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In this paper, we argue that visual programming can be greatly enhanced by 
integrating some cognitive aspects when designing a visual language. We try to apply 
some interesting rules--established by Bertin on experimental evidence---to get 
graphical views which have a good picture quality and hence do not have to be read in 
a linear way. We introduce VLP, a visual logic programming language, which supports 
program composition and editing in both textual and graphical representations with 
correspondance between the two views of the program being automatically maintained 
by the system. The goal of this work is to facilitate the development and reuse of 
Prolog prototypes through a complementary use of graphical and textual views. In 
particular, we use graphics to put forward the relational nature of logic programming 
and, thus, help the user to get a deep understanding of the declarative semantics of his 
programs. We explain the motivation of design choices, provide an overview of system 
capabilities, and evaluate system advantages and drawbacks. 

1. I n t r o d u c t i o n  

VISUAL PROGRAMMING LANGUAGES [1] have often been presented as a means to build, 
understand and manage programs [2] in a more easy and efficient way. However ,  
visual programming has not yet gained wide acceptance [3] and the proper role for 
graphics in programming remains controversial [4]. 

In this paper, we argue that the weak acceptance of visual programming and the 
(present) non-generality of visual programming can be greatly enhanced by integrat- 
ing some cognitive aspects when designing a visual language. This is why we bring 
forward an approach based upon the following two points: 

�9 First, we propose to comply strictly with some simple psychological laws 
concerning the perception of graphics. 

�9 Second, we propound to use graphical and textual language in a complementary 
way. 

Psychological laws governing the perception of visual aspects are not yet fully 
understood. However,  Bertin used some interesting experimental evidence to establish 
a small set of rules [5, 6] that have to be observed each time we want to support  
efficiently communication by using graphics. We try to apply these rules in order to 
get graphical views that have the qualities of 'good pictures' and hence do not have to 
be read in a linear way. 

Following Glinert [4], we propose an environment which simultaneously supports 
program composition and editing in both textual and graphical representations with 
correspondance between the two views of the program being automatically main- 
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tained by the system. As a matter of fact, the mixed use of graphics and text is one of 
our main interests because a visual view of a program, as interesting as it might be, is 
often not sufficient to express all the semantics of a program, or is too exclusive and 
does not attract the experienced programmer used to a textual structure. Getting 
inspiration from multicode theory [7, 8, 9] in image mental structure, we believe that 
visual and textual representation have distinct optimal domains. Of course, as in the 
dual code theory [10], we think that the two representations used in parallel can 
sometimes give better results than only one. 

Thus, we introduce in this paper VLP, a visual logic programming language based 
upon the above mentionned principles. VLP supports interactive graphical composi- 
tion and execution of logic programs. The choice of investigating visual capabilities in 
logic programming has several motivations. 

Logic programming has been used widely for rapid prototyping to clarify and to 
validate software specifications and to involve the user more-and-more in the 
software's definition. Now, areas where the application of graphics has already proven 
particularly successful include graphical specification and design aids. In fact, 
graphical representations are often helpful in understanding the relationships between 
objects (e.g. semantics nets, entity relations diagrams) and to capture the overall 
process (e.g. Nassi-Schneidermann charts, state transitions diagrams). Hence, one aim 
of this work is to use graphics to put forward the relational nature of logic 
programming, which is a key feature when prototyping. 

Logic programming is difficult to use on non-trivial applications. There is clear 
evidence that the apparent 'naturalness' and 'simplicity' of Prolog are deceptive, and 
that users suddenly experience great difficulty writing and debugging declarative 
programs intented to solve anything other than toy problems [11]. Visualization of 
programs has proven its capability to enhance program readability and com- 
prehensibility, and thereby to make them more maintainable and useful [12]. Thus, we 
expect that graphical views will bring out the program structure and help the user to 
get a deep understanding of the declarative semantics of logic programs. 

The concise syntax of logic programming languages, e.g. Prolog, requires only a 
limited number of visual symbols. Moreover, Prolog is a "dense' language so that a 
large part of a prototype of'an information system can be held on the screen at the 
same time, thus making the graphical approach work for medium or large 
applications. 

Kowalski [13] first outlined the close relationship that exists between logic 
programming and graphical languages used for rapid prototyping but he did not 
propose any formalism. Graphical environments for Prolog have already been 
developed by Dewar and Cleary [14] and by Eisenstadt and Brayshaw [11, 15]. 
However, their system only focussed on providing a graphical tracer for Prolog (i.e. 
visualization of execution tree of textual Prolog programs). 

