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Abstract—Constraint Programming (CP) is an effi-
cient technique for searching counter-examples that vi-
olate a property of the program to verify. However, the
search process can become very long and costly when
the program to check contains Floating Point (FP)
computations. In this paper we discuss the capabilities
of a set of variable choice strategies and subdomain
selection strategies that take advantages of the very
specific properties of the floats. We also outline the
capabilities of a CP techniques for computing ranges of
error values as well as input values that exercise a given
error; a critical issue to take advantage of cancellation
phenomena when searching counterexamples.

Index Terms—: counterexamples, floating point com-
putations, constraint programming, search strategies,
absorption, cancellation

I. Introduction
Programs with FP computations control complex and

critical systems in numerous domains, including cars and
other transportation systems, nuclear energy plants, or
medical devices. FP computations are derived from math-
ematical models on real numbers [10], but computations
on FP numbers are different from computations on real
numbers. For instance, some real numbers like 0.1 do not
have an exact representation. FP arithmetic operators are
neither associative nor distributive, and may be subject to
phenomena such as absorption1 and cancellation2 [13].
As a consequence, the flow of a very simple program over
the floats (F) can differ from the expected flow over the
reals (R). Such a flow discrepancy might have critical
consequences if, for instance, the condition it relates to
is braking in an ABS system.

II. Dedicated search strategies
CP [4], [5] has been used to deal with such problems,

but the search for a counter-example remains long and
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1Absorption occurs when adding two floating point numbers with
different order of magnitude. The result of such an addition is the
furthest from zero.

2Cancellation occurs when most of the most significant bits are
lost by subtracting the close results of two operations.

costly when the program to check contains floats. This
stems from the fact that existing search strategies have
been designed for discrete domains and, to a lesser extent,
continuous domains. However, integer and real strategies
are poorly adapted to floats because the set of floats is
finite but its cardinality is very high and the distribution
of floats is not at all uniform (half of the floats are in the
range[-1,1]).

A. Variable selection strategies

In [15] we have defined dedicated variable selection
strategies that take advantage of the absorption phenom-
ena and the non-uniformity of the density.
Intuitively, density captures the proximity of floating point
values within a given domain. It helps to identify domains
that have a small number of values on a big domain or
a big number of values on a small domain (with respect
to the width). Likewise, we have also defined a property
that helps to identify potential absorption phenomena.
Consider a floating point addition constraint zF = xF
+© yF in which the rounding more is set to "round to
nearest even". If the domain xF has a significantly larger
magnitude than yF, some values in yF may simply be
absorbed when carrying out the addition. Measuring which
fraction of yF is obliterated in this way is the purpose of
the absorption property we have defined.
Combining wisely two properties can also be helpful to se-
lect useful solutions. For instance, densWabs combination
improves the density property while selecting variable the
domain of which are likely to be involved in an absorption
phenomena, whereas absWdens selects the variable that
maximizes absorption among the subset of variables that
satisfies some density.
On a small set of benchmarks from test and verification of
floating point software, MaxAbs and Maxdens outperformed
the standard strategy by a factor of more than 110. These
performances are even better for problems with solution.
On the other hand, the improvement for benchmarks
without solution is only 4 times. densWabs and absWdens
were only very efficient on problems with solutions.



B. Subdomain selection strategies
We also defined a new sub-domain selection strategy

that takes advantage of absorption[16]. The goal of this
strategy is to concentrate on the most relevant absorption
phenomena, in other words, giving priority to the sub-
domains of x and y most likely to lead to an absorption.
After selection of variable x, strategy MaxAbs examines
addition and subtraction constraints to select a variable y,
the values of which are most absorbed by the values of x.
Coordinated branching on these variables is performed to
exploit the latent absorption.
On a set 49 benchmarks from test and program verifica-
tion (SMTLib [1], FPBench [6], and CBMC [3] (but also
[4], [7]), the combination of MaxAbs and the classical
MaxOccurences strategy was significantly better than
standard strategies.

III. capabilities of a CP solver for computing
ranges of error

None of the above strategy could take advantage of
cancellation phenomena because we couldn’t compute an
accurate error.

Floating point computation errors have been the subject
of many works based on an overestimation of actual errors,
e.g., Fluctuat [9] that combines affine arithmetic and
zonotopes, PRECiSA [14] that relies on static analysis.
The point is that all these approaches compute an error
estimation that can hardly be used to identify catastrophic
cancellation problems or to compute input values that
exercise a given error [11]. In order to overcome this lack
of reasoning capabilities and to enhance the analysis of
errors, we propose to incorporate in a constraint solver
over the floats [16], [12], [2], the domain of errors which is
dual to the domain of values. Both domains are associated
with each variable of the problem. Computation errors
form a new dimension to consider. They require a specific
domain in view of the distinct nature of elements to
represent, but also, due to the possible values of errors
which belong to the set of reals. Therefore, we introduce
a domain of errors, which is associated with each variable
of a problem. Since all arithmetic constraints processed
here are reduced to the four basic operations, and since
those four operations are applied on floats, i.e. a finite
subset of rationals, this domain can be defined as an
interval of rationals with bounds in Q. Another domain
of errors is required for the smooth running of our system:
it is the domain of errors on operations that appears in
the computation of the deviations. Contrary to previous
domains, it is not attached to each variable of a problem
but to each instance of an arithmetical operation of a
problem.

Like the domain of errors attached to a variable, it takes
values in the set of rational numbers. Projection functions
and constraints over errors are being evaluated in a proto-
type based on Objective-CP. Preliminary experiments [8]

are promising and will naturally be reinforced with more
benchmarks.

IV. Discussion
Experiments with variable selection strategies and sub-

domain selection strategies taking advantage of some
specificities of floats like the density and the absorption
phenomena were quite successful on a significant set of
hard benchmarks. The role of the CP solver for computing
ranges of error is to provide the information required
to develop strategies that also take advantage of the
cancellation phenomena. The goal of ongoing work is to
extend and combine all of these techniques to be able to
handle real applications.
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