A branch-and-bound algorithm to rigorously
enclose the round-off errors*

Rémy Garcia, Claude Michel, and Michel Rueher

Université Cote d’Azur, CNRS, I3S, France

firstname.lastname@i3s.unice.fr

Abstract. Round-off errors occur each time a program makes use of
floating-point computations. They denote the existence of a distance be-
tween the actual floating-point computations and the intended compu-
tations over the reals. Therefore, analyzing round-off errors is a key issue
in the verification of programs with floating-point computations. Most
existing tools for round-off error analysis provide an over-approximation
of the error. The point is that these approximations are often too coarse
to evaluate the effective consequences of the error on the behaviour of a
program. Some other tools compute an under-approximation of the max-
imal error. But these under-approximations are either not rigorous or not
reachable. In this paper, we introduce a branch-and-bound algorithm to
rigorously enclose the maximal error. Thanks to the use of rational arith-
metic, our branch-and-bound algorithm provides a tight upper bound of
the maximal error and a lower bound that can be exercised by input val-
ues. We outline the advantages and limits of our framework and compare
it with state-of-the-art methods. Preliminary experiments on standard
benchmarks show promising results.

Keywords: floating-point numbers - round-off error - constraints over
floating-point numbers - optimization

1 Introduction

Floating-point computations involve errors due to rounding operations that char-
acterize the distance between the intended computations over the reals and the
actual computations over the floats. An error occurs at the level of each basic
operation when its result is rounded to the nearest representable floating-point
number. The final error results from the combination of the rounding errors pro-
duced by each basic operation involved in an expression and some initial errors
linked to input variables and constants. Such errors impact the precision and
the stability of computations and can lead to an execution path over the floats
that is significantly different from the expected path over the reals. A faithful
account of these errors is mandatory to capture the actual behaviour of critical
programs with floating-point computations.

* This work was partially supported by ANR COVERIF (ANR-15-CE25-0002)

2 Rémy Garcia, Claude Michel, and Michel Rueher

Efficient tools exist for error analysis that rely on an over-approximation of the
errors in programs with floating-point computations. For instance, Fluctuat [7,
6] is an abstract interpreter that combines affine arithmetic and zonotopes to an-
alyze the robustness of programs over the floats, FPTaylor [19, 18] uses symbolic
Taylor expansions to compute tight bounds of the error, and PRECiSA [16,
22] is a more recent tool that relies on static analysis. Other tools compute
an under-approximation of errors to find a lower bound of the maximal abso-
lute error, e.g. FPSDP [11] which takes advantage of semidefinite programming
or, S3FP [2] that uses guided random testing to find inputs causing the worst
error. Over-approximations and under-approximations of errors are complemen-
tary approaches for providing better enclosures of the maximal error. However,
none of the available tools compute both an over-approximation and an under-
approximation of errors. Such an enclosure would be very useful to give insights
on the maximal absolute error, and how far computed bounds are from it. It is
important to outline that approximations do not capture the effective behaviour
of a program: they may generate false positives, that is to say, report that an
assertion might be violated even so in practice none of the input values can ex-
ercise the related case. To get rid of false positives, computing maximal errors,
i.e. the greatest reachable absolute errors, is required. Providing an enclosure of
the maximal error, and even finding it, is the goal of the work presented here.
The core of the proposed approach is a branch-and-bound algorithm that at-
tempts to maximize a given error of a program with floating-point compu-
tations. This branch-and-bound algorithm is embedded in a solver over the
floats [24, 13,1, 14, 15] extended to constraints over errors [5]. The resulting sys-
tem, called FErA (Floating-point Error Analyzer), provides not only a sound
over-approximation of the maximal error but also a reachable under-approxima-
tion with input values that exercise it. To our knowledge, our tool is the first
one that combines upper and lower bounding of maximal round-off errors. A key
point of FErA is that both bounds rely on each other for improvement.
Maximizing an error can be very expensive for the errors that are unevenly
distributed. Even on a single operation, such a distribution is cumbersome and
finding input values that exercise it often resort to an enumeration process.
A combination of floating-point operations often worsen this behaviour, but
may, in some cases, soften it thanks to error compensations. One advantage
of our approach is that the branch-and-bound is an anytime algorithm, and
thus it always provides an enclosure of the maximal error alongside input values
exercising the lower bound.

1.1 Motivating example

Consider the piece of code in Example 1 that computes z = (3% x + y)/w using
64 bits doubles with = € [7,9], y € [3,5], and w € [2,4].

The computation of z precedes a typical condition of a control-command code.
When z is lower than 10, with a tolerance to errors of §, values supported by
z are considered as safe and related computations can be done. Otherwise, an
alarm must be raised.

A branch-and-bound algorithm to rigorously enclose the round-off errors 3

2 = (3exty) /w;

Tool ‘ Error

if (z — 10 <=96) { FPTaylor [5.15e-15
proceed (); PRECiSA|5.08e-15

} else { Fluctuat |6.28e-15
raiseAlarm (); FErA |4.96e-15

}

Example 1. Simple program

Table 1. Absolute error bound

Now, assume that ¢ is set to 5.0e—15. The issue is to know whether this piece
of code behaves as expected, i.e. to know whether the error on z is small enough
to avoid raising the alarm when the value of z is less than or equal to 10 on R.
Table 1 reports the error values given by FPTaylor [19, 18], PRECISA [22], Fluc-
tuat [7, 6], and our tool FErA. All analyzers but FErA compute a bound greater
than 0. Results from FPTaylor, PRECiSA and Fluctuat suggests that the alarm
might inappropriately be raised.