We have chosen to apply Bertin's laws of graphics. These laws are deduced from 
large-scale experiments and their aim is to allow more powerful communication by 
means of pictures [5]. By conforming to the laws of graphics, the resulting 
representation of Prolog programs is more expressive than the single classical textual 
program. Hence, we get rid of many constraints (like variable names) and give a 
graphic to be watched and not read. For the complementary use of the textual and the 
visual style, we will link their distinct optimal domains to the classification of Prolog 



VLP: A VISUAL LOGIC PROGRAMMING LANGUAGE 165 

clauses when prototyping [16]. As a result, we obtain an understandable and attractive 
visual view of a Prolog program. Its most valuable points are: 

�9 An improved visual comprehension, both static (the program text) and dynamic 
(its execution) that facilitates reusing and stepwise understanding. 

�9 A higher level of abstraction for Prolog variables. 
�9 A better support for annotation of programs (e.g. variable quantification, 

refinement with pre-conditions and post-conditions). 
�9 A better support for the manipulation of Prolog programs in an iconic 

environment. 

The resulting representation.of Pr010g programs will involve a strong encapsulation of 
components, and hence eliminates the spaghetti  ball phenomenon inherently as- 
sociated with flowcharts and other graphical representations based on directed graphs. 

After recalling Bertin's rules of graphics, especially the eight visual variables, we 
present our approach on three levels: 

�9 Graphics, using the laws of graphics to make an expressive and powerful visual 
view of a Prolog program. 

�9 Symbolics to ease visual memorization and enforce a graphical normalization of 
software components, as in electronics or mechanics. 

�9 General ,  using this visual view complementarily to a textual one in order to give 
the better suited view according to the kind of program manipulated. 

Finally, we describe a short example in order to illustrate the main characteristics of 
the proposed visual logic programming approach. 

This article assumes the reader is familiar with terminology of visual programming 
[1, 17] and with logic programming [18] and the Prolog language [19, 20]. 

2. The  Laws of Graph ics  

The laws of graphics are the results of large-scale experiments and common-sense 
reasoning. They have been set up and formalized by Bertin [5, 6] in a geographical 
context. In this section we sum up his main results and present them in a visual 
programming perspective. Specific properties will be introduced when they are used 
for the design of VLP's features. Though, what follows in this chapter is in no way a 
presentation of ex nibilo beliefs from the authors of this paper. 

Graphics use plane properties to express likeness, order and proportionality 
relationships. In one moment of perception, the ear perceives one sound when the eye 
sees a relationship between three sets (the three plane dimensions). So graphics are 
used to save time and memory, to have an instantaneous perception. 

Graphics is not an art, it is a system of strict and simple signs allowing a better 
understanding of set relationships existing in a graphic [5]. 

Graphics, like mathematics, deals only with similarity relationships or, on the other 
hand, difference relationships, order relationships and proportionality t'elationships 
between objects. The laws of graphics are derived from the structure and properties of 
visual perception. A picture is built upon three homogenous and ordered dimensions: 
X and Y orthogonal plane dimensions, the Z variation of the elementary spot (i.e. the 
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Figure 1. The six graphical variables [5] 

inside of a form). Bertin uses six variables to characterize the Z value (cf. Figure 1 
from Bertin [5]): 

�9 The variations of size and intensity. 
�9 The variations of colour, grain, orientation and form. 

When designing a graphic, we have to take into account the different properties 
(established in an experimental way) of the eight visual variables. All the above- 
mentioned relationships can be expressed in a natural way by using the two di- 
mensions of the plane, but the other six variables allow only some of them to be 
conveyed. As shown by Bertin: 

the size and intensity variables are best suited for order and difference relationships 
while colour, grain, orientation and form variables enable to express similarity 
relationships. 

Thus, the former are called pictures variables (to represent main pictures), the latter 
separation variables (to select subpictures). 

3. P r e sen t a t i on  of O u r  Visual  P r o g r a m m i n g  Style 

As it was explained before, we have chosen to investigate visual capabilities for Prolog 
because of both its concise syntax and its use for rapid prototyping where developers 
are familiar with graphical representations. 
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When building a visual representation of a Prolog program, two problems arise. 
The first is to represent a Prolog term (from now on called Prolog component, in 
analogy to electrical and mechanical components). It will be solved by using the four 
picture variables: X, Y, Z variations in size and intensity. The second problem is to 
represent several Prolog components on a graphic and to select them. It will be solved 
with the four separation variables: grain, colour, orientation and form. The properties 
of the eight visual variables will be explained when we use them. 

