Complexity of maximum and minimum fixed point problem in Boolean networks

Adrien Richard
I3S laboratory, CNRS, Nice, France

joint work with
Florian Bridoux, Nicola Durbec \& Kévin Perrot LIS laboratory, CNRS, Marseille, France

Workshop: Theory and applications of Boolean interaction networks
Freie Universität, Berlin, September 12-13, 2019

A Boolean network (BN) with \boldsymbol{n} components is a function

$$
\begin{aligned}
f:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
\end{aligned}
$$

A Boolean network (BN) with \boldsymbol{n} components is a function

Locale transition functions
$f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}$

A Boolean network (BN) with \boldsymbol{n} components is a function

$$
\begin{aligned}
f:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
\end{aligned}
$$

The synchronous dynamics is given by

$$
x^{t+1}=f\left(x^{t}\right)
$$

The asynchronous dynamics is more realistic in many cases.

Fixed points of f are stable states for both dynamics.

A Boolean network (BN) with \boldsymbol{n} components is a function

$$
\begin{aligned}
f:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
\end{aligned}
$$

The interaction graph (IG) of f is the signed digraph defined by

- the vertex set is $\{1, \ldots, n\}$,
- there is a positive edge $j \rightarrow i$ if there is $x \in\{0,1\}^{n}$ such that

$$
\begin{array}{r}
f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{0}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{0} \\
f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{1}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{1}
\end{array}
$$

- there is a negative edge $j \rightarrow i$ if there is $x \in\{0,1\}^{n}$ such that

$$
\begin{array}{r}
f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{0}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{1} \\
f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{1}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{0}
\end{array}
$$

Example with $n=3$

$$
\left\{\begin{array}{l}
f_{1}(x)=x_{2} \vee x_{3} \\
f_{2}(x)=\overline{x_{1}} \wedge \overline{x_{3}} \\
f_{3}(x)=\overline{x_{3}} \wedge\left(x_{1} \vee x_{2}\right)
\end{array}\right.
$$

Interaction graph

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?
We study this decision problem from a complexity point of view and for dynamical properties concerning the number of fixed points.

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?
We study this decision problem from a complexity point of view and for dynamical properties concerning the number of fixed points.
\hookrightarrow Previous complexity results for BNs essentially concern the

Boolean Network Consistency Problem

Input: A Boolean network f and a dynamical property P.
Question: Does the dynamics of f satisfies P ?

BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?
We study this decision problem from a complexity point of view and for dynamical properties concerning the number of fixed points.
\hookrightarrow Previous complexity results for BNs essentially concern the

Boolean Network Consistency Problem

Input: A Boolean network f and a dynamical property P.
Question: Does the dynamics of f satisfies P ?

Theorem [Kosub 2008]
It is NP-complete to decide if a BN has a fixed point.

Definitions

$\max (G):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

Definitions

$\max (\boldsymbol{G}):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

Definitions

$\max (G):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

$$
\begin{gathered}
\max (G)=3 \\
\min (G)=1 \\
(8 \mathrm{BNs})
\end{gathered}
$$

Definitions

$\max (G):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Definitions

$\max (G):=$ maximum number of fixed points in a BN on G $\min (G):=$ minimum number of fixed points in a BN on G

$$
\begin{gathered}
\max (G)=3 \\
\min (G)=1 \\
(8 \mathrm{BNs})
\end{gathered}
$$

k-MaxProblem: Given G, do we have $\max (G) \geq k$?
k-MinProblem: Given G, do we have $\min (G) \leq k$?

$\max (G) \geq 1 ?$

Theorem

$\max (G) \geq 1$ iff each initial strong component of G has a positive cycle.

$\max (G) \geq 1 ?$

Theorem

$\max (G) \geq 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]
We can decide in polynomial time if G has a positive cycle.

$\max (G) \geq 1 ?$

Theorem

$\max (G) \geq 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]
We can decide in polynomial time if G has a positive cycle.

Corollary
We can decide in polynomial time if $\max (G) \geq 1$.

$\max (G) \geq 1 ?$

Theorem
$\max (G) \geq 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]
We can decide in polynomial time if G has a positive cycle.