FErA computes a round-off error bound of 4.96e—15 in about 0.185 seconds. It
also computes a lower bound on the largest absolute error of 3.55e—15 exercised
by the following input values:

z = 8.99999999999996624922 e; = —8.88178419700125232339¢—16
y = 4.99999999999994848565 ey = —4.44089209850062616169e—16
w = 3.19999999999998419042 ew = +2.22044604925031308085e—16
z = 10.0000000000000035527 e = —3.55271367880050092936e—15

In other words, our sound optimizer not only guarantees that, despite errors

in floating-point computations, this program can never raise an alarm when
z <= 10 over the reals, but it also provides an enclosure of the largest absolute
error. Such an enclosure having a ratio! of ~ 1.4 shows that the round-off error
bounds of FErA are close to the actual error. Note that the computed lower
bound corresponds to a case where z over the floats is bigger than 10 while it
remains lower than 10 over the reals.
Now, assume that ¢ is set to 3.00e—15. The issue here is to know whether there
exists at least one case where raiseAlarm() is reached when z is less than or equal
to 10 on real numbers. The previously computed enclosure of the maximal error
provided by FErA ensures that there exist at least one case where raiseAlarm()
is reached with an error bigger than d. The other tools are unable to do so as
none of them compute a reachable lower bound on the largest absolute error.

The rest of the paper is organized as follows: Section 2 introduces notations and
definitions. Section 3 recalls the constraint system for round-off error analysis

! The ratio between FErA computed upper and lower bound is equal to
4.96e—15/3.5527e—15 = 1.396.

4 Rémy Garcia, Claude Michel, and Michel Rueher

and explains how the filtering works. Section 4 formally introduces the branch-
and-bound algorithm and its main properties. Section 5 describes in more de-
tail related works on computing a lower bound on the maximal error and their
pitfalls. Section 6 provides preliminary experiments on a set of standard bench-
marks.

2 Notation and definitions

Our system for round-off error analysis focuses on the four classical arithmetic
operations, i.e. +, —, X and /, for which the error can be computed exactly using
rational arithmetic [5]. As usual, a constraint satisfaction problem, or CSP, is
defined by a triple (X, D, C), where X denotes the set of variables, D, the set of
domains, and C, the set of constraints. The set of rational numbers is denoted
Q, and the set of real numbers is denoted R. F denotes a set of floating-point
numbers whose precision is one of the precision defined in IEEE 754 [10]. Though
the approach presented here applies to other types of floats, in the rest of the
paper, F will denote 64 bits floating-point numbers unless otherwise stated. For
each floating-point variable x in X, the domain of values of x is represented by
the interval x = [x,X] = {z € F, x < 2 < X}, where x € Fand X € F. x
(resp. X) denotes the lower (resp. upper) bound of the interval x. The domain
of errors ey of x is represented by an interval of rationals ex = [e,,€x] = {ex €
Q, ey < ey < &} where e, € Q and €x € Q. zy (respectively, zg and =)
denotes a variable that takes its values in F (respectively, Q and R). A variable
is instantiated when its domain of values is reduced to a degenerate interval, or
a singleton, i.e. when e, = ex.

The branch-and-bound algorithm maximizes an error noted e that results from
floating-point computations along a given path in a program. e* denotes the
lower bound, i.e. the maximal error computed so far while € denotes the upper
bound, i.e. the currently best known over-approximation of the error. Both of
those bounds are expressed in absolute value. S is the ordered, by error values, set
of couples (e, sol) where e and sol are, respectively, an error and its corresponding
input values. A box B is the cartesian product of variable domains. For the sake
of clarity, a box B can be used as exponent, e.g. x? indicates that an element x
is in box B. L is the set of boxes left to compute.

3 A constraint system for round-off error

The branch-and-bound algorithm at the core of our framework is based on a
constraint system on errors [5] that we briefly describe in this section.
3.1 Computing rounding errors

The IEEE 754 standard [10] requires a correct rounding for the four basic oper-
ations of the floating-point arithmetic. The result of such an operation over the

A branch-and-bound algorithm to rigorously enclose the round-off errors 5

Addition: z =2 @y —e; =ez + ey + e
Subtraction: z =z © Y — € =€ — €y teg
Multiplication: z = @ y — e, = zrey + yres + ezey + g
Yr€z — TREy

Division: z =20y — e, =
yr(yr +ey)

€0

Fig. 1. Computation of deviation for basic operations

floats must be equal to the rounding of the result of the equivalent operation
over the reals. More formally, z = z ® y = round(x - y) where z, x, and y are
floating-point numbers, ® is one of the four basic arithmetic operations on floats,
namely, ®, ©, ®, @, while - are the equivalent operations on reals, namely, +,
—, X, /; round being the rounding function. This property is used to bound the
error introduced by each elementary operation on floats by j:%ul;o(z)2 when the
rounding mode is set to round to the “nearest even” float, the most frequently
used rounding mode.

The deviation of a computation over the floats takes root in each elementary
operation. So, it is possible to rebuild the final deviation of an expression from
the composition of errors due to each elementary operation involved in that
expression. Let us consider a simple operation like the subtraction as in z =
x © y: input variables, x and y, can come with errors attached due to previous
computations. For instance, the deviation on the computation of z, e, is given
by e, = xr — zr where xg and zy denote the expected results, respectively, on
reals and on floats.

The computation deviation due to a subtraction can be formulated as follows:
for z =2 6y, e,, the error on z, is equal to (xr — yr) — (T © yF).

