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Abstract. Efficient tools for error analysis of programs with floating-
point computations are available. Most of them provide an over-approxi-
mation of the floating-point errors. The point is that these approxima-
tions are often too coarse to evaluate the effective impact of the error
on the behaviour of a program. Some of these tools compute an under-
approximation of the maximal error. But, these under-approximations
are either not rigorous or not reachable. In this paper, we introduce a
new approach to rigorously enclose the maximal error by means of an
over-approximation of the error and an under-approximation computed
by means of rational arithmetic. Moreover, our system, called FErA, pro-
vides input values that exercise the under-approximations. We outline
the advantages and limits of our framework and compare our approach
with state-of-the-art methods for over-approximating errors as well as
the ones computing under-approximation of the maximal error. Prelimi-
nary experiments on standard benchmarks are promising. FErA not only
computes good error bounds on most benchmarks but also provides an
effective lower bound on the maximal error.

Keywords: floating-point numbers · round-off error · constraints over
floating-point numbers · optimization

1 Introduction

Floating-point computations involve errors due to rounding operations that char-
acterize the distance between the intended computations over the reals and the
actual computations over the floats. An error occurs at the level of each basic
operation when its result is rounded to the nearest representable floating-point
number. The final error results from the combination of the rounding errors pro-
duced by each basic operation involved in an expression and some initial errors
linked to input variables and constants. Such errors impact the precision and
the stability of computations and can lead to an execution path over the floats
that is significantly different from the expected path over the reals. A faithfull
account of these errors is mandatory to capture the actual behaviour of critical
programs with floating-point computations.
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Efficient tools exist for error analysis that rely on an over-approximation of the
errors in programs with floating-point computations. For instance, Fluctuat [11,
10] is an abstract interpreter that combines affine arithmetic and zonotopes
to analyze the robustness of programs over the floats, FPTaylor [24, 23] uses
symbolic Taylor expansions to compute tight bounds of the error, and PRE-
CiSA [21, 27] is a more recent tool that relies on static analysis. Other tools
compute an under-approximation of errors to find a lower bound of the maxi-
mal absolute error, e.g., FPSDP [16] which relies on semidefinite programming
or, S3FP [2] that uses guided random testing to find inputs causing the worst
error. Over-approximations and under-approximations of errors are complemen-
tary approaches for providing better enclosures of the maximal error. However,
none of the available tools compute both an over-approximation and an under-
approximation of errors. Such an enclosure would be very useful to give insights
on the maximal absolute error, and how far computed bounds are from it. It is
important to outline that approximations do not capture the effective behaviour
of a program: they may generate false positives, that is to say, report that an
assertion might be violated even so in practice none of the input values can ex-
ercise the related case. To get rid of false positives, computing maximal errors,
i.e., the greatest reachable absolute errors, is required. Providing an enclosure of
the maximal error, and even finding it, is the goal of the work presented in this
paper.
The kernel of our approach is a branch-and-bound algorithm that not only pro-
vides an upper bound of the maximal error of a program with floating-point
operations but also a reachable error exercised by computed input values. This
is a key issue in real problems. This branch-and-bound algorithm is embedded in
a solver over the floats [30, 18, 1, 19, 20] extended to constraints over errors [9].
The resulting system, called FErA (Floating-point Error Analyzer), provides
not only a sound over-approximation of the maximal error but also a reach-
able under-approximation with input values that exercise it. FErA uses rational
arithmetic because we want to provide a correct lower and upper bound of the
errors. A consequence of this choice is that FErA only handles basic arithmetic
operators (namely +,−,×, /). To our knowledge, our tool is the first one that
combines upper and lower bounding of maximal round-off errors. A key point of
FErA is that both bounds relies on each other for improvement.
Maximizing an error can be very expensive because the errors are unevenly dis-
tributed. Even on a single operation, such a distribution is cumbersome and
finding input values that exercise it often resort to an enumeration process. A
combination of floating-point operations often worsen this behaviour, but may,
in some cases, soften it thanks to error compensations. One advantage of our
approach is that the branch-and-bound is an anytime algorithm, i.e., it always
provides an enclosure of the maximal error alongside input values exercising the
lower bound.
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z = (3∗x+y )/w;

i f ( z − 10 <= δ ) {
proceed ( ) ;

} else {
ra iseAlarm ( ) ;

}
Example 1. Simple program

1.1 Motivating example

Consider the piece of code in Example 1 that computes z = (3 ∗ x+ y)/w using
64-bit floating-point numbers with x ∈ [7, 9], y ∈ [3, 5], and w ∈ [2, 4].
The computation of z precedes a typical condition of a control-command code
where the then-branch is activated when z <= 10. When z − 10 is lower than
a given tolerance δ, values supported by z are considered as safe and related
computations can be done. Otherwise, an alarm must be raised. As z−10 satisfies
Sterbenz property [25] when z ≈ 10, only the error on the computation of z
impacts the conditional. Such a conditional is typically known as an unstable
test, where the flow over F can diverge from the one over R [28]. Now, assume
that δ is set to 5.32e−15. The issue is to know whether this piece of code behaves
as expected, i.e., to know whether the error on z is small enough to avoid raising
the alarm when the value of z is less than or equal to 10 on real numbers.