Corollary
We can decide in polynomial time if $\max (G) \geq 1$.
Recall that it is NP-complete to decide if a BN has a fixed point.

$\max (G) \geq 2 ?$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

$\max (G) \geq 2 ?$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
[Thomas' 1st rule]

$\max (G) \geq 2 ?$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min (G) \geq 2$.

$\max (G) \geq 2 ?$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min (G) \geq 2$.

Can we hope for a simple characterization of $\max (G) \geq 2$?

$\max (G) \geq 2 ?$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min (G) \geq 2$.

Can we hope for a simple characterization of $\max (G) \geq 2$?

Theorem

It is NP-complete to decide if $\max (G) \geq 2$.

$\max (G) \geq 2 ?$

According to Thomas, $\max (G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max (G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min (G) \geq 2$.

Can we hope for a simple characterization of $\max (G) \geq 2$?

Theorem

It is NP-complete to decide if $\max (G) \geq 2$.
It is NP-complete to decide if $\max (G) \geq k$, for every fixed $k \geq 2$.

$\max (G) \geq k ?$ is in NP

Theorem

There is an algorithm with the following specifications:
Input: G and k couples of states $\left(x^{1}, y^{1}\right) \ldots\left(x^{k}, y^{k}\right)$.
Output: A BN f on G with $f\left(x^{\ell}\right)=y^{\ell}$ for $1 \leq \ell \leq k$, if it exists.
Running time: $O\left(k^{2} n^{2}\right)$.

$\max (G) \geq k ?$ is in NP

Theorem

There is an algorithm with the following specifications:
Input: G and k couples of states $\left(x^{1}, y^{1}\right) \ldots\left(x^{k}, y^{k}\right)$.
Output: A BN f on G with $f\left(x^{\ell}\right)=y^{\ell}$ for $1 \leq \ell \leq k$, if it exists.
Running time: $O\left(k^{2} n^{2}\right)$.

If $\max (G) \geq k$, there is a $\mathrm{BN} f$ on G with k fixed points x^{1}, \ldots, x^{k}.
Then $\left(x^{1}, \ldots, x^{k}\right)$ is a certificat of size $O(k n)$ which can be checked in $O\left(k^{2} n^{2}\right)$-time by giving as input G and the couples $\left(x^{1}, x^{1}\right), \ldots,\left(x^{k}, x^{k}\right)$.

$\max (G) \geq k ?$ is in NP

Theorem

There is an algorithm with the following specifications:
Input: G and k couples of states $\left(x^{1}, y^{1}\right) \ldots\left(x^{k}, y^{k}\right)$.
Output: A BN f on G with $f\left(x^{\ell}\right)=y^{\ell}$ for $1 \leq \ell \leq k$, if it exists.
Running time: $O\left(k^{2} n^{2}\right)$.

If $\max (G) \geq k$, there is a $\mathrm{BN} f$ on G with k fixed points x^{1}, \ldots, x^{k}.
Then $\left(x^{1}, \ldots, x^{k}\right)$ is a certificat of size $O(k n)$ which can be checked in $O\left(k^{2} n^{2}\right)$-time by giving as input G and the couples $\left(x^{1}, x^{1}\right), \ldots,\left(x^{k}, x^{k}\right)$. Thus $\max (G) \geq k$? is in NP.

$\max (G) \geq 2 ?$ is NP-hard

$\max (G) \geq 2 ?$ is NP-hard

Theorem

Given a SAT formula ϕ with n variables and m clauses, we can built in $O(n+m)$-time an interaction graph G_{ϕ} with $O(n+m)$ vertices s.t.

$$
\max \left(G_{\phi}\right) \geq 2 \Longleftrightarrow \phi \text { is satisfiable }
$$

$\max (G) \geq 2 ?$ is NP-hard

Theorem

Given a SAT formula ϕ with n variables and m clauses, we can built in $O(n+m)$-time an interaction graph G_{ϕ} with $O(n+m)$ vertices s.t.

$$
\max \left(G_{\phi}\right) \geq 2 \Longleftrightarrow \phi \text { is satisfiable }
$$

Basic observation:

