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A Deterministic Finite Automaton (DFA) consists of

• a finite alphabet A,

• a finite set of states Q,

• for each letter a ∈ A, a function fa : Q→ Q.

Given a word w = a1a2 . . . ak over A, we set

fw = fak ◦ fak−1 ◦ · · · ◦ fa2 ◦ fa1 .

We say that w is synchronizing if

fw = cst.

A DFA is synchronizing if it has a synchronizing word.
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Example with A = {a, b}, Q = {1, 2, 3, 4} and

x fa(x) fb(x)
1 2 2
2 3 2
3 4 3
4 1 4

State Transition Graph

1 2

34
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a

a
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b
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The word w =baaabaaab is synchronizing:
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Theorem [Folklore]

We can decide if a n-letter q-state DFA is synchronizing in O(nq2).

Theorem [Eppstein 90]

It is NP-complete to decide, given a synchronizing DFA and k ∈ N,
if the DFA has a synchronizing word of length at most k.

Road Coloring Theorem [Conjectured in 70, proved by Trahtman 08]

Let D be a strong digraph with loop number one, where each vertex has
n out-going arcs (with possibly identical ends).

Then D is the underlying digraph of some synchronizing DFA.
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Černý’s Conjecture [1964]

If a DFA with q states is synchronizing, then it has synchronizing word of
length at most (q − 1)2.

In the same paper, Černý showed that this bound, if true, is best possible:

1 2

34

b

bb

a

b

a

a

a

The unique shortest
synchronizing word is
w = baaabaaab

And he give the following useful observation.

Lemma. A DFA is synchronizing iff, for any two states x, y, there is w s.t.

fw(x) = fw(y).
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Theorem

If a DFA with q states is synchronizing, then it has synchronizing word of
length at most

1
2 · q(q − 1)2 [Starke 66]

1
6 · (q

3 − q) [Frankl 82, Pin 82]

4409
4410 ·

1
6 · q

3 +O(q2) [Skykula 18]

Weak Černý’s Conjecture

If a DFA with q states is synchronizing, then it has synchronizing word of
length at most O(q2).
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A Boolean Network (BN) with n components is a function

f : {0, 1}n → {0, 1}n

x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x))

Global transition function

Locale transition functions

(from {0, 1}n to {0, 1})

Asynchronous dynamics: one component is updated at each step.

↪→ Classical model for gene networks [Thomas 1969].

↪→ Update component i at state x means reach the state

f i(x) := (x1, . . . , xi−1, fi(x), xi+1, . . . , xn).

The associated DFA is defined by

• The alphabet is A = {1, . . . , n}.
• The set of states is Q = {0, 1}n.

• The function associated to each i ∈ A is f i : {0, 1}n → {0, 1}n.
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Local transition functions Global transition function

{
f1(x) = x1 ∧ x2

f2(x) = x1

x f(x)
00 10
01 10
10 11
11 01

Associated DFA

x f1(x) f2(x)
00 10 00
01 11 00
10 10 11
11 01 11 00

01

10

11

2

2

1

2

1

1

2

1

Asynchronous State Transition Graph
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The interaction graph (IG) of f is the signed digraph G defined by

- the vertex set is {1, . . . , n},

- there is a positive edge j → i if there is x ∈ {0, 1}n such that

fi(x1, . . . , xj−1,0, xj+1, . . . , xn) = 0
fi(x1, . . . , xj−1,1, xj+1, . . . , xn) = 1

- there is a negative edge j → i if there is x ∈ {0, 1}n such that

fi(x1, . . . , xj−1,0, xj+1, . . . , xn) = 1
fi(x1, . . . , xj−1,1, xj+1, . . . , xn) = 0
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Local transition functions Global transition function

{
f1(x) = x1 ∧ x2

f2(x) = x1

x f(x)
00 00
01 10
10 01
11 01

Asynchronous State Transition Graph Interaction graph

00

01

10

11

2

2

1

2

1

1

2

1

1 2
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Definitions

• A BN f is synchronizing if its associated DFA is.

• An interaction graph G is synchronizing if every BN f on G is.

Questions

• Which BNs f are synchronizing?

• Which interaction graphs G are synchronizing?

• Is Černý’s conjecture true for BNs?

• Is Černý’s conjecture true for BNs with a synchronizing IG?
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Remark 1 If G is acyclic, then G is synchronizing.

If G is acyclic then we know that any BN f has a unique fixed point x.

