Synchronizing Boolean networks asynchronously

work in progress

Adrien Richard

CNRS & Université Côte d'Azur, France

joint work with

Juilio Aracena and Lilian Salinas

Universidad de Concepción, Chile

IWBN 2020, January 2020, Concepción, Chile

Aracena, Richard, Salinas

Synchronizing Boolean networks asynchronously

Outline

1. Synchronizing Deterministic Finite Automata

- 2. Synchronizing Boolean Networks
- 3. Conclusion

- a finite alphabet A,
- a finite set of states Q,
- for each letter $a \in A$, a function $f^a : Q \to Q$.

- a finite alphabet A,
- a finite set of states Q,
- for each letter $a \in A$, a function $f^a : Q \to Q$.

Given a word $w = a_1 a_2 \dots a_k$ over A, we set

$$f^w = f^{a_k} \circ f^{a_{k-1}} \circ \dots \circ f^{a_2} \circ f^{a_1}.$$

- a finite alphabet A,
- a finite set of states Q,
- for each letter $a \in A$, a function $f^a : Q \to Q$.

Given a word $w = a_1 a_2 \dots a_k$ over A, we set

$$f^w = f^{a_k} \circ f^{a_{k-1}} \circ \dots \circ f^{a_2} \circ f^{a_1}.$$

We say that w is synchronizing if

$$f^w = \operatorname{cst.}$$

- a finite alphabet A,
- a finite set of states Q,
- for each letter $a \in A$, a function $f^a : Q \to Q$.

Given a word $w = a_1 a_2 \dots a_k$ over A, we set

$$f^w = f^{a_k} \circ f^{a_{k-1}} \circ \dots \circ f^{a_2} \circ f^{a_1}.$$

We say that w is synchronizing if

$$f^w = \operatorname{cst.}$$

A DFA is synchronizing if it has a synchronizing word.

Example with $A = \{ \boldsymbol{a}, \boldsymbol{b} \}$, $Q = \{ 1, 2, 3, 4 \}$ and

x	$f^{\mathbf{a}}(x)$	$f^{\mathbf{b}}(x)$
1	2	2
2	3	2
3	4	3
4	1	4

State Transition Graph

The word w = baaabaaab is synchronizing:

Aracena, Richard, Salinas

The word w = baaabaaab is synchronizing:

State Transition Graph

State Transition Graph

We can decide if a *n*-letter *q*-state DFA is synchronizing in $O(nq^2)$.

We can decide if a *n*-letter *q*-state DFA is synchronizing in $O(nq^2)$.

Theorem [Eppstein 90]

It is **NP-complete** to decide, given a synchronizing DFA and $k \in \mathbb{N}$, if the DFA has a synchronizing word of length at most k.

We can decide if a *n*-letter *q*-state DFA is synchronizing in $O(nq^2)$.

Theorem [Eppstein 90]

It is **NP-complete** to decide, given a synchronizing DFA and $k \in \mathbb{N}$, if the DFA has a synchronizing word of length at most k.

Road Coloring Theorem [Conjectured in 70, proved by Trahtman 08]

Let D be a strong digraph with **loop number one**, where each vertex has n out-going arcs (with possibly identical ends).

Then D is the underlying digraph of some synchronizing DFA.

We can decide if a *n*-letter *q*-state DFA is synchronizing in $O(nq^2)$.

Theorem [Eppstein 90]

It is **NP-complete** to decide, given a synchronizing DFA and $k \in \mathbb{N}$, if the DFA has a synchronizing word of length at most k.

Road Coloring Theorem [Conjectured in 70, proved by Trahtman 08]

Let D be a strong digraph with **loop number one**, where each vertex has n out-going arcs (with possibly identical ends).

Then D is the underlying digraph of some synchronizing DFA.