Another point we will have to deal with is that the plane is continuous and 
homogeneous. According to Bertin: 

every visual variation is significant, and any variation without meaning is ambiguous. 

Any visual run different from a straight line, any variation of distance between those 
lines or any angle different from the right angle are not neutral and create 
non-significant variations. As a counter-example, to let the user make free-hand 
drawing programming, as in PiP [21], may be hazardous. 

First of all, we introduce the basic symbols of our Prolog components in order to 
enable a graphical normalization. 

3.1. Level of the Symbolics 

The choice of symbols or icons is mainly subjective and thus arguable. The choices 
presented have been made with care for simplicity and analogies to electronical 
components, for which a normalization exists. We now present the basic symbols. A 
Prolog program is made of Prolog clauses, built by logical combinations of Prolog 
components made of a predicate and its arguments. These two symbols are displayed 
in Figures 2 and 3. 

The argument symbols will be displayed on each side of the predicate symbol. Of  
course, the predicate name can be replaced by a more expressive icon. The predicate 
symbol does not contain the predicate arity: that will be expressed by the number of 
arguments placed on the predicate symbol, as shown in Figure 4, which illustrates the 
analogy between a Prolog component and an electronic component. 

We need visual variables that allow us to distinguish easily the arguments from the 
predicates. To this aim, we have used variation of size. The variations of size and 
intensity are used to transcribe information about the size and value of the represented 

predic~ten~me 

Figure 2. The predicate symbol 
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object; on a geographical map, for instance, they can be used to represent the 
production or the size of a factory. But objects represented by variations of these 
variables are not all equally visible (for instance, one notices easily in Figure 1 that 
smaller objects are 'less visible' than taller ones). These four variables may be used in 
visual programming to describe hierarchies, for instance type hierarchies in Ada. But 
they have to be cleverly used. As a counter-example, in our first proposal [22, 23] the 
size of the different arguments was not the same for the head and body of a Prolog 
clause. It was an error because there is no hierarchy among the arguments of a Prolog 
clause. 

Some objects, like the Prolog arguments, will have to be all equally visible and their 
equivalence will have to be easily noticed. There will be no hierarchy among them. So, 
visual variables like the picture variables will not be suited to this aim. Thus, we need 
the separation variables colour, grain, orientation and form, which all imply the same 
visibility. The interesting feature of those variables is their selectivity, i.e. their ability 
to distinguish, separate and select subpictures. Variations of size among the argument 
symbols and among the predicate symbols would be incorrect because there is no 
hierarchy among the Prolog predicates and among the Prolog arguments. All the 
corresponding symbols (presented in Figure 2) must have the same size in order not 
to imply an incorrect hierarchy or to prevent the visual recognition that will be 
achieved by the separation variables. But the variations of size and form between an 
argument symbol and a predicate symbol are used to distinguish them easily. 

To express a Prolog clause, we will logically combine Prolog components inside the 
predicate symbol. We will consider looking at the inside of this symbol as zooming 
inside the Prolog component it defines (cf. Figure 5). Hence, we get a good 
encapsulation: a component is a black box with arguments for its connection, but that 
can be zoomed at to look at its definition. This can be compared to the activation of a 
file icon on a Macintosh opening the corresponding file. This encapsulation is 
enhanced by the components library we introduce in our environment. When 
building a clause, the programmer will have the opportunity to choose already defined 
components and to assemble them. This zoom will be a way to have an accurate 
description of what the component is. 

lpredicte  
Figure 4. A Prolog component and an electronical component 
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Figure 5. An expanded Prolog clause 

We now make some remarks about the choices of the symbols: 

�9 The rectangles of Figures 2 and 5 are similar to express the similarity between the 
specification of the component (Figure 5) and its definition (Figure 6). It is 
particularly interesting when defining recursive components; see for instance the 
descendants of Figure 12. In some existing visual languages (e.g. ThinkPad [24]) 
non-similar symbols (rectangles) are sometimes used to represent the same 
object: as an example, a binary tree and its two subtrees are not represented by 
similar rectangles. This will not help normalization and understanding. 

�9 The fact that arguments are placed left or right does not mean that they have to 
be considered as inputsor  outputs; in the same way that the left pins of a chip 
need not be connected to ' - '  or the right ones to ' +  '. Prolog is an inversible 
language, with no input/output notions, which is very useful in rapid prototyp- 
ing. The place of the arguments is only to make the presentation easy. Of course, 
this place will have to be scrupulously respected to enable normalization. This 
will be eased by using a components library. 

