980]
If the interaction graph of f is acyclic, then f™ is a constant function.
Inverse question

What does the dynamics say on the interaction graph?

Example
If f™ is a constant function, what can be said on the interaction graph?
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Two BNs are isomorphic if their dynamics are isomorphic.
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Definition
We denote G(f) the set of interaction graphs of the BNs isomorphic to f.
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Definition
We denote G(f) the set of interaction graphs of the BNs isomorphic to f.

Inverse question
What can be said on G(f)?

Observation:
1. If f = cst then G(f) contains a unique digraph:

OMOROREEINO

2. If f =1id then G(f) contains a unique digraph:

O o6 - O
C 0 © 0

Question: Are there other f such that |G(f)| =17
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Theorem 1
If n > 5 and f is not a constant or the identity, then K,, € G(f).
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If n > 5 and f is not a constant or the identity, then K,, € G(f).

— If the interaction graph of f is K,,, then f can be isomorphic
to any BN which is not a constant or the identity.
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Theorem 1
If n > 5 and f is not a constant or the identity, then K,, € G(f).

— If the interaction graph of f is K,,, then f can be isomorphic
to any BN which is not a constant or the identity.

— Is there f such that G(f) only contains IH{n?

Theorem 2
If n > 5, then some digraph in G(f) is not K.

Corollary: If n > 5 we have |G(f)| = 1 iff f is a constant or the identity.

— At least, is there f such that each digraph in G(f) has many arcs?

Theorem 3

For n > 1 there is f such that any digraph in G(f) has at least n?/9 arcs.
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Theorem 1
If n > 5 and f is not a constant or the identity, then K,, € G(f).

Proof (sketch). We have IH(,L € G(f) whenever:
1. T'(f) has 2n limit cycles of length =1,
2. T'(f) has n limit cycles of length > 3,
3. T'(f) has an independent set of size > 2n.
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Theorem 1
If n > 5 and f is not a constant or the identity, then K,, € G(f).

Proof (sketch). We have f(n € G(f) whenever:
1. T'(f) has 2n limit cycles of length =1,
2. T'(f) has n limit cycles of length > 3,
3. T'(f) has an independent set of size > 2n.
In any case one condition is satisfied. Indeed suppose that:
- T'(f) has a < 2n limit cycles of length = 1,
- T'(f) has 8 < n limit cycles of length > 3.
Let TV obtained by deleting in I'(f) one vertex in each LC of length # 2.
- IV has 2" — o — 3 vertices.
- T" is bipartite, so it has an independent set of size at least
2" —a—p)/2 > 2" —3n+2)/2 > 2n.

So T'(f) has an independent set of size > 2n.
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Lemma .
If T'(f) has n limit cycles of length > 3 then K,, € G(f).
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Conclusions and perspectives

The interaction graph is not invariant by isomorphism,
and we study this phenomena, introducing G(f).

Theorem 1 If n > 5 and f # cst,id, then I%n € G(f).

>

K, is “universal” : if the interaction graph of f is K, then f can be
isomorphic to almost all the BNs.

Conversely, is there a “universal” BN, that is, f such that G(f) contains
almost all the interaction graphs?

Conjecture. Let g(n) the max of |G(f)| for f with n components. Then

lim g(n) = 7,

n—roo

Thank you!
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