FPTaylor PRECiSA Fluctuat FErA

Example 1 5.15e-15 5.08e-15 6.28e-15 4.96e-15

Table 1. Absolute error bound

Table 1 reports the error values given by FPTaylor [24, 23], PRECiSA [21, 27],
Fluctuat [11, 10], and our tool FErA. Fluctuat compute a bound greater than δ
whereas FErA, FPTaylor, and PRECiSA compute a bound lower than δ. Results
from Fluctuat suggest that the alarm might inappropriately be raised.
FErA computes a round-off error upper bound of 4.96e−15 in about 0.185 sec-
onds. It also computes a lower bound on the largest absolute error of 3.55e−15
exercised by the following input values:

x = 8.99999999999996624922 ex = −8.88178419700125232339e−16

y = 4.99999999999994848565 ey = −4.44089209850062616169e−16

w = 3.19999999999998419042 ew = +2.22044604925031308085e−16

z = 10.0000000000000035527 ez = −3.55271367880050092936e−15
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z = (3∗x+y )/w;

i f ( z <= 10 + δ ) {
proceed ( ) ;

} else {
proceedWithError ( ) ;

}
Example 2. Simple program without alarm

In other words, our sound optimizer not only guarantee that errors can never
raise an alarm, but it also provides an enclosure of the largest absolute error.
Such an enclosure having a ratio of 1.4 shows that the round-off error bound of
FErA is close to the actual errors.
Now, replace the piece of code by the one from Example 2 and assume δ is set to
3.55e−15. The only change is that no alarm is raised when the error is greater
than δ but the procedure proceedWithError is activated.
The issue here is to know if there exist at least one case where proceedWithError

is reached when z is less than or equal to 10 on real numbers. FErA computes an
enclosure on the largest absolute error of [3.55e−15, 4.96e−15] with input values
exercising the lower bound. So, it ensures that there exist at least one case when
proceedWithError is taken with an error bigger than δ. FPTaylor, PRECiSA, and
Fluctuat are unable to do so as none of them compute a reachable lower bound
on the largest absolute error.

The rest of the paper is organized as follows: Section 2 introduces notations and
definitions. Section 3 recalls the constraint system for round-off error analysis
and explains how the filtering works. Section 4 formally introduces the branch-
and-bound algorithm and its main properties. Section 5 describes in more detail
related works for computing a lower bound on the maximal error and their
pitfalls. Section 6 illustrates the capabilities of FErA on well-known examples
and provides preliminary experiments on a set of standard benchmarks.

2 Notation and definitions

Our system for round-off error analysis focuses on the four classical arithmetic
operations: +,−,×, / for which the error can be computed exactly using rational
numbers [9]. As usual, a constraint satisfaction problem, or CSP, is defined by
a triple 〈X,D,C〉, where X denotes the set of variables, D, the set of domains,
and C, the set of constraints. The set of floating-point numbers is denoted F, the
set of rational numbers is denoted Q, and the set of real numbers is denoted R.
For each floating-point variable x in X, the domain of values of x is represented
by the interval x = [x,x] = {x ∈ F | x ≤ x ≤ x}, where x (resp. x) denotes the
interval lower (resp. upper) bound, while the domain of errors of x is represented
by the interval ex = [ex, ex] = {ex ∈ Q | ex ≤ ex ≤ ex}. xF (respectively, xQ
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and xR) denotes a variable that takes its values in F (respectively, Q and R).
A variable is instantiated when its domain of values is reduced to a degenerate
interval, i.e., a singleton.

3 A constraint system for round-off error

The branch-and-bound algorithm at the kernel of our framework is based on a
constraint system on errors that we briefly introduce in this section.

3.1 Computing rounding errors

The IEEE 754 standard [14] requires correct rounding for the four basic op-
erations of floating-point arithmetic. The result of such an operation over the
floats must be equal to the rounding of the result of the equivalent operation
over the reals. More formally, z = x � y = round(x · y) where z, x, and y are
floating-point numbers, � is one of the four basic arithmetic operations on floats,
namely, ⊕, 	, ⊗, �, while · are the equivalent operations on reals, namely, +,
−, ×, /; round being the rounding function. This property is used to bound the
error introduced by each elementary operation on floats by ± 1