As Prolog is made of a few syntactical elements, the visual representations we have 
just presented are going to be used often and have a great potential of becoming an 
accepted symbolism. The user will have the opportunity to redefine it at will, but he 
will have to take into account practical aspects and the laws of graphics, in order not 
to lose the benefits of visual programming. 

3.2. Level of the Graphics 

We are now going to present the assembly rules of these symbols to get a Prolog 
program. To provide a significant advantage over a textual view, our visual aspect 

X 

predicate 

predicatel predicate2 I 

Figure 6. The conditional AND 
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must be useful and accepted. The assembly rules must be natural and powerful in 
order that a graphic can be watched rather than read. We are going to apply the laws 
of graphics to have a strict and rigorous algebra of construction. The separation 
variables allow us to select quickly identical variables without using their names. As a 
Prolog program is made of a logical combination of the above basic elements, we now 
introduce our way to express the conjunction and disjunction operators. In Prolog, 
the conjunction and disjunction operators are conditional [25]: the order of the 
clauses in a program defines the order of the evaluation (i.e. SLD resolution which 
processes the clauses of a procedure from top to bottom and evaluates the predicates 
from left to right inside a clause). 

The X and Y plane dimension variables are ordered: the fact that a statement of a 
visual programming language is drawn higher than another or at the left of another 
implies that it will be executed first, because: 

the plane is ordered from top to bottom (gravity) and from left to right (time passing), 
the first order being stronger than the second [5]. 

3.2. I. Conjunction 

To express the logical connection 'Conditional and', we employ the X plane 
dimension, as shown in Figure 6. 

The logical part of this visual representation is the Prolog clause: 

predicate(...):--predicatel(...), predicate2(...). 
which states that predicate(...) is true if predicate1(...) and then 
predicate2(...) are true. 

The picture variable X plane dimension helps to express the exact semantic of the 
conditional conjunction operator. Indeed, the fact that a predicate1(...) is drawn to 
the left of predicate2(.. .) implies that it will be executed first because the plane is 
ordered from left to right. 

3.22. Disjunction 

As expected, the Y dimension will be used to express the 'Conditional or' connection, 
as shown in Figure 7. But, as the order on the Y dimension is stronger than on the X 

Rr@dicate 

predica.tet I [ ~redida'te2 
L r 

Figure 7. The conditional OR 
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dimension, we channel the X reading as shown in Figure 7. The dotted line indicates 
that changing of 'or' zones during execution is not definitive because of the Prolog 
backtracking mechanism. Of course, this proposition is subject to practical validation 
because it does not conform to the laws of graphics. 

We have centered the predicate3 symbol on purpose because we think aligning it 
under the predicate1 symbol would have left an empty space that could lead to the 
conclusion that something is missing in the definition. 

If the programmer builds a component with more than six alternatives" or with 
more than six components in an alternative, the visual representation may be a little 
confused. We decide not to visually represent these cases. As a matter of fact, such a 
number of components is a sign that the software being built is poorly modularized. 

3.2.3. Using the Laws of Graphics for the Arguments 

Because of the infinite number of possible constants, there is no other standard 
solution than writing the name of a constant inside the argument symbol (cf. Figure 
8). 

Of course, the user may build icons for a restricted number of frequently used 
constants, but the constants are usually very linked to a textual representation. We 
will see in Section 4 that Prolog clauses containing many constants are better suited to 
a textual manipulation. 

On the other hand, for the Prolog clauses containing many variables, graphics gives 
us the opportunity to free ourselves from textual constraints (e.g. their names). As a 
matter of fact, for a type-free language like Prolog, variable names are not really 
important. The important thing is the concept of logical variable and the fact that the 
Prolog resolution unifies two variables sharing the same name. We will indicate 
unifiable variables by filling their associated symbols with identical patterns. We will 
see that the various patterns can also imply some information on the 'kind' of objects 
the arguments represent. 

Despite of much interest in the use of colour, we will not use it since we are not 
sure how to best apply it for its selectivity rather than for its aesthetic qualities. The 
use of colour is critical: there is no rule to determine selective colours, and colour is 
not available on all graphical displays. 