Černý's Conjecture [1964]

If a DFA with q states is synchronizing, then it has synchronizing word of length at most $(q-1)^2.$

Černý's Conjecture [1964]

If a DFA with q states is synchronizing, then it has synchronizing word of length at most $(q-1)^2.$

In the same paper, Černý showed that this bound, if true, is best possible:

The unique shortest synchronizing word is w = baaabaaab

Černý's Conjecture [1964]

If a DFA with q states is synchronizing, then it has synchronizing word of length at most $(q-1)^2.$

In the same paper, Černý showed that this bound, if true, is best possible:

The unique shortest synchronizing word is w = baaabaaab

And he give the following useful observation.

Lemma. A DFA is synchronizing iff, for any two states x, y, there is w s.t.

$$f^w(x) = f^w(y).$$

Theorem

If a DFA with q states is synchronizing, then it has synchronizing word of length at most

 $\begin{array}{ll} \frac{1}{2} \cdot q(q-1)^2 & [{\sf Starke 66}] \\ \\ \frac{1}{6} \cdot (q^3-q) & [{\sf Frankl 82, Pin 82}] \\ \\ \frac{4409}{4410} \cdot \frac{1}{6} \cdot q^3 + O(q^2) & [{\sf Skykula 18}] \end{array}$

Theorem

If a DFA with q states is synchronizing, then it has synchronizing word of length at most

 $\begin{array}{ll} \frac{1}{2} \cdot q(q-1)^2 & [{\rm Starke} \ 66] \\ \\ \frac{1}{6} \cdot (q^3-q) & [{\rm Frankl} \ 82, \ {\rm Pin} \ 82] \\ \\ \frac{4409}{4410} \cdot \frac{1}{6} \cdot q^3 + O(q^2) & [{\rm Skykula} \ 18] \end{array}$

Weak Černý's Conjecture

If a DFA with q states is synchronizing, then it has synchronizing word of length at most $O(q^2)$.

Outline

1. Synchronizing Deterministic Finite Automata

2. Synchronizing Boolean Networks

3. Conclusion

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

Asynchronous dynamics: one component is updated at each step.

- \hookrightarrow Classical model for **gene networks** [Thomas 1969].
- \hookrightarrow Update component i at state x means reach the state

$$f^{i}(x) := (x_1, \dots, x_{i-1}, f_i(x), x_{i+1}, \dots, x_n).$$

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

Asynchronous dynamics: one component is updated at each step.

- \hookrightarrow Classical model for **gene networks** [Thomas 1969].
- \hookrightarrow Update component i at state x means reach the state

$$f^{i}(x) := (x_1, \dots, x_{i-1}, f_i(x), x_{i+1}, \dots, x_n).$$

The associated DFA is defined by

- The alphabet is $A = \{1, \ldots, n\}.$
- The set of states is $Q = \{0, 1\}^n$.
- The function associated to each $i \in A$ is $f^i : \{0,1\}^n \to \{0,1\}^n$.

Local transition functions

$$\begin{cases} f_1(x) = \overline{x_1} \land \overline{x_2} \\ f_2(x) = x_1 \end{cases}$$

Global transition function

x	f(x)
00	10
01	10
10	11
11	01

Associated DFA

Local transition functions

 $\begin{cases} f_1(x) = \overline{x_1} \land \overline{x_2} \\ f_2(x) = x_1 \end{cases}$

G	lot	bal	tran	sitio	on f	un	cti	on

x	f(x)
00	10
01	10
10	11
11	01

Associated DFA

Asynchronous State Transition Graph

Aracena, Richard, Salinas

The interaction graph (IG) of f is the signed digraph G defined by

- the vertex set is $\{1,\ldots,n\}$,
- there is a positive edge $j \rightarrow i$ if there is $x \in \{0,1\}^n$ such that

$$f_i(x_1, \dots, x_{j-1}, \mathbf{0}, x_{j+1}, \dots, x_n) = \mathbf{0}$$

$$f_i(x_1, \dots, x_{j-1}, \mathbf{1}, x_{j+1}, \dots, x_n) = \mathbf{1}$$

- there is a negative edge $j \rightarrow i$ if there is $x \in \{0,1\}^n$ such that

$$f_i(x_1, \dots, x_{j-1}, \mathbf{0}, x_{j+1}, \dots, x_n) = \mathbf{1}$$

$$f_i(x_1, \dots, x_{j-1}, \mathbf{1}, x_{j+1}, \dots, x_n) = \mathbf{0}$$

Aracena, Richard, Salinas

Local transition functions

$$\begin{cases} f_1(x) = \overline{x_1} \land \overline{x_2} \\ f_2(x) = x_1 \end{cases}$$

