Complexity of maximum and minimum fixed point problem in Boolean networks

Adrien Richard

I3S laboratory, CNRS, Nice, France

joint work with

Florian Bridoux, Nicola Durbec & Kévin Perrot

LIS laboratory, CNRS, Marseille, France

Workshop: Theory and applications of Boolean interaction networks Freie Universität, Berlin, September 12-13, 2019

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

The synchronous dynamics is given by

$$x^{t+1} = f(x^t).$$

The asynchronous dynamics is more realistic in many cases.

Fixed points of *f* are **stable states** for **both** dynamics.

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

The interaction graph (IG) of f is the signed digraph defined by

- the vertex set is $\{1,\ldots,n\}$,
- there is a positive edge $\boldsymbol{j} \rightarrow \boldsymbol{i}$ if there is $x \in \{0,1\}^n$ such that

$$f_i(x_1, \dots, x_{j-1}, \mathbf{0}, x_{j+1}, \dots, x_n) = \mathbf{0}$$

$$f_i(x_1, \dots, x_{j-1}, \mathbf{1}, x_{j+1}, \dots, x_n) = \mathbf{1}$$

- there is a negative edge $j \rightarrow i$ if there is $x \in \{0,1\}^n$ such that

$$f_i(x_1, \dots, x_{j-1}, \mathbf{0}, x_{j+1}, \dots, x_n) = \mathbf{1}$$

$$f_i(x_1, \dots, x_{j-1}, \mathbf{1}, x_{j+1}, \dots, x_n) = \mathbf{0}$$

Example with n = 3

$$\begin{cases} f_1(x) &= x_2 \lor x_3 \\ f_2(x) &= \overline{x_1} \land \overline{x_3} \\ f_3(x) &= \overline{x_3} \land (x_1 \lor x_2) \end{cases}$$

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

We study this decision problem from a **complexity** point of view and for dynamical properties concerning the **number of fixed points**.

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

We study this decision problem from a **complexity** point of view and for dynamical properties concerning the **number of fixed points**.

 \hookrightarrow Previous complexity results for BNs essentially concern the

BOOLEAN NETWORK CONSISTENCY PROBLEM

Input: A Boolean network f and a dynamical property P. **Question:** Does the dynamics of f satisfies P?

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

We study this decision problem from a **complexity** point of view and for dynamical properties concerning the **number of fixed points**.

 \hookrightarrow Previous complexity results for BNs essentially concern the

BOOLEAN NETWORK CONSISTENCY PROBLEM

Input: A Boolean network f and a dynamical property P. **Question:** Does the dynamics of f satisfies P?

Theorem [Kosub 2008]

It is NP-complete to decide if a BN has a fixed point.

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

k-MAXPROBLEM: Given G, do we have $max(G) \ge k$?

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

k-MAXPROBLEM: Given G, do we have $max(G) \ge k$?

k-MINPROBLEM: Given G, do we have $min(G) \le k$?

$\max(G) \ge 1?$

Theorem

 $\max(G) \ge 1$ iff each initial strong component of G has a positive cycle.

$\max(G) \ge 1?$

Theorem

 $\max(G) \ge 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004] We can decide in polynomial time if G has a positive cycle.

$\max(G) \geq 1?$

Theorem

 $\max(G) \ge 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004] We can decide in polynomial time if G has a positive cycle.

Corollary

We can decide in polynomial time if $\max(G) \ge 1$.

$\max(G) \ge 1?$

Theorem

 $\max(G) \ge 1$ iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004] We can decide in polynomial time if G has a positive cycle.

Corollary

We can decide in polynomial time if $\max(G) \ge 1$.

Recall that it is NP-complete to decide if a BN has a fixed point.

$\max(G) \ge 2?$

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

$\max(G) \ge 2?$

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

1. If $max(G) \ge 2$, then G has a positive cycle.

[Thomas' 1st rule]

$\max(G) \geq 2?$

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

- 1. If $\max(G) \ge 2$, then G has a positive cycle.
- 2. If G has only positive cycles and no source, then $\min(G) \ge 2$.

$\max(G) \ge 2?$

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

- 1. If $max(G) \ge 2$, then G has a positive cycle.
- 2. If G has only positive cycles and no source, then $\min(G) \ge 2$.