$\max (G) \geq 2$? is NP-hard

Theorem

Given a SAT formula ϕ with n variables and m clauses, we can built in $O(n+m)$-time an interaction graph G_{ϕ} with $O(n+m)$ vertices s.t.

$$
\max \left(G_{\phi}\right) \geq 2 \Longleftrightarrow \phi \text { is satisfiable }
$$

Basic observation:

The idea is to "control" with ϕ the "effectiveness" of the negative chord, so that the chord can be "ineffective" if and only if ϕ is satisfiable.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

2 fixed points

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

ϕ is sat. $\Rightarrow \max (G) \geq 2$
Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$$
\begin{array}{ll}
G_{\phi} & \text { (1) } f_{s}=1
\end{array}
$$

$$
\phi \text { is sat. } \Rightarrow \max (G) \geq 2
$$

Consider a true assignment:

$$
a=1, b=1, c=0
$$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$$
\begin{array}{ll}
G_{\phi} & \text { (1) } f_{s}=1
\end{array}
$$

$$
\phi \text { is sat. } \Rightarrow \max (G) \geq 2
$$

Consider a true assignment:

$$
a=1, b=1, c=0
$$

Isolated positive cycle \Downarrow

2 fixed points

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all or all

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

○○

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y
(i) $x_{i}<y_{i}$
(i) $x_{i}>y_{i}$
(i) $x_{i}=y_{i}$
(i) $x_{i} \leq y_{i}$

$\max (G) \geq 2 ?$ is NP-hard

Example with $\phi=(a \vee \bar{b} \vee c) \wedge(\bar{a} \vee \bar{c})$.

$\max (G) \geq 2 \Rightarrow \phi$ is sat.
Let f be a BN on G with two fixed points: x and y

$$
\begin{aligned}
& \text { (i) } x_{i}<y_{i} \\
& \text { (i) } \\
& x_{i}>y_{i} \\
& \text { (i) } \\
& x_{i}=y_{i} \\
& \text { (i) } \\
& x_{i} \leq y_{i}
\end{aligned}
$$

$$
a=1, b=0, c=0
$$

$$
a=1, b=1, c=0
$$

are true assignments of ϕ
k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.
k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.
k-MinProblem: Given G, do we have $\min (G) \leq k$?

k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.
k-MinProblem: Given G, do we have $\min (G) \leq k$?
This problem is much more difficult:
Theorem
k-MinProblem is NEXPTIME-complete for every k.
k-MaxProblem: Given G, do we have $\max (G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and NP-complete if $k \geq 2$.
k-MinProblem: Given G, do we have $\min (G) \leq k$?
This problem is much more difficult:

Theorem

k-MinProblem is NEXPTIME-complete for every k.
With a construction very similar to G_{ϕ}, we can prove that $\min (G) \leq k$? is NP-hard. But to prove the NEXPTIME-hardness, we use a much more technical reduction from SuccintSAT.

MaxProblem: Given G and \boldsymbol{k}, do we have $\max (G) \geq k$?

MinProblem: Given G and \boldsymbol{k}, do we have $\min (G) \leq k$?

MaxProblem: Given G and \boldsymbol{k}, do we have $\max (G) \geq k$?

MinProblem: Given G and \boldsymbol{k}, do we have $\min (G) \leq k$?

Theorem
MaxProblem and MinProblem are NEXPTIME-complete.

Conclusion

We study, from a complexity point of view, a natural class of problems.
Interaction Graph Consistency Problem
Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?
We obtain exact classes of complexity for this problem when

$$
P=\text { "to have at least/most } k \text { fixed points" }
$$

Our main result is about bistability:
It is NP-complete to decide if there is a BN on G with two fixed points.

Conclusion

We study, from a complexity point of view, a natural class of problems.
Interaction Graph Consistency Problem
Input: An interaction graph G and a dynamical property P.
Question: Is there a BN on G with a dynamics satisfying P ?
We obtain exact classes of complexity for this problem when

$$
P=\text { "to have at least/most } k \text { fixed points" }
$$

Our main result is about bistability:
It is NP-complete to decide if there is a BN on G with two fixed points.

Perspectives

1. Other dynamical properties.
\hookrightarrow number/size of cyclic attractors in the (a)synchronous case.
2. Non-Boolean case and unsigned case.
