On the convergence of Boolean automata networks without negative cycles

Tarek Melliti and Damien Regnault
IBISC - Université d’Évry Val d’Essonne, France

Adrien Richard
I3S - Université de Nice-Sophia Antipolis, France

Sylvain Sené
LIF - Université d’Aix-Marseille, France

Gießen, September 19, 2013
Boolean networks

=

Finite and heterogeneous CAs on \{0, 1\}
Boolean networks

= Finite and heterogeneous CAs on \{0, 1\}

Classical models for

Neural networks [McCulloch & Pitts 1943]
Gene regulatory networks [Kauffman 1969, Tomas 1973]
Focus on interaction graphs

Question: What can be said on the dynamics of a Boolean network according to its interaction graph?

Application to gene networks: reliable information on the interaction graph only.
Focus on interaction graphs

Question
What can be said on the dynamics of a Boolean network according to its interaction graph?
Focus on **interaction graphs**

[Diagram of a network with nodes labeled 1 to 11 and arrows indicating interactions.]

[Arabidopsis Thaliana]

Question

What can be said on the dynamics of a Boolean network according to its interaction graph?

Application to **gene networks**: reliable information on the interaction graph only.
Definitions
Setting

There are \(n \) components (cells) denoted from 1 to \(n \)

The set of possible states (configurations) is \(\{0, 1\}^n \)

The local transition function of component \(i \in [n] \) is any map

\[
f_i : \{0, 1\}^n \rightarrow \{0, 1\}
\]

The resulting global transition function is

\[
f : \{0, 1\}^n \rightarrow \{0, 1\}^n, \quad f(x) = (f_1(x), \ldots, f_n(x))
\]
Setting

There are \(n \) components (cells) denoted from 1 to \(n \).

The set of possible states (configurations) is \(\{0, 1\}^n \).

The local transition function of component \(i \in [n] \) is any map

\[
f_i : \{0, 1\}^n \rightarrow \{0, 1\}
\]

The resulting global transition function is

\[
f : \{0, 1\}^n \rightarrow \{0, 1\}^n, \quad f(x) = (f_1(x), \ldots, f_n(x))
\]

We consider the fully-asynchronous updating

\(\leftrightarrow \) very usual in the context of gene networks [Thomas 73]
Given a map $v : \mathbb{N} \to [n]$, the **fully-asynchronous** dynamics is

$$x_{v(t)}^{t+1} = f_{v(t)}(x^t), \quad x_i^{t+1} = x_i^t \quad \forall i \neq v(t)$$
Given a map $\nu : \mathbb{N} \rightarrow [n]$, the \textbf{fully-asynchronous} dynamics is

$$x^{t+1}_\nu(t) = f_{\nu(t)}(x^t), \quad x^{t+1}_i = x^t_i \quad \forall i \neq \nu(t)$$

In practice, non information on ν... → we regroup all the possible asynchronous dynamics under the form of a directed graph
Given a map $\nu : \mathbb{N} \to [n]$, the \textbf{fully-asynchronous} dynamics is

$$x_{\nu(t)}^{t+1} = f_{\nu(t)}(x^t), \quad x_i^{t+1} = x_i^t \quad \forall i \neq \nu(t)$$

In practice, non information on ν... → we regroup all the possible asynchronous dynamics under the form of a directed graph

\textbf{Definition}

The \textbf{asynchronous state graph} of f, denoted by $\text{ASG}(f)$, is the directed graph on $\{0, 1\}^n$ with the following set of arcs:

$$\left\{ x \to \bar{x}^i \mid x \in \{0, 1\}^n, \ i \in [n], \ x_i \neq f_i(x) \right\}$$
Example

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>001</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>010</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>010</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

$ASG(f)$

- Attractor of size one = fixed point
- Attractor of size at least two = cyclic attractor
Example

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>001</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>010</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>010</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

The attractors of $ASG(f)$ are its terminal strong components:

- Attractor of size one = fixed point
- Attractor of size at least two = cyclic attractor

A path from a state x to a state y is a direct path if its length ℓ is equal to the Hamming distance between x and y (so $\ell \leq n$).
Example

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>001</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>010</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>010</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

$ASG(f)$

The attractors of $ASG(f)$ are its terminal strong components:
- Attractor of size one = fixed point
- Attractor of size at least two = cyclic attractor