Can we hope for a simple characterization of $max(G) \ge 2$?

$\max(G) \ge 2?$

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

- 1. If $max(G) \ge 2$, then G has a positive cycle.
- 2. If G has only positive cycles and no source, then $\min(G) \ge 2$.

Can we hope for a simple characterization of $max(G) \ge 2$?

Theorem

It is **NP-complete** to decide if $max(G) \ge 2$.

$\max(G) \geq 2?$

According to Thomas, $max(G) \ge 2$ means that G can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

- 1. If $max(G) \ge 2$, then G has a positive cycle.
- 2. If G has only positive cycles and no source, then $\min(G) \ge 2$.

Can we hope for a simple characterization of $max(G) \ge 2$?

Theorem

- It is **NP-complete** to decide if $max(G) \ge 2$.
- It is **NP-complete** to decide if $max(G) \ge k$, for every fixed $k \ge 2$.

 $\max(G) \ge k?$ is in NP

Theorem

There is an algorithm with the following specifications:

Input: G and k couples of states $(x^1, y^1) \dots (x^k, y^k)$. Output: A BN f on G with $f(x^\ell) = y^\ell$ for $1 \le \ell \le k$, if it exists. Running time: $O(k^2n^2)$. $\max(G) \ge k?$ is in NP

Theorem

There is an algorithm with the following specifications:

Input: G and k couples of states $(x^1, y^1) \dots (x^k, y^k)$. Output: A BN f on G with $f(x^\ell) = y^\ell$ for $1 \le \ell \le k$, if it exists. Running time: $O(k^2n^2)$.

If $\max(G) \ge k$, there is a BN f on G with k fixed points x^1, \ldots, x^k . Then (x^1, \ldots, x^k) is a certificat of size O(kn) which can be checked in $O(k^2n^2)$ -time by giving as input G and the couples $(x^1, x^1), \ldots, (x^k, x^k)$. $\max(G) \ge k?$ is in NP

Theorem

There is an algorithm with the following specifications:

Input: G and k couples of states $(x^1, y^1) \dots (x^k, y^k)$. Output: A BN f on G with $f(x^\ell) = y^\ell$ for $1 \le \ell \le k$, if it exists. Running time: $O(k^2n^2)$.

If $\max(G) \ge k$, there is a BN f on G with k fixed points x^1, \ldots, x^k . Then (x^1, \ldots, x^k) is a certificat of size O(kn) which can be checked in $O(k^2n^2)$ -time by giving as input G and the couples $(x^1, x^1), \ldots, (x^k, x^k)$. Thus $\max(G) \ge k$? is in **NP**.

Theorem

Given a SAT formula ϕ with n variables and m clauses, we can built in O(n+m)-time an interaction graph G_{ϕ} with O(n+m) vertices s.t.

 $\max(G_{\phi}) \geq 2 \iff \phi$ is satisfiable

Theorem

Given a SAT formula ϕ with n variables and m clauses, we can built in O(n+m)-time an interaction graph G_{ϕ} with O(n+m) vertices s.t.

$$\max(G_{\phi}) \geq 2 \iff \phi$$
 is satisfiable

Basic observation:

Theorem

Given a SAT formula ϕ with n variables and m clauses, we can built in O(n+m)-time an interaction graph G_{ϕ} with O(n+m) vertices s.t.

$$\max(G_{\phi}) \geq 2 \iff \phi$$
 is satisfiable

Basic observation:

The idea is to "control" with ϕ the "effectiveness" of the negative chord, so that the chord can be "ineffective" if and only if ϕ is satisfiable.