2ulp(z)
1 when the

rounding mode is set to round to the “nearest even” float, the most frequently
used rounding mode.
The deviation of a computation over the floats takes root in each elementary
operation. So, it is possible to rebuild the final deviation of an expression from
the composition of errors due to each elementary operation involved in that
expression. Let us consider a simple operation like the subtraction as in z =
x 	 y: input variables, x and y, can come with errors attached due to previous
computations. For instance, the deviation on the computation of x, ex, is given
by ex = xR − xF where xR and xF denote the expected results, respectively, on
reals and on floats.
The computation deviation due to a subtraction can be formulated as follows:
for z = x	 y, ez, the error on z, is equal to (xR − yR)− (xF 	 yF).
As ex = xR − xF and ey = yR − yF, we have

ez = ((xF + ex)− (yF + ey))− (xF 	 yF)

So, the deviation between the result on reals and the result on floats for a
subtraction can be computed by the following formula:

ez = ex − ey + ((xF − yF)− (xF 	 yF))

where (xF − yF)− (xF 	 yF) characterizes the error produced by the subtraction
operation itself. Lets e	 denotes the error produced by the subtraction operation.
The formula can then be denoted by:

ez = ex − ey + e	



6 R. Garcia et al.

Addition: z = x⊕ y → ez = ex + ey + e⊕

Subtraction: z = x	 y → ez = ex − ey + e	

Multiplication: z = x⊗ y → ez = xFey + yFex + exey + e⊗

Division: z = x� y → ez =
yFex − xFey
yF(yF + ey)

+ e�

Fig. 1. Computation of deviation for basic operations

that combines deviations from input values and the deviation introduced by the
elementary operation.
Computation deviations for all four basic operations are given in Figure 1. For
each of these formulae, the error computation combines deviations from input
values and the error introduced by the current operation. Note that, for the
multiplication and division, this deviation is proportional to the input values.
All these formulae compute the difference between the expected result on reals
and the actual one on floats for a basic operation. Our constraint solver over the
errors relies on these formulae.

3.2 A CSP with three domains

As in a classical CSP, to each variable x is associated x its domain of values. The
domain x denotes the set of possible values that this variable can take. When
the variable takes values in F, its domain of values is represented by an interval
of floats:

xF = [xF,xF] = {xF ∈ F,xF ≤ xF ≤ xF}

where xF ∈ F and xF ∈ F
Errors require a specific domain associated with each variable of a problem.
Since the arithmetic constraints processed here are reduced to the four basic
operations, and since those four operations are applied on floats, i.e., a finite
subset of rationals, this domain can be defined as an interval of rationals with
bounds in Q:

ex = [ex, ex] = {ex ∈ Q, ex ≤ ex ≤ ex}

where ex ∈ Q and ex ∈ Q.
The domain of errors on operations, denoted by e�, that appears in the computa-
tion of deviations (see Figure 1) is associated with each instance of an arithmetic
operation of a problem.

3.3 Projection functions

The filtering process of FErA is based on classical projection functions that
reduce the domains of the variables. Domains of values can be reduced by means

1 ulp(z) is the distance between z and its successor (noted z+).
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Addition

ez ← ez ∩ (ex + ey + e⊕)

ex ← ex ∩ (ez − ey − e⊕)

ey ← ey ∩ (ez − ex − e⊕)

e⊕ ← e⊕ ∩ (ez − ex − ey)

Subtraction

ez ← ez ∩ (ex − ey + e	)

ex ← ex ∩ (ez + ey − e	)

ey ← ey ∩ (−ez + ex + e	)

e	 ← e	 ∩ (ez − ex + ey)

Multiplication

ez ← ez ∩ (xFey + yFex + exey + e⊗)

ex ← ex ∩
(

ez − xFey − e⊗
yF + ey

)
ey ← ey ∩

(
ez − yFex − e⊗

xF + ex

)
e⊗ ← e⊗ ∩ (ez − xFey − yFex − exey)

xF ← xF ∩
(

ez − yFex − exey − e⊗
ey

)
yF ← yF ∩

(
ez − xFey − exey − e⊗

ex

)

Division

ez ← ez ∩
(

yFex − xFey

yF(yF + ey)
+ e�

)
ex ← ex ∩

(
(ez − e�)(yF + ey) +

xFey

yF

)
ey ← ey ∩

(
ex − ezyF + e�yF

ez − e� + xF
yF

)

e� ← e� ∩
(

ez −
yFex − xFey

yF(yF + ey)

)
xF ← xF ∩

(
(e� − ez)yF(yF + ey) + yFex

ey

)
yF ← yF ∩ [min(δ1, δ2),max(δ1, δ2)]

with

δ1 ←
ex − (ez − e�)ey −

√
∆

2(ez − e�)
δ2 ←

ex − (ez − e�)ey +
√

∆

2(ez − e�)

∆← [0,+∞) ∩ ((ez − e�)ey − ex)2 + 4(ez − e�)eyxF

Fig. 2. Projection functions of arithmetic operation

of standard floating-point projection functions defined in [19] and extended in [1,
18]. However, dedicated projections are required to reduce domains of errors.