A path from a state x to a state y is a direct path if its length ℓ is equal to the Hamming distance between x and y (so $\ell \leq n$).
Example

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>001</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>010</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>010</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

$\text{ASG}(f)$

The attractors of $\text{ASG}(f)$ are its terminal strong components:
- Attractor of size one = fixed point
- Attractor of size at least two = cyclic attractor

A path from a state x to a state y is a direct path if its length ℓ is equal to the Hamming distance between x and y (so $\ell \leq n$).
Example

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>001</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>010</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>010</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

$ASG(f)$

The attractors of $ASG(f)$ are its terminal strong components:
- Attractor of size one = fixed point
- Attractor of size at least two = cyclic attractor

A path from a state x to a state y is a direct path if its length ℓ is equal to the Hamming distance between x and y (so $\ell \leq n$).
The **attractors** of $ASG(f)$ are its **terminal strong components**

- Attractor of size one = **fixed point**
- Attractor of size at least two = **cyclic attractor**
The **attractors** of $ASG(f)$ are its **terminal strong components**

- Attractor of size one = **fixed point**
- Attractor of size at least two = **cyclic attractor**

A path from a state x to a state y is a **direct path** if its length ℓ is equal to the Hamming distance between x and y (so $\ell \leq n$).
Definition

The **interaction graph** of f, denoted $G(f)$, is the signed directed graph on $\{1, \ldots, n\}$ with the following arcs:

- There is a **positive arc** $j \to i$ iff there is a state x such that

 $f_i(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n) = 0$

 $f_i(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) = 1$

- There is a **negative arc** $j \to i$ iff there is a state x such that

 $f_i(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n) = 1$

 $f_i(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) = 0$
Definition

The **interaction graph** of \(f \), denoted \(G(f) \), is the signed directed graph on \(\{1, \ldots, n\} \) with the following arcs:

- There is a **positive arc** \(j \rightarrow i \) iff there is a state \(x \) such that
 \[
 f_i(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n) = 0 \\
 f_i(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) = 1
 \]

- There is a **negative arc** \(j \rightarrow i \) iff there is a state \(x \) such that
 \[
 f_i(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n) = 1 \\
 f_i(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) = 0
 \]

\[
 j \rightarrow i \in G(f) \quad \iff \quad f_i(x) \text{ depends on } x_j
 \]
Example

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>001</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>010</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>010</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

Asynchronous State Graph: $\text{ASG}(f)$

Interaction Graph: $G(f)$

Question: What can be said on $\text{ASG}(f)$ according to $G(f)$?
Example

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>001</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>010</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>010</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

Asynchronous State Graph $ASG(f)$

Interaction Graph $G(f)$

Question
What can be said on $ASG(f)$ according to $G(f)$?
Results
Theorem [Robert 1980]

If $G(f)$ has no cycles then

1. f has a unique fixed point
2. $ASG(f)$ has no cycles

⇒ complexity comes from cycles of the interaction graph

Two kinds of cycles have to be considered:
- Positive cycles: even number of negative arcs
- Negative cycles: odd number of negative arcs
Theorem [Robert 1980]

If $G(f)$ has **no cycles** then

1. f has a **unique fixed point**
2. $ASG(f)$ has no cycles
3. $ASG(f)$ has a **direct path** from every state to the fixed point
Theorem [Robert 1980]

If $G(f)$ has no cycles then

1. f has a unique fixed point
2. $ASG(f)$ has no cycles
3. $ASG(f)$ has a direct path from every state to the fixed point

\Rightarrow complexity comes from cycles of the interaction graph

Two kinds of cycles have to be considered:
- **Positive cycles**: even number of negative arcs
- **Negative cycles**: odd number of negative arcs
Theorem on positive cycles [Aracena 2004]

If all the positive cycles of $G(f)$ can be destroyed by removing k vertices, then $ASG(f)$ has at most 2^k attractors.
Theorem on positive cycles [Aracena 2004]
If all the positive cycles of $G(f)$ can be destroyed by removing k vertices, then $ASG(f)$ has at most 2^k attractors.

Corollary If $G(f)$ has no positive cycles then $ASG(f)$ has a unique attractor
Theorem on positive cycles [Aracena 2004]

If all the positive cycles of $G(f)$ can be destroyed by removing k vertices, then $ASG(f)$ has at most 2^k attractors.