Ase, = ap—ay and ey = yr —yr, we have e, = ((ar+ez) —(yr+ey)) — (TrSyr).
So, the deviation between the result on reals and the result on floats for a
subtraction can be computed by: e, = e, — e, + ((xFr — yr) — (zr © yr)), where
(xr—yr)— (xr©yr) characterizes the error produced by the subtraction operation
itself. Let’s eg denotes the error produced by the subtraction operation. The
formula can then be denoted by: e, = e, — e, + eg, that combines deviations
from input values and the deviation introduced by the elementary operation.

Computation of deviations for all four basic operations are given in Figure 1. For
each of these formulae, the error computation combines deviations from input
values and the error introduced by the current operation. Note that, for the
multiplication and division, this deviation is proportional to the input values.

All these formulae compute the difference between the expected result on reals

and the actual one on floats for a basic operation. Our constraint solver over the
errors relies on these formulae.

2 ulp(z) is the distance between z and its successor (noted z™).

6 Rémy Garcia, Claude Michel, and Michel Rueher

3.2 A constraint network with three domains

As usually, to each variable x is associated x, its domain of values. The domain
x denotes the set of possible values that variable z can take. When the variable
takes values in F, its domain of values is represented by an interval of floats:

xp = [xp,Xp| = {2r € F, xp < oy <Xy} where xy e Fand Xp € F

Errors require a specific domain associated with each variable of a problem.
Since the arithmetic constraints processed here are reduced to the four basic
operations, and since those four operations are applied on floats, i.e. a finite
subset of rationals, this domain can be defined as an interval of rationals:

e; =le,, €] =1{e. €Q, e, <e, <€} wheree, € Qand e, €Q

The domain of errors on operations, denoted by e, that appears in the computa-
tion of deviations (see Figure 1) is associated with each instance of an arithmetic
operation of a problem.

3.3 Projection functions

The filtering process of FErA is based on classical projection functions that
reduce the domains of the variables. Domains of values can be reduced by means
of standard floating-point projection functions defined in [14] and extended in [1,
13]. However, dedicated projections are required to reduce domains of errors.
The projections on the domains of errors are obtained using the natural extension
over intervals of the formulae of Figure 1. Since these are formulae on reals, they
can naturally be extended to intervals. The projections functions for the four
basic arithmetic operations are detailed in Figure 2.

As no error is involved in comparison operators, their projection functions only
handle domains of values. So, projection functions on the domain of errors sup-
port only arithmetic operations and assignment, where the computation error
from the expression is transmitted to the assigned variable.

3.4 Links between domains of values and domains of errors

Strong connections between the domain of values and the domain of errors are
required to propagate reductions between these domains.

A first relation between the domain of values and the domain of errors on opera-
tions is based upon the IEEE 754 standard, that guarantees that basic arithmetic
operations are correctly rounded.

min((z —27), (F-27)) | max((z" ~2),(z" ~2))

ep < ep N |— 3 , 5

where £~ and =T denote respectively, the greatest floating-point number strictly
inferior to x and the smallest floating-point number strictly superior to x. This

A branch-and-bound algorithm to rigorously enclose the round-off errors 7

Addition Subtraction

e;<e;N(e; +ey+eqg e;<e;N(e; —ey+eg)

ez<—ezﬂ(ez—ey—e® ez —e;N(e.+e,—eg)

ey e, N(e; —e, —eqg ey e, N(—e.+e, +eg)

)
)
)
)

e@ee@ﬁ(ezf e, —ey eg —egNe; —e; +ey)

Multiplication Division

e, < e; N (xrey + yres + ezey + eg) e, « e, N (yﬂ‘ex — xurey + e@)
yr(yr + €y)

e
€z < ez N = —ep)(Y1F+ey)+X]F y)

(¢ =
e, ey N (7ez3e’]F j—e®yF>
—ep

eg ey N (ez — XF€y — Yr€z — ezey)

€, —

y]Fez - X]Fey)
ye(yr +ey)

—e.)yr(yr + ey) + yres
€y

X — Xp N

e, — YFey — €€, — €
xp ¢ xp [2" YFC2 ~ €€y ~ Co ep < eg N
€y

(ez

€, — Xpey — €,€, — e®>
yr < yr N [min(8,, §,), max(é1,02)]

with

e: — (e. —eple, — VA 5 <_ex_(e2_e®)ey+\/K
2(e. —ep) ? 2(e: —ep)

51(—

A [0,400) N ((ez —ep)ey — ex)” +4(e. — eg)eyXr

Fig. 2. Projection functions of arithmetic operation

equation sets a relation between the domain of values and the domain of errors
on operations. More precisely, it states that operation errors can never be greater
than the greatest half-ulp of the domain of values of the operation result. Note
that the contrapositive of this property offers another opportunity to connect
the domain of values and the domain of errors. Indeed, since the absolute value
of an operation error is less than the greatest half-ulp of the domain of values
of the operation result, the smallest values of the domain of the result cannot
be the support of a solution if inf(|eg|) > 0. In other words, these small values
near zero cannot be associated to an error on the operation big enough to be in
€@ domain if their half-ulp is smaller than inf(|eg]).

Finally, these links are refined by means of other well-known properties of floating-
point arithmetic like the Sterbenz property of the subtraction [20] or the Hauser
property on the addition [9]. Both properties give conditions under which these
operations produce exact results, the same being true for the well-known prop-

8 Rémy Garcia, Claude Michel, and Michel Rueher

erty that states that 2¥ @ x is exactly computed, provided that no overflow
occurs.

3.5 A CSP over F with errors

A CSP over F with errors is made of constraints over F with variables whose
domains specify the allowed values over F, as well as, the allowed values over Q
of the associated error. err(z), which denotes the error associated to variable x,
permits constraints on errors. Note that the latter are constraints over Q.