The projections on the domains of errors are defined through an extension over
intervals of the formulae of Figure 1. Since these formulae are written on re-
als, they can naturally be extended to intervals. The projections functions for
the four basic arithmetic operations are detailed in Figure 2. Since no error
is involved in comparison operators, their projection functions only handle do-
mains of values. So, projection functions on the domain of errors support only
arithmetic operations and assignment, where the computation error from the
expression is transmitted to the assigned variable. All these projection functions
are used to reduce the domains of the variables until a fixed point is reached.
For the sake of efficiency, but also to get rid of potential slow convergences, the
fixed point computation is not computed and the algorithm stops when domain
reduction is lower than 5%.
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3.4 Links between domains of values and domains of errors

Strong connections between the domain of values and the domain of errors are
required to propagate reductions between these domains.
A first relation between the domain of values and the domain of errors on opera-
tions is based upon the IEEE 754 standard, that guarantees that basic arithmetic
operations are correctly rounded.

e� ← e� ∩
[
−min((z − z−), (z − z−))

2
,+

max((z+ − z), (z+ − z))
2

]
where z− and z+ denote respectively, the greatest floating-point number strictly
inferior to z and the smallest floating-point number strictly superior to z. This
equation sets a relation between the domain of values and the domain of errors
on operations. More precisely, it states that operation errors can never be greater
than the greatest half-ulp of the domain of values of the operation result. Note
that the contrapositive of this property offers another opportunity to connect
the domain of values and the domain of errors. Indeed, since the absolute value
of an operation error is less than the greatest half-ulp of the domain of values
of the operation result, the smallest values of the domain of the result cannot
be the support of a solution if inf(|e�|) > 0. In other words, these small values
near zero cannot be associated to an error on the operation big enough to be in
e� domain if their half-ulp is smaller than inf(|e�|).
Finally, these links are refined by means of other well-known properties of floating-
point arithmetic like the Sterbenz property of the subtraction [25] or the Hauser
property on the addition [13]. Both properties give conditions under which these
operations produce exact results, the same being true for the well-known prop-
erty that states that 2k × x is exactly computed, provided that no overflow
occurs.

3.5 Constraints over errors

A dedicated function, err(x), is used to express constraints over errors. For
instance, abs(err(x)) ≥ ε, denotes a constraint on the error linked to variable x
that must be, in absolute value, greater or equal to ε. It should be noted that
since errors are taking their values in Q, this constraint is over rationals.
Note that when a constraint mixes errors and floating-point variables, the latter
are automatically promoted to rationals.

4 A branch-and-bound algorithm to maximize the error

We use a branch-and-bound algorithm (see Algorithm 1) to maximize a given
absolute error from a CSP. Such an error characterizes the greatest possible de-
viation between the expected computation over the reals and the actual compu-
tation over the floats. Note that the algorithm can easily be changed to maximize
a signed error.
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The branch-and-bound algorithm takes as inputs a CSP 〈X,C,D〉, and e, an
error to maximize. This error results from floating-point computations along a
given path in a program. It computes a lower bound, or primal, e∗, i.e., the
maximal error computed so far and an upper bound, or dual, e of the maximal
error e, i.e., the current best over-approximation of the error. Primal and dual
bounds the maximal error: e∗ ≤ e ≤ e. Both of those bounds are expressed
in absolute value. The computed primal e∗ is a reachable error exercised by
computed input values. These values and the computed bounds are returned
by our algorithm. S is the ordered set of couples (e, sol) where e and sol are,
respectively, an error and its corresponding input values. A box B is the cartesian
product of variable domains. For the sake of clarity, a box B can be used as
exponent, e.g., xB indicates that an element x is in box B. L is the set of boxes
left to compute.

Stopping criteria. The primary aim of the branch-and-bound algorithm is to
compute the maximal error. This is achieved when the primal is equal to the
dual. However, such a condition may be difficult to meet.
A first issue comes from the dependency problem which appears on expressions
with multiples occurrences. Multiple occurrences of variables is a critical issue in
interval arithmetic since each occurrence of a variable is considered as a different
variable with the same domain. This dependency problem results in overestima-
tions in the evaluation of the possible values that an expression can take. For
instance, let y = x×x with x ∈ [−1, 1], classical interval arithmetic yields [−1, 1]
whereas the exact interval is [0, 1]. Such a drawback arise in projection functions
for computing errors that contains multiple occurrences like in multiplication
and division. It can leads to unnecessary over-approximation of resulting inter-
vals. A direct consequence of this problem is that the dual is overestimated and
therefore can not be achieve.
A second issue comes from the bounding of errors on operations by the half
of an ulp. An operation error is bounded by 1

2ulp(z) where z is the result of
an operation. Such a bound is highly dependent on the distribution of floating-
point numbers. Consider an interval of floating-point numbers (2n, 2n+1), every
floating-point number is separated from the next one by the same distance. In
other words, every floating-point number in this interval will have the same ulp.
When the domain of the result of an operation is reduced to such an interval,
the bounds of e� are fixed and can no longer be improved by means of projec-
tion functions. This can be generalized across all operations of a CSP. Once all
operation errors are fixed, then bounds cannot be tighten without enumerating
values. In other words, provided that there is no multiple occurrences, the dual
can no longer be lowered at this point. That is why, we stop processing a box
when all the related domains are reduced to such an interval.