Corollary If $G(f)$ has **no positive cycles** then $ASG(f)$ has a unique attractor

Theorem on negative cycles [Richard 2010]

If $G(f)$ has **no negative cycles** then $ASG(f)$ has a path from every state x to a fixed point
Theorem on positive cycles [Aracena 2004]
If all the positive cycles of $G(f)$ can be destroyed by removing k vertices, then $ASG(f)$ has at most 2^k attractors.

Corollary If $G(f)$ has **no positive cycles** then $ASG(f)$ has a unique attractor

Theorem on negative cycles [Richard 2010]
If $G(f)$ has **no negative cycles** then $ASG(f)$ has a path from every state x to a fixed point

Our contribution
If $G(f)$ has **no negative cycles** then $ASG(f)$ has a **direct path** from every state x to a fixed point
Sketch of proof
Theorem If $G(f)$ has no negative cycles then $ASG(f)$ has a direct path from any state x to a fixed point.
Theorem If $G(f)$ has no negative cycles then $ASG(f)$ has a direct path from any state x to a fixed point.

It is sufficient to prove the theorem in the case where $G(f)$ strongly connected (the general case follows by decomposition).

So we suppose that $G(f)$ is strong and has no negative cycles.
Theorem If $G(f)$ has no negative cycles then $ASG(f)$ has a direct path from any state x to a fixed point.

It is sufficient to prove the theorem in the case where $G(f)$ strongly connected (the general case follows by decomposition).

So we suppose that $G(f)$ is strong and has no negative cycles.

It is well known [Harary 1953] that $G(f)$ has a set of vertices I such that an arc of $G(f)$ is negative iff this arc leaves I or enters in I.
Theorem If $G(f)$ has no negative cycles then $ASG(f)$ has a direct path from any state x to a fixed point

It is sufficient to prove the theorem in the case where $G(f)$ strongly connected (the general case follows by decomposition).

So we suppose that $G(f)$ is strong and has no negative cycles.

It is well known [Harary 1953] that $G(f)$ has a set of vertices I such that an arc of $G(f)$ is negative iff this arc leaves I or enters in I.

![Diagram of a graph with vertices I and arcs between them]
Theorem If $G(f)$ has no negative cycles then $ASG(f)$ has a direct path from any state x to a fixed point.

Let h be the network defined by $h(x) = f(\overline{x^I})^I$ for all $x \in \{0, 1\}^n$.

In addition, $G(h)$ is obtained from $G(f)$ by changing the sign of every arc that leaves I or enters in I. Thus $G(h)$ has only positive arcs.

Conclusion: We can suppose that $G(f)$ has only positive arcs, which is equivalent to say that f is monotonous: $\forall x, y \in \{0, 1\}^n, x \leq y \Rightarrow f(x) \leq f(y)$.

Melliti, Regnault, Richard, Sené Convergence of Boolean networks without negative cycles Automata 2013 15/20
Theorem If $G(f)$ has no negative cycles then $ASG(f)$ has a direct path from any state x to a fixed point

Let h be the network defined by $h(x) = f(\overline{x^I})^I$ for all $x \in \{0, 1\}^n$

$ASG(h)$ is isomorphic to $ASG(f)$ and the isomorphism is $x \mapsto \overline{x^I}$

The isomorphism preserves the Hamming distance
Theorem If $G(f)$ has no negative cycles then $ASG(f)$ has a direct path from any state x to a fixed point.

Let h be the network defined by $h(x) = f(\overline{x^I})^I$ for all $x \in \{0, 1\}^n$.

$ASG(h)$ is isomorphic to $ASG(f)$ and the isomorphism is $x \mapsto \overline{x^I}$.

The isomorphism preserves the Hamming distance.

In addition, $G(h)$ is obtained from $G(f)$ by changing the sign of every arc that leaves I or enters in I.