The constraint network results from elementary constraints issued from the de-
composition of initial constraints. Each elementary constraint is in charge of
applying the set of related projection functions to reduce the domain of the vari-
ables involved in the constraint. They compute a quasi-fixpoint, set to 5%, in
order to avoid some slow convergence issues. Propagation occurs following an

AC3 algorithm.

4 A branch-and-bound algorithm to maximize the error

Our branch-and-bound algorithm (see Algorithm 1) maximizes a given absolute
error from a CSP. Such an error characterizes the greatest possible deviation
between the expected computation over the reals and the actual computation
over the floats. Note that the algorithm can easily be changed to maximize or
minimize a signed error.

The branch-and-bound algorithm takes as inputs a CSP (X,C, D), and e, an
error to maximize. It computes a lower bound, e* and an upper bound, € of the
maximal error e. e* and € bounds the maximal error: e* < e < €. The computed
lower bound e* is a reachable error exercised by computed input values. These
values and the computed bounds are returned by the algorithm.

Stopping criteria. The primary aim of the branch-and-bound algorithm is to
compute the maximal error. This is achieved when the lower bound is equal to
the upper bound. However, such a condition may be difficult to meet.

A first issue comes from the dependency problem which appears on expressions
with multiple occurrences. Multiple occurrences of variables is a critical issue in
interval arithmetic since each occurrence of a variable is considered as a different
variable with the same domain. This dependency problem results in overestima-
tions in the evaluation of the possible values that an expression can take. For
instance, let y = x & with € [—1,1], classical interval arithmetic yields
[—1,1] whereas the exact interval is [0, 1]. Such a drawback arises in projection
functions of errors that contain multiple occurrences like in multiplication and
division. It can lead to unnecessary over-approximations of resulting intervals.
A direct consequence of this problem is that the upper bound is overestimated
and therefore can not be achieve.

A second issue comes from the bounding of errors on operations by the half
of an ulp. An operation error is bounded by %ulp(z) where z is the result of

A branch-and-bound algorithm to rigorously enclose the round-off errors 9

an operation. Such a bound is highly dependent on the distribution of floating-
point numbers. Consider an interval of floating-point numbers (27, 2"+1), every
floating-point number is separated from the next one by the same distance. In
other words, every floating-point number in this interval will have the same ulp.
When the domain of the result of an operation is reduced to such an interval,
the bounds of eg are fixed and can no longer be improved by means of projec-
tion functions. This can be generalized across all operations of a CSP. Once all
operation errors are fixed, then bounds cannot be tighten without enumerating
values. That is why, we stop processing a box when all the related domains are
reduced to such an interval.

Box management. The algorithm manages a list L of boxes to process whose
initial value is {B = (D, e? € [~00,+c])} where D is the cross product of the
domains of the variable as defined in the problem and e? their associated error.
It also manages the global lower and upper bounds with e* = —oco, € = 400
as initial values. A box can be in three different states: unexplored, discarded or
sidelined. unezxplored boxes are boxes in L that still require some computations.
A discarded box is a box whose associated error e® is such that e < e*. In
other words, such a box does not contain any error value that can improve the
computation of the maximal error. It is thus removed from L. sidelined boxes
are boxes that fullfil the property described in the stopping criteria paragraph.
These boxes cannot improve maximal error computation unless if the algorithm
resorts to enumeration (provided there are no multiple occurrences). As sidelined
boxes are still valid boxes, the greatest over-approximation of such boxes, °, is
taken into account when updating the upper bound. Solving stops when there
are no more boxes to process or when the lower bound e* and the upper bound
€ are equal, i.e. when the maximal error is found.

The main loop of the branch-and-bound algorithm can be subdivided in several
steps: box selection, filtering, upper bound updating, lower bound updating, and
box splitting.

Bozx selection. We select the box B in the set L with the greatest upper bound
of the error to provide more opportunities to improve both € and e*. Indeed, the
global € has its support in this box which also provides the odds of computing
a better reachable error e*. Once selected, the box B is removed from L.

Filtering. A filtering process (see Section 3), denoted @, is then applied to B to
reduce the domains of values and the domains of errors. Note that this filtering is
applied to the initial set of constraints enhanced with a constraint on the known
lower bound of e, i.e. e* < e. If §(B) = &, the selected box does not contain any
solution; either because it contradicts one of the initial constraints or because of
known bounds of constraints over e. In both cases, the algorithm discards box
B and directly jumps to the next loop iteration.

Upper bound update. Once B has been filtered, if the error upper bound of the
current box was the support of the global € and is no longer, then € is updated.

10 Rémy Garcia, Claude Michel, and Michel Rueher

Algorithm 1: branch-and-bound — maximization of error

Input : (X,C, D) — triple of variables, constraints, and domains
e € [—00, +00] — error to maximize

Output : (e",e,95)

Data : L+ {]] z]z=(x,ex)} — set of boxes

zeX
€ < +00 — upper bound

e* + —oo — lower bound
2% + —co — upper bound of sidelined boxes
S < @ — stack of solutions

1 while L # @ and ¢* <€ do

/* Box selection: select a box B in the set of boxes L */
2 select BEL; L+ L\B;e5,+¢e"
3 B+ &(X,CNe>e*, B)
4 if g5, =¢ and (B = @ or €” <€) then
5 if B+ @ then € «+ €° else € + —o0
6 | e+ max ({€” |VB; € L} U {e,e})
7 if B # & then
8 if €% > e* then
9 if isBound(B) then
10 L (e?,50lP) + (€7, B)
11 else
12 L (e®, s0l®) + LowerBounding(B, X)
13 if €% > e* then
14 e* «eP ; push (e?,s0lP) onto S
15 L+ L\{B;eL|e% <e*}
16 if % > &% and €® > ¢* then
/* Variable selection: select a variable z in box B */
17 if (select(x®,ex®) € B | x® < %P) and —isSidelined(B) then
/* Domain splitting: on the domain of values of x */
18 B+ B ;B + B
19 xBr [KB, ngiB] s xP2 |:(KB;§B)+,XB:|
20 L+ LU{Bu1, B2}
21 | else & « max(e”,e”)

22 return (e, ¢, S)

€ is updated with the maximum among the upper bound of errors of the current
box, of remaining boxes in L, and of sidelined boxes.