Global transition function

x	$\int f(x)$
00	00
01	10
10	01
11	01

Asynchronous State Transition Graph

Interaction graph

Definitions

- A BN f is synchronizing if its associated DFA is.
- An interaction graph G is synchronizing if every BN f on G is.

Definitions

- A BN f is synchronizing if its associated DFA is.
- An interaction graph G is synchronizing if every BN f on G is.

Questions

- Which BNs f are synchronizing?
- Which interaction graphs G are synchronizing?
- Is Černý's conjecture true for BNs?
- Is Černý's conjecture true for BNs with a synchronizing IG?

Remark 1 If G is acyclic, then G is synchronizing.

If G is acyclic then we know that any BN f has a unique fixed point x. If $w = i_1 i_2 \dots i_n$ is a **topological sort**, then w is a synchronizing word:

$$f^w = \operatorname{cst} = x.$$

Remark 2 If G is synchronizing, then it has a vertex of in-degree 0 or 2.

Remark 2 If G is synchronizing, then it has a vertex of in-degree 0 or 2.

More precisely, if G has no vertex of in-degree 0 or 2, then there is a BN f on G which is **self-dual**, that is, for any x,

$$f(x) = \overline{f(\overline{x})},$$

and then, for any word w,

$$f^w(x) = \overline{f^w(\overline{x})}.$$

Aracena, Richard, Salinas

Remark 3

• If G is synchronizing, then all its initial strong components are, but some non-initial strong components can be non-synchronizing.

Remark 3

- If G is synchronizing, then all its initial strong components are, but some non-initial strong components can be non-synchronizing.
- If all the strong components of G are synchronizing, then G is not necessarily synchronizing.

Remark 3

- If G is synchronizing, then all its initial strong components are, but some non-initial strong components can be non-synchronizing.
- If all the strong components of G are synchronizing, then G is not necessarily synchronizing.

 \hookrightarrow It is natural to focus on **strongly connected** interaction graphs.

Remark 4 If G is strong and synchronizing, it has a **negative cycle**.

Theorem [Aracena 08]

If G is strong and has **no negative cycle** then every BN f on G has at least two fixed points (and is thus not synchronizing).

Remark 4 If G is strong and synchronizing, it has a **negative cycle**.

Theorem [Aracena 08]

If G is strong and has **no negative cycle** then every BN f on G has at least two fixed points (and is thus not synchronizing).

Remark 5 If a DFA has multiple terminal strong components, then it is **not** synchronizing.

Remark 4 If G is strong and synchronizing, it has a **negative cycle**.

Theorem [Aracena 08]

If G is strong and has **no negative cycle** then every BN f on G has at least two fixed points (and is thus not synchronizing).

Remark 5 If a DFA has multiple terminal strong components, then it is **not** synchronizing.

Theorem [Comet and R. 07]

If G has **only negative cycles**, then the DFA associated with every BN f on G has a **unique** terminal strong component.

 \hookrightarrow It is natural to focus on strong IGs with **only negative cycles**.

Theorem 1

Suppose that G has the following three properties:

- (1) G is strong,
- (2) G has only negative cycles,
- (3) G has max in-degree 2.

Then every BN on G has a synchronizing word of length $O(2^{2n})$.

Theorem 1

Suppose that G has the following three properties:

- (1) G is strong,
- (2) G has only negative cycles,
- (3) G has max in-degree 2.

Then every BN on G has a synchronizing word of length $O(2^{2n})$.

Synchronizing

Theorem 1

Suppose that G has the following three properties:

- (1) G is strong,
- (2) G has only negative cycles,
- (3) G has max in-degree 2.