Thus $G(h)$ has only positive arcs.
Theorem If \(G(f) \) has no negative cycles then \(ASG(f) \) has a direct path from any state \(x \) to a fixed point

Let \(h \) be the network defined by \(h(x) = f(\bar{x}^I)^I \) for all \(x \in \{0, 1\}^n \)

\(ASG(h) \) is isomorphic to \(ASG(f) \) and the isomorphism is \(x \mapsto \bar{x}^I \)

The isomorphism preserves the Hamming distance

In addition, \(G(h) \) is obtained from \(G(f) \) by changing the sign of every arc that leaves \(I \) or enters in \(I \)

Thus \(G(h) \) has only positive arcs

Conclusion: We can suppose that \(G(f) \) has only positive arcs
This is equivalent to say that \(f \) is monotonous:

\[
\forall x, y \in \{0, 1\}^n \quad x \leq y \Rightarrow f(x) \leq f(y)
\]
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

Lemma 1 $f(0) = 0$ and $f(1) = 1$

Suppose $f(0) \neq 0$, that is, $f_i(0) = 1$ for some i.

Then since f is monotonous, $f_i(x) = 1$ for all $x \in \{0, 1\}^n$.

Thus $f_i = cst$, so i has no in-neighbor in $G(f)$.

Thus $G(f)$ is not strong, a contradiction.

We prove similarly $f(1) = 1$.
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

Lemma 2 The set of states reachable from x, denoted by $R(x)$, has a unique maximal element, reachable from x by a direct path.
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

Lemma 2 The set of states reachable from x, denoted by $R(x)$, has a unique maximal element, reachable from x by a direct path.

Let P be an increasing path from x of maximal length. Let y the last state of P, so that $f(y) \leq y$. We prove that $z \leq y$, $\forall z \in R(x)$.
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

Lemma 2 The set of states reachable from x, denoted by $R(x)$, has a unique maximal element, reachable from x by a direct path.

Let P be an increasing path from x of maximal length. Let y the last state of P, so that $f(y) \leq y$. We prove that $z \leq y$, \(\forall z \in R(x) \).

If not there is a path $x \leadsto z \rightarrow \bar{z}^i$ with $z \leq y$ and $\bar{z}^i \not\leq y$.

Thus $\bar{z}_i^i = 1$ and $y_i = 0$, so $z \rightarrow \bar{z}^i$ increases component i.

Thus $f_i(z) = 1$ and since $z \leq y$ and f_i is monotonous, $f_i(y) = 1$.
Theorem If $G(f)$ is **strong** and f is **monotonous** then $ASG(f)$ has a direct path from any state x to a fixed point.

Lemma 2 The set of states reachable from x, denoted by $R(x)$, has a unique maximal element, reachable from x by a direct path.

Let P be an increasing path from x of maximal length. Let y the last state of P, so that $f(y) \leq y$. We prove that $z \leq y$, $\forall z \in R(x)$.

If not there is a path $x \rightsquigarrow z \rightarrow z^i$ with $z \leq y$ and $z^i \not\leq y$.

Thus $z^i = 1$ and $y_i = 0$, so $z \rightarrow z^i$ increases component i.

Thus $f_i(z) = 1$ and since $z \leq y$ and f_i is monotonous, $f_i(y) = 1$.

Melliti, Regnault, Richard, Sené Convergence of Boolean networks without negative cycles Automata 2013 17/20
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.
Theorem If $G(f)$ is **strong** and f is **monotonous** then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$...
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)$

\[
\begin{align*}
 f(z) &\leq f(y) \leq y, \quad \forall z \in R(x)
\end{align*}
\]
Theorem If $G(f)$ is **strong** and f is **monotonous** then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

If $f(y) = y$ nothing to prove.

Maximal element of $R(x)$

\[
\begin{align*}
R(x) \ni f(z) &\leq f(y) \leq y, \quad \forall z \in R(x) \\
\end{align*}
\]
Theorem If $G(f)$ is **strong** and f is **monotonous** then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)

\[
\begin{align*}
f(z) &\leq f(y) \leq y, \quad \forall z \in R(x) \\
\text{If } f(y) &= y \text{ nothing to prove} \\
\text{Suppose } f_i(y) &< y_i \text{ for some } i
\end{align*}
\]
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$. If $f(y) = y$ nothing to prove. Suppose $f_i(y) < y_i$ for some i.