Lower bound update. A non empty box may contain a better lower bound than
the current one. A generate-and-test procedure, LowerBounding, attempts to
compute a better one through a two-step process. A variable is first assigned with
a floating-point value chosen randomly in its domain of values. Then, another

A branch-and-bound algorithm to rigorously enclose the round-off errors 11

random value chosen within the domain of its associated error is assigned to the
error associated to that variable. We exploit the fact that if the derivative sign
does not change on the associated error domain, then the maximum distance
between the hyperplan defined by the result over the floats and the related
function over the reals is at one of the extrema of the associated error domain.
In such a case, the random instantiation of the error is restricted to the corners
of its domain. When all variables from a function f representing a program have
been instantiated, an evaluation of f is done exactly over Q and in machine
precision over F. The error is exactly computed by evaluating fo — fr over Q.
The computed error can be further improved by a local search. That is to say, by
exploring floating-point numbers around the chosen input values and evaluating
again the expressions. This process is repeated a fixed number of times until the
error can not be further improved, i.e. a local maximum has been reached. If the
computed error is better than the current lower bound, then e* is updated. Each
new reachable lower bound is added to S alongside the input values exercising
it.

Box splitting. A box is not split up but is discarded when its error upper bound
is less than or equal to €°, the upper bound of sidelined boxes, or e*. Discarding
such a box speeds up solving time, since none of the errors contained in this box
can improve the lower or the upper bounds. Splitting occurs if and only if there
exist at least one of the variables within B that is not instantiated and if the box
is not sidelined. Otherwise, the box is sidelined and if €” is strictly greater than
27, the latter is updated. The next variable to split on is selected in round-robin
on a lexicographic order. The bisection generates two sub-boxes that are added
to L.

Note that Algorithm 1 always terminates and gives an enclosure of the maximal
error: in the worst case, all boxes will be split up to degenerated boxes. Each
degenerated box whose associated error e is lower than the current lower bound
will be discarded. If e* < B < & holds, eB will be used to update e* and e
before discarding the corresponding degenerated box. As a result, since the set
of floating-point numbers is a finite set, the branch-and-bound requires a finite
number of iterations to explore completely the initial box and thus, terminates.

5 Related work

Different tools exist to compute an over-approximation of floating-point compu-
tation round-off errors. Fluctuat [7, 6], is an abstract interpreter that combines
affine arithmetic and zonotopes to analyze the robustness of programs over the
floats. FPTaylor [19, 18] relies on symbolic Taylor expansions and global opti-
mization to compute tight bounds of the error. It makes use of Taylor series
of first and second order to evaluate the error. A branch-and-bound algorithm
approximates the first order error terms while the second order error terms are
directly bounded by means of interval arithmetic. This branch-and-bound is very

12 Rémy Garcia, Claude Michel, and Michel Rueher

different from the one of FErA. First, it considers only the first order terms of
the error whereas FErA branch-and-bound works on the whole error. Second,
it does not compute a lower bound on the largest absolute error but only over-
approximate the first order terms of the error. FPTaylor also generates a proof
certificate of its computed bounds. Such a certificate can be externally checked
in HOL Light [8]. The static analyzer PRECiSA [16, 22] computes also a certifi-
cate of proof that can be validated by the PVS theorem prover [17]. PRECiSA
computes symbolic error expressions to represent round-off errors that are then
given to a branch-and-bound algorithm to get the error bounds. Gappa [4] veri-
fies properties on floating-point programs, and in particular computes bounds on
round-off errors. Gappa works with an interval representation of floating-point
numbers and applies rewriting rules for improving computed results. It is also
able to generate formal proof of verified properties, that can in turn be checked
in Coq [21]. Real2Float [12] uses semidefinite programming to estimate bounds
on errors. It decomposes an error into an affine part with respect to the error
variable and a higher-order part. Bounds on the higher-order part are computed
in the same way as FPTaylor. For the affine part, a relaxation procedure based
on semidefinite programming is employed.

FPSDP [11] is a tool based on semidefinite programming that only computes
under-approximation of largest absolute errors. In contrast to our approach
FPSDP computes an under-approximation of the maximal error. The point is
that this under-approximation might not be reachable. S3FP [2] relies on ran-
dom sampling and shadow value executions to find input values maximizing an
error. It computes the error as the difference between the execution of a pro-
gram done in a higher precision, acting as R, and a lower precision, acting as .
S3FP starts with an initial configuration that is cut into smaller configurations.
Then, it selects a configuration and randomly instantiates variables to evaluate
the program in both precision. This process is repeated a finite number of time
to improve the lower bound. Depending on the size of input variable domains,
S3FP can get stuck on a local maximum. To avoid this problem it uses a standard
restart process. S3FP is the closest to our lower bound computation procedure.
Both rely on random generation of input values to compute a lower bound of
errors. However, as SSFP does all computations over F, the resulting error suffers
from rounding issues and thus, might underestimate or overestimate the actual
error. Such a computed error is unreachable. Furthermore, S3FP is highly reliant
on the parametrized partitioning of the initial configuration. It cannot discard
configurations where no improvement of the lower bound is possible. In contrast,
FErA selects boxes to explore on the basis of their upper bounds to try finding
a better lower bound.