If w= i1i2 . . . in is a topological sort, then w is a synchronizing word:

fw = cst = x.

i1 i2 i3

i4 i5

i6 i7 i8

i9 i10

stabilization

Aracena, Richard, Salinas Synchronizing Boolean networks asynchronously IWBN 2020 - Concepción, Chile 15/25



Remark 1 If G is acyclic, then G is synchronizing.

If G is acyclic then we know that any BN f has a unique fixed point x.

If w= i1i2 . . . in is a topological sort, then w is a synchronizing word:

fw = cst = x.

i1 i2 i3

i4 i5

i6 i7 i8

i9 i10

stabilization

Aracena, Richard, Salinas Synchronizing Boolean networks asynchronously IWBN 2020 - Concepción, Chile 15/25



Remark 2 If G is synchronizing, then it has a vertex of in-degree 0 or 2.

More precisely, if G has no vertex of in-degree 0 or 2, then there is a BN f
on G which is self-dual, that is, for any x,

f(x) = f(x),

and then, for any word w,

fw(x) = fw(x).
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Remark 3

• If G is synchronizing, then all its initial strong components are,
but some non-initial strong components can be non-synchronizing.

•

If all the strong components of G are synchronizing, then G is not
necessarily synchronizing.

Synchronizing

Not synchronizing Synchronizing

Not synchronizing

↪→ It is natural to focus on strongly connected interaction graphs.
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Remark 4 If G is strong and synchronizing, it has a negative cycle.

Theorem [Aracena 08]

If G is strong and has no negative cycle then every BN f on G has at
least two fixed points (and is thus not synchronizing).

Remark 5 If a DFA has multiple terminal strong components, then it is
not synchronizing.

Theorem [Comet and R. 07]

If G has only negative cycles, then the DFA associated with every BN f
on G has a unique terminal strong component.

↪→ It is natural to focus on strong IGs with only negative cycles.
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Theorem 1

Suppose that G has the following three properties:

(1) G is strong,

(2) G has only negative cycles,

(3) G has max in-degree 2.

Then every BN on G has a synchronizing word of length O(22n).
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Theorem 1

Suppose that G has the following three properties:

(1) G is strong,

(2) G has only negative cycles,

(3) G has max in-degree 2.

Then every BN on G has a synchronizing word of length O(22n).

Theorem 2

• If G has properties (2) and (3): coNP-hard to decide if G is synch.

• If G has properties (1) and (3): coNP-hard to decide if G is synch.

• If G has properties (1) and (2): G is not necessarily synchronizing.
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An and-or-net is a BN f such that each local function fi is

• a conjunction of positive or negative literals, or

• a disjunction of positive or negative literals.

Theorem 1’

Suppose that G has the following three properties:

(1) G is strong,

(2) G has only negative cycles,

(3) G is not a cycle,

Then every and-or-net on G has a synchronizing word of length O(22n).
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Definition: G is good if it has only negative cycles and, for every vertex i
and every initial strong component S not containing i, there is j ∈ S which
is homogenous for i, that is, all the paths from j to i have the same sign.

Remark: If G is strong and has only negative cycles, it is good.

j j j

i

→
j j j

i

j j j

i

j j j

i

Good Homogenous

j j j

i

→
j j j

i

j j j

i

j j j

i

Not good
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Main result

If G is good, has no source and is not a cycle, then every and-or-net on
G has a synchronizing word of length O(22n).

Lemma 1 [Key argument]

Suppose that G is good and has no source. Let f be a BN on G.
For every vertex i and state x, there is a word w such that

fw(x)i 6= xi.

Let us say that G is and-or-synchronizing if every and-or-net on G is.

Lemma 2

Suppose that G is good and has no source. If each strongly connected
component of G is and-or-synchronizing, then G and-or-synchronizing.
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Outline

1. Synchronizing Deterministic Finite Automata

2. Synchronizing Boolean Networks

3. Conclusion
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The asynchronous state transition graph of a BN is a particular DFA.

We study synchronization, classical topic in DFA, in the context of BNs:

• introduction of the notion of synchronizing interaction graphs.

• identification of some families of synchronizing interaction graphs.

↪→ the corresponding BNs satisfy the Weak Černý’s Conjecture.

↪→ do they satisfy the Černý’s Conjecture?

• some complexity results.

↪→ improvement and additional results are needed.

Many open questions:

• Černý’s Conjecture for BNs.

• Černý’s Conjecture for BNs with a synchronizing interaction graphs.

• Which interaction graphs admit at least one synchronizing BN?
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• Černý’s Conjecture for BNs.
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• Černý’s Conjecture for BNs.
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Gracias!
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