Box management. The algorithm manages a list L of boxes to process whose
initial value is {B = (D, eB ∈ [−∞,+∞])} where D is the cross product of
the domains of the variable as defined in the problem and eB their associated
error. It also manages the global primal and dual with e∗ = −∞, e = +∞ as
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initial values. A box can be in three different states: unexplored, discarded or
sidelined. unexplored boxes are boxes in L that still require some computations.
A discarded box is a box whose associated error eB is such that eB ≤ e∗. In
other words, such a box does not contain any error value that can improve the
computation of the maximal error. It is thus removed from L. sidelined boxes
are boxes that fullfil the property described in the stopping criteria paragraph.
These boxes cannot improve maximal error computation unless if the algorithm
resorts to enumeration (provided there are no multiple occurrences). As sidelined
boxes are still valid boxes, the greatest over-approximation of such boxes, eS , is
taken into account when updating the dual bound. Solving stops when there are
no more boxes to process or when the primal e∗ and the dual e are equal, i.e.,
when the maximal error is found.
The main loop of the branch-and-bound algorithm can be subdivided in several
steps: box selection, filtering, dual updating, primal updating, and box splitting.

Box selection. We select the box B in the set L with the greatest upper bound
of the error to provide more opportunities to improve both e and e∗. Indeed, the
global e has its support in this box which also provides the odds of computing
a better reachable error e∗. Once selected, the box B is removed from L.

Filtering. A filtering process (see Section 3), denoted Φ, is then applied to B to
reduce the domains of values and the domains of errors. Note that this filtering
is applied to the initial set of constraints enhanced with constraints on known
bounds of e, i.e., e∗ ≤ e and e ≥ e. If Φ(B) = ∅, the selected box does not
contain any solution; either because it contradicts one of the initial constraints
or because of constraints over e known bounds. In both cases, the algorithm
discards box B and directly jumps to the next loop iteration.

Dual update. Once B has been filtered, if the error upper bound of the current
box was support of the dual e and is no longer, then e is updated. e is updated
with the maximum among the upper bound of errors of the current box, of
remaining boxes in L, and of sidelined boxes.

Primal update. A non empty box may contain a better primal than the current
one. A generate-and-test procedure, primalComputation, attempts to compute
a better one in the following way: each variable is, in turn, randomly set to
a value that belongs to its domain. Note that the error distribution is such
that a randomly instantiation of variables has a great chance to provide an
improved error. The enumeration goes through two steps. A variable is first
assigned with a floating-point value chosen randomly in its domain of values.
Then, another random value chosen within the domain of its associated error
is assign to the error associated to that variable. We exploit the fact that if
the derivative sign does not change on the associated error domain, then the
maximun distance between the hyperplan defined by the result over the floats
and the related function over the reals is at one of the extrema of the associated
error domain. When all variables from a function f representing a program have
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Algorithm 1: branch-and-bound — maximization of error

Input : 〈X,C,D〉 — triple of variables, constraints, and domains
e ∈ [−∞,+∞] — error to maximize

Output : (e∗, e, S)
Data : L← {

∏
x∈X

x | x = (x, ex)} — set of boxes

e← +∞ — dual bound
e∗ ← −∞ — primal bound
eS ← −∞ — upper bound of sidelined boxes
S ← ∅ — stack of solutions

1 while L 6= ∅ and e∗ < e do
/* Box selection: select a box B in the set of boxes L */

2 select B ∈ L ; L← L \B
3 eBold ← eB

4 B ← Φ(X,C ∧ e > e∗, B)

5 if eBold = e and (B = ∅ or eB < e) then
6 if B 6= ∅ then
7 e← eB

8 else
9 e← −∞

10 e← max
(
{eBi | ∀Bi ∈ L} ∪ {e, eS}

)
11 if B 6= ∅ then
12 if eB > e∗ then
13 if isBound(B) then
14 (eB , solB)← (eB , B)

15 else
16 (eB , solB)← primalComputation(B,X)

17 if eB > e∗ then
18 e∗ ← eB

19 push (eB , solB) onto S

20 L← L \ {Bi ∈ L | eBi ≤ e∗}

21 if eB > eS and eB > e∗ then
/* Variable selection: select a variable x in box B */

22 if (select(xB , ex
B) ∈ B | xB < xB) and ¬isSidelined(B) then

/* Domain splitting: split the domain of values of x
in subdomains */

23 B1 ← B
24 B2 ← B

25 xB1 ←
[
xB , xB+xB

2

]
26 xB2 ←

[(
xB+xB

2

)+
,xB

]
27 L← L ∪ {B1, B2}
28 else
29 eS ← max(eS , eB)

30 return (e∗, e, S)
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been instantiated, an evaluation of f is done exactly over Q and in machine
precision over F. The error is exactly computed by evaluating fQ − fF over Q.
The computed error can be further improved by a local search. That is to say, by
exploring floating-point numbers around the chosen input values and evaluating
again the expressions. This process is repeated a fixed number of times until the
error can not be further improved, i.e., a local maximum has been reached. If the
computed error is better than the primal, then e∗ is updated. Each new primal
bound is added to S alongside the input values exercising it.