6 Experiments

In this section, we provide preliminary experiments of FErA on benchmarks from
the FPBench [3] suite, a common standard to compare verification tools over
floating-point numbers. Table 2 compares the behaviour of FErA with different

A branch-and-bound algorithm to rigorously enclose the round-off errors 13

filtering e*=¢e e* =ew.s. £ <2 £ < 2w.s
e* € e* € e* € e* €
carbonGas 4.2e-8 4.2e-9 6.0e-9 2.9e-9 7.0e-9 3.6e-9 7.0e-9 3.6e-9 7.0e-9
0.017s TO 0.345s 1.419s 0.266s
verhulst 4.2e-16 2.4e-16 2.8e-16 2.1e-16 2.9e-16 1.8e-16 2.9e-16 1.6e-16 3.0e-16
0.016s TO 0.034s 0.024s 0.018s
predPrey 1.8e-16 1.5e-16 1.7e-16 1.0e-16 1.7e-16 9.3e-17 1.7e-16 9.8e-17 1.8e-16
0.011s TO 0.084s 0.041s 0.018s
rigidBodyl 2.9e-13 2.8e-13 2.9e-13 1.9e-13 2.9e-13 1.4e-13 2.9e-13 1.4e-13 2.9e-13
0.018s TO 1.659s 0.370s 0.543s
rigidBody2 3.6e-11 3.1e-11 3.6e-11 2.5e-11 3.6e-11 1.8e-11 3.6e-11 2.1e-11 3.6e-11
0.022s TO 3.298s 1.367s 1.266s
dopplerl 5.0e-13 1.1e-13 1.5e-13 7.3e-14 1.6e-13 1.0e-13 1.5e-13 7.7e-14 1.5e-13
0.021s TO 0.752s 1.099s 0.757s
doppler2 1.3e-12 2.1e-13 2.7e-13 1.1e-13 3.4e-13 1.3e-13 2.7e-13 1.0e-13 3.4e-13
0.034s TO 0.356s 1.416s 0.378s
doppler3 1.9e-13 6.2e-14 8.4e-14 4.0e-14 9.0e-14 4.4e-14 8.7e-14 3.9e-14 9.0e-14
0.023s TO 0.341s 0.455s 0.311s
turbinel 2.2e-13 1.3e-14 1.7e-14 1.0e-14 1.8e-14 1.0e-14 2.0e-14 9.3e-15 1.8e-14
0.016s TO 8.514s 2.289s 6.042s
turbine2 3.0e-14 1.5e-14 2.3e-14 1.3e-14 2.4e-14 1.3e-14 2.4e-14 1.1e-14 2.4e-14
0.025s TO 2.803s 1.581s 2.952s
turbine3 1.6e-13 6.4e-15 1.1e-14 4.7e-15 1.1e-14 5.7e-15 1.1e-14 5.6e-15 1.1e-14
0.026s TO 2.766s 3.961s 1.800s
sqroot 5.8e-16 4.5e-16 5.3e-16 3.3e-16 5.3e-16 2.9e-16 5.8e-16 3.3e-16 5.8e-16
0.032s TO 2.989s 0.277s 0.183s
sine 7.4e-16 2.8e-16 7.4e-16 2.2e-16 7.4e-16 2.6e-16 7.4e-16 2.4e-16 7.4e-16
0.027s TO 12.927s TO 14.833s
sineOrder3 1.1e-15 4.0e-16 6.4e-16 3.2¢-16 6.4e-16 3.1e-16 6.4e-16 3.3e-16 6.4e-16
0.021s TO 1.388s 1.433s 1.504s
keplerQ 1.2e-13 5.7e-14 9.8e-14 5.4e-14 9.8e-14 5.0e-14 9.8e-14 4.9e-14 9.8e-14
0.037s TO TO 1.937s 2.798s
keplerl 4.9e-13 1.6e-13 3.1e-13 1.4e-13 3.1e-13 1.6e-13 3.1e-13 1.6e-13 3.1e-13
0.031s TO 51.303s 15.136s 12.691s
kepler2 2.4e-12 7.9e-13 1.8e-12 6.5e-13 1.8e-12 6.9e-13 1.8e-12 6.7e-13 1.8e-12
0.027s TO 58.834s TO 72.622s

Table 2. Comparison of stopping criteria.

stopping criteria while Table 3 compares results from FErA with state-of-the
art tools, namely Gappa [4], Fluctuat [7, 6], Real2Float [12], FPTaylor [19, 18],
PRECISA [16,22], and S3FP [2]. Results from all tools but FErA are taken
from [18].