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 ϕ is sat. $\Rightarrow \max(G) \ge 2$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$ (1) $f_s = 1$ G_{ϕ} ϕ is sat. $\Rightarrow \max(G) > 2$ Consider a true assignment: 1)OR 1)OR c) AND a = 1, b = 1, c = 0O AND O AND O AND O AND 1)OR \overline{b} AND 1 OR 1 OR

OR

OR

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with

two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

$$\label{eq:general} \begin{split} \max(G) \geq 2 \Rightarrow \phi \text{ is sat.} \\ \text{Let } f \text{ be a BN on } G \text{ with} \end{split}$$

two fixed points: \boldsymbol{x} and \boldsymbol{y}

$$\begin{array}{ccc} i & x_i < y_i \\ \hline i & x_i > y_i \\ \hline i & x_i = y_i \\ \hline i & x_i \le y_i \end{array}$$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi$ is sat. Let f be a BN on G with two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with

two fixed points: x and yi $x_i < y_i$

$$\begin{array}{c} \mathbf{i} \quad x_i < y_i \\ \mathbf{i} \quad x_i > y_i \\ \mathbf{i} \quad x_i = y_i \\ \mathbf{i} \quad x_i \le y_i \end{array}$$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi \text{ is sat.}$ Let f be a BN on G with

two fixed points: x and y

$$\begin{array}{ccc} i & x_i < y_i \\ \hline i & x_i > y_i \\ \hline i & x_i = y_i \\ \hline i & x_i \le y_i \end{array}$$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi$ is sat. Let f be a BN on G with two fixed points: x and y

 $\begin{array}{c} \textbf{i} \quad x_i < y_i \\ \textbf{i} \quad x_i > y_i \\ \textbf{i} \quad x_i = y_i \end{array}$

 $x_i < y_i$

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi$ is sat. Let f be a BN on G with two fixed points: x and y

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

 $\max(G) \ge 2 \Rightarrow \phi$ is sat. Let f be a BN on G with two fixed points: x and y

 $\begin{array}{c} \textbf{i} \quad x_i < y_i \\ \textbf{i} \quad x_i > y_i \\ \textbf{i} \quad x_i = y_i \end{array}$

 $x_i < y_i$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are

all • or all •

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}).$

$$\label{eq:generalized_states} \begin{split} \max(G) &\geq 2 \Rightarrow \phi \text{ is sat.} \\ \text{Let } f \text{ be a BN on } G \text{ with} \\ \text{two fixed points: } x \text{ and } y \end{split}$$

$$\begin{array}{ccc} \mathbf{i} & x_i < y_i \\ \mathbf{i} & x_i > y_i \\ \mathbf{i} & x_i = y_i \\ \mathbf{i} & x_i \leq y_i \end{array}$$

a = 1, b = 0, c = 0a = 1, b = 1, c = 0

are true assignments of ϕ
Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

k-MINPROBLEM: Given G, do we have $\min(G) \le k$?

Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

k-MINPROBLEM: Given G, do we have $\min(G) \le k$?

This problem is much more difficult:

Theorem

k-MINPROBLEM is **NEXPTIME-complete** for every k.

Theorem

k-MAXPROBLEM is in **P** if $k \leq 1$ and **NP-complete** if $k \geq 2$.

k-MINPROBLEM: Given G, do we have $\min(G) \le k$?

This problem is much more difficult:

Theorem

k-MINPROBLEM is **NEXPTIME-complete** for every k.

With a construction very similar to G_{ϕ} , we can prove that $\min(G) \leq k$? is **NP-hard**. But to prove the **NEXPTIME-hardness**, we use a much more technical reduction from SUCCINTSAT.

MINPROBLEM: Given G and k, do we have $\min(G) \le k$?

MINPROBLEM: Given G and k, do we have $\min(G) \le k$?

Theorem

 $\operatorname{MaxProbLem}$ and $\operatorname{MinProbLem}$ are NEXPTIME-complete.

Conclusion

We study, from a complexity point of view, a natural class of problems.

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

We obtain exact classes of complexity for this problem when

P = "to have at least/most k fixed points"

Our main result is about bistability:

It is **NP-complete** to decide if there is a BN on G with two fixed points.

Conclusion

We study, from a complexity point of view, a natural class of problems.

INTERACTION GRAPH CONSISTENCY PROBLEM

Input: An interaction graph G and a dynamical property P. **Question:** Is there a BN **on** G with a dynamics satisfying P?

We obtain exact classes of complexity for this problem when

P = "to have at least/most k fixed points"

Our main result is about bistability:

It is **NP-complete** to decide if there is a BN on G with two fixed points.

Perspectives

1. Other dynamical properties.

 \hookrightarrow number/size of cyclic attractors in the (a)synchronous case.

2. Non-Boolean case and unsigned case.