Then every BN on G has a synchronizing word of length $O(2^{2n})$.

Theorem 2

- If G has properties (2) and (3): **coNP-hard** to decide if G is synch.
- If G has properties (1) and (3): **coNP-hard** to decide if G is synch.
- If G has properties (1) and (2): G is not necessarily synchronizing.

An **and-or-net** is a BN f such that each local function f_i is

- a conjunction of positive or negative literals, or
- a disjunction of positive or negative literals.

An **and-or-net** is a BN f such that each local function f_i is

- a conjunction of positive or negative literals, or
- a disjunction of positive or negative literals.

Theorem 1'

Suppose that G has the following three properties:

- (1) G is strong,
- (2) G has only negative cycles,
- (3) G is not a cycle,

Then every **and-or-net** on G has a synchronizing word of length $O(2^{2n})$.

Remark: If G is strong and has only negative cycles, it is good.

Main result

If G is good, has no source and is not a cycle, then every and-or-net on G has a synchronizing word of length $O(2^{2n})$.

Main result

If G is **good**, has **no source** and **is not a cycle**, then every and-or-net on G has a synchronizing word of length $O(2^{2n})$.

Lemma 1 [Key argument]

Suppose that G is **good** and has **no source**. Let f be a BN on G. For every vertex i and state x, there is a word w such that

 $f^w(x)_i \neq x_i.$

Main result

If G is **good**, has **no source** and **is not a cycle**, then every and-or-net on G has a synchronizing word of length $O(2^{2n})$.

Lemma 1 [Key argument]

Suppose that G is **good** and has **no source**. Let f be a BN on G. For every vertex i and state x, there is a word w such that

 $f^w(x)_i \neq x_i.$

Let us say that G is **and-or-synchronizing** if every and-or-net on G is.

Lemma 2

Suppose that G is **good** and has **no source**. If each strongly connected component of G is and-or-synchronizing, then G and-or-synchronizing.
Outline

- 1. Synchronizing Deterministic Finite Automata
- 2. Synchronizing Boolean Networks
- 3. Conclusion

• introduction of the notion of synchronizing interaction graphs.

- introduction of the notion of synchronizing interaction graphs.
- identification of some families of synchronizing interaction graphs.

- introduction of the notion of synchronizing interaction graphs.
- identification of some families of synchronizing interaction graphs.
 → the corresponding BNs satisfy the Weak Černý's Conjecture.

- introduction of the notion of synchronizing interaction graphs.
- identification of some families of synchronizing interaction graphs.
 → the corresponding BNs satisfy the Weak Černý's Conjecture.
 - \hookrightarrow do they satisfy the Černý's Conjecture?

We study synchronization, classical topic in DFA, in the context of BNs:

- introduction of the notion of synchronizing interaction graphs.
- identification of some families of synchronizing interaction graphs.
 - \hookrightarrow the corresponding BNs satisfy the **Weak** Černý's Conjecture.
 - \hookrightarrow do they satisfy the Černý's Conjecture?
- some complexity results.

We study synchronization, classical topic in DFA, in the context of BNs:

- introduction of the notion of synchronizing interaction graphs.
- identification of some families of synchronizing interaction graphs.
 - \hookrightarrow the corresponding BNs satisfy the **Weak** Černý's Conjecture.
 - \hookrightarrow do they satisfy the Černý's Conjecture?
- some complexity results.
 - \hookrightarrow improvement and additional results are needed.

We study synchronization, classical topic in DFA, in the context of BNs:

- introduction of the notion of synchronizing interaction graphs.
- identification of some families of synchronizing interaction graphs.
 - \hookrightarrow the corresponding BNs satisfy the **Weak** Černý's Conjecture.
 - \hookrightarrow do they satisfy the Černý's Conjecture?
- some complexity results.
 - \hookrightarrow improvement and additional results are needed.

Many open questions:

- Černý's Conjecture for BNs.
- Černý's Conjecture for BNs with a synchronizing interaction graphs.
- Which interaction graphs admit at least one synchronizing BN?

Gracias!