Note that all state-of-the-art tools provide an over-approximation of errors, ex-
cept S3FP, which compute a lower bound on largest absolute errors. For FErA,

14 Rémy Garcia, Claude Michel, and Michel Rueher

FErA

Fluctuat Gappa PRECiISA Real2Float FPTaylor o S3FP

carbonGas 1.2e-8 6.1e-9 7.4e-9 2.3e-8 6.0e-9 3.6e-9 7.0e-9 4.2e-9
0.54s 2.35s 6.30s 4.65s 1.08s 0.266s

verhulst 4.9e-16 2.9e-16 2.9e-16 4.7e-16 2.5e-16 1.6e-16 3.0e-16 2.4e-16
0.09s 0.41s 4.95s 2.52s 0.99s 0.018s

predPrey 2.4e-16 1.7e-16 1.7e-16 2.6e-16 1.6e-16 9.8e-17 1.8e-16 1.5e-16
0.18s 1.40s 8.08s 4s 1.07s 0.018s

rigidBodyl 3.3e-13 3.0e-13 3.0e-13 5.4e-13 3.0e-13 1.4e-13 2.9e-13 2.7e-13
1.96s 1.42s 7.42s 3.09s 0.99s 0.543s

rigidBody2 8.7e-11 8.7e-11 3.7e-11 6.5e-11 8.7e-11 2.1e-11 3.6e-11 3.0e-11
3.87s 2.22s 10.79s 1.08s 1.02s 1.266s

dopplerl 1.3e-13 1.7e-13 2.7e-13 7.7e-12 1.3e-13 7.7e-14 1.5e-13 1.0e-13
6.30s 3.31s 16.17s 13.20s 1.97s 0.757s

doppler2 2.4e-18 2.9e-13 5.4e-13 1.6e-11 2.3e-13 1.0e-13 3.4e-13 1.9e-13
6.15s 3.37s 16.87s 13.33s 2.20s 0.378s

doppler3 7.2e-14 8.Te-14 1.4e-13 8.6e-12 6.Te-14 3.9e-14 9.0e-14 5.7e-14
6.46s 3.32s 15.65s 13.05s 1.88s 0.311s

turbinel 3.1e-14 2.5e-14 3.8e-14 2.5e-11 1.7e-14 9.3e-15 1.8e-14 1.1e-14
5.05s 5.54s 24.35s 136.35s 1.10s 6.042s

turbine2 2.6e-14 3.4e-14 3.1e-14 2.1e-12 2.0e-14 1.1e-14 2.4e-14 1.4e-14
3.98s 3.94s 19.17s 8.30s 1.17s 2.952s

turbine3 1.4e-14 0.36 2.3e-14 1.8e-11 9.6e-15 5.6e-15 1.1e-14 6.2e-15
5.08s 6.29s 24.47s 137.36s 1.21s 1.800s

sqroot 6.9e-16 5.4e-16 6.9e-16 1.3e-15 5.1e-16 3.3e-16 5.8e-16 4.7e-16
0.09s 5.06s 8.18s 4.23s 1.02s 0.183s

sine 7.5e-16 7.0e-16 6.0e-16 6.1e-16 4.5e-16 2.4e-16 7.4e-16 2.9e-16
0.11s 25.43s 11.76s 4.95s 1.14s 14.833s

sineOrder3 1.le-15 6.6e-16 1.2e-15 1.2e-15 6.0e-16 3.3e-16 6.4e-16 4.1e-16
0.09s 2.09s 6.11s 2.22s 1.02s 1.504s

kepler0 1.1e-13 1.1e-13 1.2e-13 1.2e-13 7.5e-14 4.9e-14 9.8e-14 5.3e-14
8.59s 7.33s 37.57s 0.76s 1.31s 2.798s

keplerl 3.6e-13 4.7e-13 crash 4.7e-13 2.9e-13 1.6e-13 3.1e-13 1.6e-13
157.74s 10.68s N/A 22.53s 2.08s 12.691s

kepler2 2.3e-12 2.4e-12 crash 2.1e-12 1.6e-12 6.7e-13 1.8e-12 8.4e-13
22.41s 24.17s N/A 16.53s 1.3s 72.622s

Table 3. Comparison of FErA with other tools.

column filtering gives the over-approximation computed by a single filtering
while column e* and column e provide, respectively, the best reachable error
and over-approximation of the error computed by FErA. Lines in grey give the
time in second to compute these bounds. Note that experiments have been made
with a timeout, noted TO, of 10min. In Table 3, bold and italic are used to rank,
respectively, the best and second best over-approximation while red indicates the

worst ones.

A branch-and-bound algorithm to rigorously enclose the round-off errors 15

Table 2 compares the behaviour of FErA with different stopping criteria. The
ideal e* = € criterion stops if and only if the lower bound reaches the upper
bound. Of course, this criterion is hard to reach and benches are stopped by the
timeout. But these columns yield among the best ¢* and € that can be expected
with FErA. For instance, most of the e* provided here are better than the best
known values®, and the values of € are obviously the best values obtained by
FErA. e* =€ w. s. combines the ideal criterion with sidelined boxes, i.e. boxes
that are sidelined once all operations involved in the CSP produce an operation
error, eq), less or equal to half an ulp. Such a combination of criterion allows
FErA to compute the results in a reasonable amount of time for all benches but
one. However, this is obtained at the price of a degradation of the error bounds.
e% < 2 relaxes the ideal stopping criterion to a ratio of 2. Here, two benchmarks
reach the timeout. This is to be expected: the results with the ideal criterion
show that FErA have difficulties to reach this ratio on two benchmarks, probably
due to a huge amount of multiple occurrences. 83 < 2 w. s. combines the ratio
of 2 with sidelined boxes and avoid any timeout, though at the price of looser
bounds.

As shown in Table 3, FErA classified as best twice and as second eight times.
Note that it never provides the worst result. In almost all cases, the computed
reachable error e* is in the same order of magnitude as e. The lack of dedicated
handling of multiple occurrences in FErA is underlined by the computed upper
bound of the sine bench. Here, the splitting process used in the branch-and-
bound is not sufficient to lower the upper bound value. With the last combination
of criteria, FErA solves most of the problems in a reasonable amount of time
with the exception of kepler2. Indeed, Kepler benches are the problems with
the biggest number of input variables and FErA performs better on small-sized
problems.