Box splitting. A box is not split up but is discarded when its error upper bound
is less than or equal to eS , the upper bound of sidelined boxes, or e∗. Discarding
such a box speeds up solving time, since none of the errors contained in this box
can improve the primal or the dual. Splitting occurs if and only if there exist at
least one of the variables within B that is not instantiated and if the box is not
sidelined. Otherwise, the box is sidelined and if eB is strictly greater than eS ,
the latter is updated. The next variable to split on is selected in a lexicographic
order. The bisection generates two sub-boxes that are added to L.

Note that Algorithm 1 always terminates and gives an enclosure of the max-
imal error: in the worst case, all boxes will be split up to degenerated boxes.
Each degenerated box whose associated error eB is lower than the primal will
be discarded. If e∗ ≤ eB ≤ e holds, eB will be used to update e∗ and e be-
fore discarding the corresponding degenerated box. As a result, since the set
of floating-point numbers is a finite set, the branch-and-bound requires a finite
number of iterations to explore completely the initial box and thus, terminates.

5 Related work

Different tools exist for computing an over-approximation of errors of floating-
point computations. Fluctuat [11, 10], is an abstract interpreter which combines
affine arithmetic and zonotopes to analyze the robustness of programs over floats.
FPTaylor [24, 23] uses symbolic Taylor expansions and global optimization to
compute tight bounds of the error. It represents errors in Taylor series by a first
order and a second order term. A branch-and-bound algorithm is used to com-
pute an approximation of the symbolic first order error term, and the second
order error term is computed in Taylor expansions. This branch-and-bound is
very different from the one used by FErA. First, it considers only one term of the
error representation used by FPTaylor whereas FErA branch-and-bound uses the
whole error. Second, it does not compute a lower bound on the largest absolute
error but only over-approximate errors. FPTaylor is also able to produce proof
certificates to verify the validity of its computed bounds. Such a certificate can
be externally checked in HOL Light [12]. PRECiSA [21, 27] is a static analyzer
that also computes a certificate of proof that can be used to formally prove the
round-off error bounds of a program. PRECiSA uses a branch-and-bound algo-
rithm to compute concrete bounds of round-off errors. In other words, PRECiSA
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computes symbolic error expressions to represent round-off errors that are given
to a branch-and-bound algorithm. Certificate of proof produced by PRECiSA
are validated by the PVS theorem prover [22]. Gappa [8] verifies properties on
floating-point programs, and in particular computes bounds on round-off errors.
Gappa works with an interval representation of floating-point numbers and ap-
plies rewriting rules for improving computed results. It is also able to generate
formal proof of verified properties, that can in turn be checked in Coq [26].
Real2Float [17] uses semidefinite programming for estimating bounds on error.
It decomposes an error into an affine part with respect to the error variable and
a higher-order part. Bounds on the higher-order part are computed in the same
way as FPTaylor. For the affine part, a relaxation procedure based on semidef-
inite programming is employed. Rosa [6, 7] uses affine arithmetic and an SMT
solver to estimates round-off errors. It computes errors in a symbolic form that
is given to the SMT solver to find concrete bounds on expressions. Daisy [15, 4,
5] is another tool by the authors of Rosa. It also relies on affine arithmetic and
an SMT solver to bound round-off errors. Moreover, it also include features from
FPTaylor, such as optimization-based absolute error analysis, and Fluctuat, such
as interval subdivision. Most of these tools handle both transcendental functions
and arithmetic operators. As said before, FErA only handles basic arithmetic
operators (namely +,−,×, /) because we want to provide a correct lower and
upper bounds of the errors.
FPSDP [16] is a tool based on semidefinite programming that only computes
under-approximation of largest absolute errors. In contrast to our approach
FPSDP computes an under-approximation of the maximal error. The point is
that this under-approximation might not be reachable. For instance, consid-
ers the benchmark rigidBody1 (see Table 2). Here, FPSDP yields 3.55e−13
whereas FErA, Gappa, Daisy, and FPTaylor upper bound is 2.95e−13. Fluctuat
and Rosa compute an upper bound of 3.22e−13 and PRECiSA an upper bound
of 3.23e−13. The only upper bound greater than 3.55e−13 is the one computed
by Real2Float, about 5.33e−13. Thus, the under-approximation of the maximal
error provided by FPSDP is not reachable. S3FP [2] relies on random sampling
and shadow values executions to find input values maximizing an error. It com-
putes the error as the difference between the execution of a program done in a
higher precision, acting as R, and a lower precision, acting as F. S3FP starts with
an initial configuration that is cut into smaller configurations. Then, it selects
a configuration and randomly instantiates variables to evaluate the program in
both precisions. This process is repeated a finite number of time to improve the
lower bound. Depending on the size of input intervals, S3FP can get stuck on a
local maximum. To avoid this problem it uses a standard restart process. S3FP
is the closest to our primal computation procedure. Both rely on random gen-
eration of input values to compute a lower bound of errors. However, as S3FP
does all computations over F, the resulting error suffers from rounding issues and
thus, mights underestimate or overestimate the actual error. Such a computed
error is unreachable. Furthermore, S3FP is highly reliant on the parametrized
partitioning of the initial configuration. It cannot discard configurations where
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Fluctuat Gappa PRECiSA Real2Float Daisy Rosa FPTaylor S3FP
FErA