According to Bertin 'form is the least selective of all. Grain is selective' and can 
practically offer three levels of selection, shown in Figure 9. Grain is ordered, but 
unlike size and intensity, it does not weaken some subpictures because all the objects 
represented with variations of grain have the same visibility. As an example, an object 
with a taller grain is not more visible than an object with a smaller grain, while an 

Figure 8. The name of arguments 

* People usually restrain the number of parameters to 6 in graphical systems (e.g. SADT [26], C2 [4]). Of 
course, this number can be changed according to the user's graphical environment. 
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Figure 9. The grain's three level of selection 

object with a larger size is more visible than an object with a smaller size. Orientat ion 
h quite selective too and offers four levels of distinction described in Figure 10. 

The laws of graphics allow us, by combining only three levels of grain selectivity 
and four levels of orientation selectivity, to select and pinpoint easily a dozen distinct 
elements of a visual language program without using their names, freeing ourselves 
from a textual constraint. Furthermore, with only the three levels of grain and the 
four selective directions seen in the previous section, we obtain the palette of Figure 
11. 

The blank pattern is used to express the dummy argument ('_' in C_Prolog). We 
have 10 patterns to express 10 distinct variables. As an indication, only 2% of our 
implementations use more than 10 variables in one clause. The limited number of 
variables does not really restrict us in practice. Furthermore, building Prolog clauses 
with more than 10 variables is not really good programming, as the relationships 
becomes difficult to understand. 

Of course, drawing two arguments with distinct patterns does not necessarily mean 
that the two corresponding variables are distinct, in the same way that writing two 
variables X and Y does not imply they are not unifiable. Figure 12 shows the 
application of these patterns on the classical descendant /2  example, b 

The descendant relation expresses that a child is a descendant or a child o f  a 
descendant is a descendant,  whose Prolog clauses are, up to variable renaming,: 

descendant (X, Y):- child (X, Y). 
descendant (X,Y):- child (X, Z), descendant (Z,Y). 

To express functional arguments, we will combine basic arguments symbols as 
shown in Figure 13, which represents the tree(Root, Left son, Right son) functional 
argument. To get the full argument, the user has to zoom on the functional symbol. 

The visual aspect is also a good support for variable annotations. Usual annotations 
are the explicit universal quantification (V) for the correct use of negation [27], and 
the mode ( $ known (ground) when executing the Protog component/1 '  ground after 
the execution of the Prolog component) for further optimizations and proofs [28] and 
transformations of the Prolog prototype into more deterministic languages [23]. We 
do not claim that V, $ and t are especially meaningful symbols, but as they are 

Figure 10. The orientation's four selective directions 

b Descendant/2 is the usual Prolog notation to specify that predicate descendant has an arity of two. 
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Figure 11, The palette of levels of selection 
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Figure 12. The descendant example 

accepted by the Prolog community, we show how our visual representation supports 
them (cf. Figure 14). 

3.2.4. Using the Laws of Graphics for the Predicates 

The name of a predicate being a constant, we have to write it inside the symbol. A 
complete visual normalization is not possible because of the large number of possible 
predicates. However, it can be tried for a limited number of frequently used 
predefined predicates. For instance, with abstract and representational icons shown in 
Figure 15, we iconize four well known list manipulation predicates:member/2, not 
member/2, head/.2, tail/2. 

Another frequently used predefined predicate is the negation, implemented in 
Prolog by negation as failure [29]. As negation cannot be expressed by one image 
[30, 31], we cannot represent it with visual variables (as we represented and and or for 
instance). So we suggest using the symbol of Figure 16 to express the negation of a 
Prolog component. 

Another frequently used predicate in Prolog programming is the cut. To represent 

Figure 13. A functional symbol and its expanded graphical view 
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it, we propose to use the symbol of Figure 17: 

pre4icLte 

T 

Figure 14. An example of variable annotation 

Figure 15. An iconic representation of member/2, not member/2, head/2 and tail/2 

3.2.5. Structuration of Clauses 

Of course, all the alternatives inside a Prolog clause can only be expressed in a single 
clause symbol if the arguments are identical. Otherwise, a duplication of clause 
symbols may be necessary (for clauses containing stop recursion rules, for example). 
The well known factorial example in Prolog have the direct visual representation of 
Figure 18. The factorial predicate states that Z is the factorial of Nand has to be used 
as a function and also N must be known. The corresponding Prolog clauses are: 

fact (0,1). 
fact (N,Z):- N~>O, N1 is N -  1, fact (N1,Z1), Z is N ' Z 1 .  