7 Conclusion

This paper addresses a critical issue in program verification: computing an en-
closure of the maximal absolute round-off errors that occur in floating-point
computations. To do so, we introduce an original approach based on a branch-
and-bound algorithm using the constraint system for round-off error analysis
from [5]. Alongside a rigorous enclosure of maximal errors, the algorithm provides
input values exercising the lower bound. Knowing such bounds of the maximal
error allows to get rid of false positives, a critical issue in program verification
and validation. Preliminary experiments on a set of standard benchmarks are
very promising and compare well to other available tools.

Further works include a better understanding and a tighter computation of
round-off errors to smooth the effects of the dependency problem, exploring
different search strategies dedicated to floating-point numbers [23] to improve
the resolution process, as well as devising a better local search to speed up the
reachable lower bound computation procedure.

3 See column S3FP in Table 3.

16 Rémy Garcia, Claude Michel, and Michel Rueher
References
1. Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point compu-

10.
11.
12.

13.

14.

15.

16.

tations. Software Testing, Verification and Reliability 16(2), 97-121 (2006)
Chiang, W., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.: Efficient search
for inputs causing high floating-point errors. In: ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 14, Orlando, FL, USA,
February 15-19, 2014. pp. 43-52 (2014)

Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock, Z.:
Toward a standard benchmark format and suite for floating-point analysis. In: 9th
International Workshop on Numerical Software Verification (NSV2017). pp. 63-77
(2017)

Daumas, M., Melquiond, G.: Certification of bounds on expressions involving
rounded operators. ACM Trans. Math. Softw. 37(1), 2:1-2:20 (2010)

. Garcia, R., Michel, C., Pelleau, M., Rueher, M.: Towards a constraint system for

round-off error analysis of floating-point computation. In: 24th International Con-
ference on Principles and Practice of Constraint Programming :Doctoral Program.
Lille, France (Aug 2018)

Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Static Analy-
sis, 13th International Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4134, pp. 18-34 (2006)
Goubault, E.; Putot, S.: Static analysis of finite precision computations. In: 12th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI 2011). pp. 232-247 (2011)

Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics, TPHOLs 2009. Lecture Notes in Computer Sci-
ence, vol. 5674, pp. 60—-66. Springer-Verlag, Munich, Germany (2009)

Hauser, J.R.: Handling floating-point exceptions in numeric programs. ACM Trans.
Program. Lang. Syst. 18(2), 139-174 (Mar 1996)

IEEE: 754-2008 - IEEE Standard for floating point arithmethic (2008)

Magron, V.: Interval Enclosures of Upper Bounds of Roundoff Errors Using
Semidefinite Programming. ACM Trans. Math. Softw. 44(4), 41:1-41:18 (2018)
Magron, V., Constantinides, G.A., Donaldson, A.F.: Certified roundoff error
bounds using semidefinite programming. ACM Trans. Math. Softw. 43(4), 34:1-
34:31 (2017)

Marre, B., Michel, C.: Improving the floating point addition and subtraction con-
straints. In: Proceedings of the 16th international conference on Principles and
practice of constraint programming (CP’10). pp. 360-367. LNCS 6308, St. An-
drews, Scotland (6-10th Sep 2010)

Michel, C.: Exact projection functions for floating point number constraints. In:
AI&M 1-2002, Seventh international symposium on Artificial Intelligence and
Mathematics (7th ISAIM). Fort Lauderdale, Floride (US) (2-4th Jan 2002)
Michel, C., Rueher, M., Lebbah, Y.: Solving constraints over floating-point num-
bers. In: 7th International Conference on Principles and Practice of Constraint
Programming (CP 2001). pp. 524-538 (2001)

Moscato, M., Titolo, L., Dutle, A., Munoz, C.A.: Automatic estimation of verified
floating-point round-off errors via static analysis. In: Computer Safety, Reliability,
and Security. pp. 213-229 (2017)

17.

18.

19.

20.
21.

22.

23.

24.

A branch-and-bound algorithm to rigorously enclose the round-off errors 17

Narkawicz, A., Munoz, C.: A formally verified generic branching algorithm for
global optimization. In: Cohen, E., Rybalchenko, A. (eds.) Verified Software: The-
ories, Tools, Experiments. pp. 326—-343. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2014)

Solovyev, A., Baranowski, M.S., Briggs, 1., Jacobsen, C., Rakamarié¢, Z., Gopalakr-
ishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic
taylor expansions. ACM Trans. Program. Lang. Syst. 41(1), 2:1-2:39 (Dec 2018)
Solovyev, A., Jacobsen, C., Rakamarié¢, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic taylor expansions. In: Bjgrner,
N., de Boer, F. (eds.) FM 2015: Formal Methods. pp. 532-550. Springer Interna-
tional Publishing, Cham (2015)

Sterbenz, P.H.: Floating Point Computation. Prentice-Hall (1974)

The Coq Development Team: The Coq proof assistant reference manual (2020),
https://coq.inria.fr, version 8.11.2

Titolo, L., Feliu, M.A., Moscato, M.M., Mufioz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. In: Verifica-
tion, Model Checking, and Abstract Interpretation - 19th International Conference,
VMCATI 2018, Los Angeles, CA, USA, January 7-9. pp. 516-537 (2018)

Zitoun, H.: Search strategies for solving constraint systems over floats for program
verification. Theses, Université Cote d’Azur (Oct 2018)

Zitoun, H., Michel, C., Rueher, M., Michel, L.: Search strategies for floating point
constraint systems. In: 23rd International Conference on Principles and Practice
of Constraint Programming, CP 2017. pp. 707-722 (2017)