filtering e∗ e

carbonGas 1.17e-08 6.03e-09 7.09e-09 2.21e-08 3.91e-08 1.60e-08 4.96e-09 4.2e-09 4.24e-08 2.95e-09 7.01e-09
0.123s 3.445s 0.034s 6.887s 37.750s 37.581s 0.320s 0.017s 0.345s

verhulst 4.80e-16 2.84e-16 5.14e-16 4.66e-16 3.72e-16 4.67e-16 2.47e-16 2.4e-16 4.19e-16 2.19e-16 2.86e-16
0.108s 0.619s 0.023s 4.675s 28.250s 15.762s 0.290s 0.016s 0.034s

predPrey 2.35e-16 1.67e-16 2.09e-16 2.51e-16 1.75e-16 1.98e-16 1.59e-16 1.5e-16 1.84e-16 1.03e-16 1.67e-16
0.107s 2.166s 0.020s 7.269s 29.500s 33.220s 0.410s 0.011s 0.084s

rigidBody1 3.22e-13 2.95e-13 3.23e-13 5.33e-13 2.95e-13 3.22e-13 2.95e-13 2.7e-13 2.95e-13 1.95e-13 2.95e-13
2.794s 2.359s 0.033s 3.230s 27.983s 7.505s 0.280s 0.018s 1.659s

rigidBody2 3.65e-11 3.61e-11 3.65e-11 6.48e-11 3.61e-11 3.65e-11 3.61e-11 3.0e-11 3.61e-11 2.52e-11 3.61e-11
5.090s 3.657s 0.370s 3.698s 32.683s 10.377s 0.310s 0.022s 3.298s

doppler1 1.27e-13 1.61e-13 2.09e-13 7.64e-12 4.19e-13 2.68e-13 1.22e-13 1.0e-13 4.96e-13 7.34e-14 1.56e-13
8.347s 5.542s 0.044s 26.821s 30.817s 24.298s 1.450s 0.021s 0.752s

doppler2 2.35e-13 2.86e-13 3.07e-13 8.85e-12 1.05e-12 6.45e-13 2.23e-13 1.9e-13 1.33e-12 1.12e-13 3.36e-13
8.244s 5.634s 0.041s 26.731s 34.000s 24.073s 1.730s 0.034s 0.356s

doppler3 7.12e-14 8.75e-14 9.50e-14 4.07e-12 1.68e-13 1.01e-13 6.62e-14 5.7e-14 1.92e-13 4.09e-14 9.00e-14
9.028s 5.476s 0.044s 26.057s 32.250s 31.442s 1.330s 0.023s 0.341s

turbine1 3.09e-14 2.41e-14 2.52e-14 2.46e-11 8.65e-14 5.99e-14 1.67e-14 1.1e-14 2.16e-13 1.05e-14 1.76e-14
7.555s 9.816s 0.144s 127.911s 32.950s 31.400s 0.450s 0.016s 8.514s

turbine2 2.59e-14 3.32e-14 3.01e-14 2.07e-12 1.31e-13 7.67e-14 2.00e-14 1.4e-14 3.04e-13 1.32e-14 2.36e-14
5.562s 7.395s 0.132s 22.225s 30.183s 14.890s 0.560s 0.025s 2.803s

turbine3 1.34e-14 0.35 1.83e-14 1.70e-11 6.23e-14 4.62e-14 9.57e-15 6.2e-15 1.56e-13 4.76e-15 1.10e-14
7.342s 11.256s 0.193s 150.653s 31.050s 31.224s 0.520s 0.026s 2.766s

sqroot 6.83e-16 5.35e-16 4.29e-16 1.28e-15 5.71e-16 6.18e-16 5.02e-16 4.7e-16 5.78e-16 3.33e-16 5.33e-16
0.120s 7.937s 0.035s 13.840s 28.000s 8.414s 0.320s 0.032s 2.989s