Maximal element of $R(x)$

$\begin{align*}
 f(z) &\leq f(y) \leq y, \forall z \in R(x) \\
 y_i &= 1
\end{align*}$
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)$

If $f(y) = y$ nothing to prove
Suppose $f_i(y) < y_i$ for some i
Then $f_i(z) = 0$ for all $z \in R(x)$
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)$

- $f(z) \leq f(y) \leq y$, $\forall z \in R(x)$
- If $f(y) = y$ nothing to prove
- Suppose $f_i(y) < y_i$ for some i
- Then $f_i(z) = 0$ for all $z \in R(x)$

Component i cannot increase in $R(x)$
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)$

$f(z) \leq f(y) \leq y$, $\forall z \in R(x)$

If $f(y) = y$ nothing to prove

Suppose $f_i(y) < y_i$ for some i

Then $f_i(z) = 0$ for all $z \in R(x)$

Component i cannot increase in $R(x)$
Theorem If $G(f)$ is strong and f is monotonous then $\text{ASG}(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)$

- $f_i(x) = 0$
- $x_i = 1$
- $y_i = 1$
- $f(z) \leq f(y) \leq y$, $\forall z \in R(x)$
- If $f(y) = y$ nothing to prove
- Suppose $f_i(y) < y_i$ for some i
- Then $f_i(z) = 0$ for all $z \in R(x)$
- Component i cannot increase in $R(x)$
Theorem. If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)$

- $f(z) \leq f(y) \leq y$, $\forall z \in R(x)$
- If $f(y) = y$ nothing to prove
- Suppose $f_i(y) < y_i$ for some i
- Then $f_i(z) = 0$ for all $z \in R(x)$

Component i cannot increase in $R(x)$

- $f_i(x) = 0$
- $x_i = 1$
- \bar{x}^i (induction) $z = f(z)$
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)$

$$f(z) \leq f(y) \leq y, \forall z \in R(x)$$

If $f(y) = y$ nothing to prove.

Suppose $f_i(y) < y_i$ for some i.

Then $f_i(z) = 0$ for all $z \in R(x)$.

Component i cannot increase in $R(x)$.

$$f_i(x) = 0$$

$$x_i = 1$$
Theorem If $G(f)$ is strong and f is monotonous then $ASG(f)$ has a direct path from any state x to a fixed point.

We prove the theorem by induction on the number of ones in x. If $x = 0$ the theorem is true since $f(0) = 0$. Suppose that $x > 0$.

Maximal element of $R(x)$

- Maximal element of $R(x)$
- $f(z) \leq f(y) \leq y, \forall z \in R(x)$
- If $f(y) = y$ nothing to prove
- Suppose $f_i(y) < y_i$ for some i
- Then $f_i(z) = 0$ for all $z \in R(x)$
- Component i cannot increase in $R(x)$

Algorithm in $\mathcal{O}(n^2)$
Further results & perspectives
Theorem

Suppose that $G(f)$ has no negative cycles.

The set of fixed points reachable from x has a unique maximal element x^+ and a unique minimal element x^-, which are reachable in at most $2n - 4$ transitions (thigh bound).
Theorem
Suppose that $G(f)$ has no negative cycles.
The set of fixed points reachable from x has a *unique* maximal element x^+ and a *unique* minimal element x^-, which are reachable in at most $2n - 4$ transitions (thigh bound).

Are all the fixed points of $R(x)$ reachable in at most $2n - 4$ steps?

Can we obtain upper/lower bounds on the number of fixed points reachable from x according to $G(f)$?
Theorem

Suppose that $G(f)$ has no negative cycles.

The set of fixed points reachable from x has a *unique* maximal element x^+ and a *unique* minimal element x^-, which are reachable in at most $2n - 4$ transitions (thigh bound).

Are all the fixed points of $R(x)$ reachable in at most $2n - 4$ steps?

Can we obtain upper/lower bounds on the number of fixed points reachable from x according to $G(f)$?

We also plain to understand the connexions with works on

- Monotone maps on complete lattices [Tarski]
- Monotone differential systems [Hirsch & Smith]
Theorem
Suppose that $G(f)$ has no negative cycles.
The set of fixed points reachable from x has a *unique* maximal element x^+ and a *unique* minimal element x^-, which are reachable in at most $2n - 4$ transitions (thigh bound).

Are all the fixed points of $R(x)$ reachable in at most $2n - 4$ steps?

Can we obtain upper/lower bounds on the number of fixed points reachable from x according to $G(f)$?

We also plan to understand the connections with works on
- Monotone maps on complete lattices [Tarski]
- Monotone differential systems [Hirsch & Smith]

Thank you!