sine 7.41e-16 6.95e-16 7.48e-16 6.03e-16 1.13e-15 5.18e-16 4.44e-16 2.9e-16 7.41e-16 2.24e-16 7.41e-16
0.126s 40.351s 0.132s 13.138s 27.933s 14.265s 0.450s 0.027s 12.927s

sineOrder3 1.09e-15 6.54e-16 1.23e-15 1.19e-15 1.45e-15 9.96e-16 5.94e-16 4.1e-16 1.11e-15 3.28e-16 6.36e-16
0.117s 3.177s 0.021s 4.241s 25.867s 6.974s 0.290s 0.021s 1.388s

kepler0 1.03e-13 1.09e-13 1.10e-13 1.20e-13 1.04e-13 8.28e-14 7.47e-14 5.3e-14 1.18e-13 5.43e-14 9.81e-14
12.611s 12.187s 0.230s 2.120s 28.033s 11.113s 0.690s 0.037s TO

kepler1 3.51e-13 4.68e-13 4.03e-13 4.67e-13 4.81e-13 4.14e-13 2.86e-13 1.6e-13 4.94e-13 1.41e-13 3.10e-13
252.468s 19.785s 0.683s 93.202s 28.933s 134.149s 1.710s 0.031s 51.303s

kepler2 2.24e-12 2.40e-12 1.66e-12 2.09e-12 2.46e-12 2.15e-12 1.58e-12 8.4e-13 2.43e-12 6.08e-13 1.83e-12
33.600s 39.048s 31.235s 59.881s 30.483s 72.847s 0.580s 0.027s 157.558s

Table 2. Experimental results for absolute round-off error bounds (bold indicates the
best approximation, italic indicates the second best, and red indicates the worst
one). Grey rows indicate solving time for each tool, in seconds. S3FP and e∗ columns
show lower bound on the maximal error, whereas other columns show an upper bound.
TO indicates a time out at 10 minutes

no improvement of the lower bound is possible. In contrast, FErA selects boxes
to explore on the basis of their upper bounds to try finding a better lower bound.

6 Experimentation

In this section, we provide preliminary experiments of FErA on a subset of
benchmarks (comprising of +,−,×, / operators) from the FPBench [3] suite, a
common standard to compare verification tools over floating-point numbers. Ta-
ble 2 compares results from Fluctuat [11, 10] (version 3.1390 with subdivisions),
Gappa [8] (version 1.3.5 with advanced hints), PRECiSA [21, 27] (version 2.1.1),
Real2Float [17] (version 0.7), Daisy [15, 4, 5] (master branch, commit 8f26766),
Rosa [6, 7] (master branch, commit 68e58b8), FPTaylor [24, 23] (master branch,
commit 147e1fe with Gelpia [23] optimizer), S3FP [2] and FErA. Benchmarks
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computation is done on a 2.8 GHz Intel Core i7–7700HQ with 16 GB of RAM,
running under macOs Catalina (10.15.4). Results from S3FP are taken from [23],
as authors state in [2] that the available tool only works on single-precision
floating-point numbers.

Note that all state-of-the-art tools provide an over-approximation of errors, ex-
cept S3FP, which compute a lower bound on largest absolute errors. For FErA,
column filtering gives the over-approximation computed by a single filtering
while column e∗ and column e provide respectively the best reachable error and
over-approximation of the error computed by FErA. Bold and italic are used to
rank, respectively, the best and second best over-approximation while red indi-
cates the worst ones. Lines in grey give the time in second to compute these
bounds.

On these benchmarks, FErA classified as best twice and as second six times.
Note that it never provides the worst result. In almost all cases, the computed
reachable error e∗ is in the same order of magnitude than e. The lack of dedicated
handling of multiple occurrences in FErA is underlined by the computed dual
of the sine bench. Here, the splitting process used in the branch-and-bound
is not sufficient to lower the dual value. FErA solves most of the problems in a
reasonable amount of time with the exception of kepler0. Indeed, Kepler benchs
are the problems with the biggest number of input variables and FErA performs
better on small sized problems. Still, FErA as an anytime algorithm provides
bounds computed so far for kepler0.

7 Conclusion

This paper addresses a critical issue in program verification: computing an enclo-
sure of the maximal absolute error in floating-point computations. To compute
this enclosure, we introduce an original approach based on a branch-and-bound
algorithm using the constraint system for round-off error analysis from [9].

The splitting process takes advantage of an efficient filtering and the known
enclosure of the error to speed up the optimization process.

Alongside a rigorous enclosure of maximal errors, the algorithm provides input
values exercising the lower bound. Knowing such bounds of the maximal error
is very useful to get rid of false positives, a critical issue in program verification
and validation.

Preliminary experiments on a set of standard benchmarks are very promising
and compare well to other available tools.

Further works include a better understanding and a tighter computation of
round-off errors to smooth the effects of the dependency problem, experimenta-
tions with different search strategies dedicated to floating-point numbers [29] to
improve the resolution process, as well as devising a better local search to speed
up the primal computation procedure.
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