The variation of size between the two clauses symbols does not transgress the laws 
of graphics. As a matter of fact, the smaller size of the first fact/2 component symbol 
clearly indicates that it is less complicated than the second one. But, with a 
normalization, we can get the more pleasant visual representation of Figure 19. 

/ 

predicate name 

Figure 16. The negation symbol 

f 
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Figure 17. The cut'symbol 

Figure 19 corresponds to the following definition of the factorial/2 component: 

fact (N, Z):- N = 0, Z --- 1 
fact (N, Z):- N ~ O, N1 is N -  1, fact (N1, Z1), Z is N * Z1. 

Here, all the subcomponents have the same size because we have different 
alternatives of a single clause fact/2. 

The graphical representation of the factorial is argt/able. In particular, the symbols 
for ' - '  and '":" can be seen in different ways (N1 is N - 1; N is N1 - 1; . . . ) .  This 
problem arises from the fact that factorial/2 is not a relational predicate but a 
function. As our system has been designed to put forward the relational nature of 
Prolog clauses, the graphical representations of predicates, which actually correspond 
to functions, have a lot of chances to be ambiguous. Furthermore, it is difficult to 
represent graphically arithmetical predicates because arithmetic is already symbolical. 
So, the best thing to do is to manipulate arithmetic with the classical textual symbols. 

fsct 

fact 

[] 

Figure 18. A standard representation of fact/2 
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Figure 19. A normalized representation of fact/2 

3.3. General Level 

3.3.1. Using Visual and Textual Views in a Complementary Way 

We believe that purely visual approaches, like Pict /D [32], FP-XL [33], are too 
exclusive to be completly general. Some programming tasks should not be done in a 
visual way, since the user will eventually become disappointed and will surely come 
back to the textual program. Taking inspiration from multicode theory [8] in image 
mental structure, we think that the visual and the textual representation have distinct 
optimal domains. However, as in the dual code theory [10], we think that the two 
representations used in parallel can sometimes give better results than only one. 

Our experiments in Prolog lead us to think that some classes of clauses are better 
suited for a visual manipulation than others and vice versa. That is why we suggest to 
manipulate our program with multiple views, visual and textual. A Prolog clause 
better suited for a visual manipulation will not be textually displayed. Actually, it is 
useless to remind the user how the textual is less adapted than the visual. Conversally, 
if the user deals with a lot of Prolog facts with constants, best suited to a textual 
manipulation, it is hazardous to show him an awkward visual view! Of course, the 
user can always ask that some Prolog clauses be displayed both visually (for a better 
comprehension) and textually (for more efficiency). 

To decide which kinds of Prolog clauses are to be manipulated according to which 
view, we use the classification of Legeard and Rueher [16], that distinguishes four 
classes of Prolog clauses: 

�9 Functional clauses describing the relational semantics of the program. For 
instance, the clause descendant/2 is a functional clause of the descendants 
program�9 These higher level clauses mainly contain variables. The possible 
application of the separation variables to represent them implies an interesting 
visual manipulation�9 

�9 Elementary clauses insuring the independance of the functional clauses from the 
choice of data structures. Their semantics is linked to  the one of the program. 
Examples will be given in the next section. 
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�9 Utilitarian clauses the usual utilitaries used by the basic or functional clauses, 
their semantics is not linked to the one of the program. For these two classes of 
clauses, the use of visual or textual programming is a matter of experiment. Some 
quite high level basic clauses using many structured variables are better 
manipulated textually, while some low-level utilitaries will have a good visual 
representation. In the general case, a textual view is more concise and efficient, 
while a visual view helps understanding. 

�9 Basic relations describing the static semantics of the program. For instance, the 
facts child (lisa, nicole), child (lisa, charles),.. ,  are the basic relations of the 
descendants program. Since these relations contain many constants, they are 
better suited to a textual manipulation. 

Finally, there may be a last class of Prolog clauses: consistency control clauses to 
ensure the correctness of the program. These clauses are easily visually represented 
too. Of  course, the 'principles' given above are only recommendations to the user: he 
is always free to adapt them to his goals. In Section 4, these classes of Prolog clauses 
are detailed in an example. 

3.3.2. Implementation 

To ensure consistency and updates between the graphical and textual views, our 
software architecture is based upon an abstract syntax tree. Visual and textual views 
are decompilations of this abstract syntax tree and any modification to either of these 
two views are reported to the abstract syntax tree, which incrementally sends it back 
to the views. To assert Prolog clauses from the tuples of logic operators, it is 
necessary to normalize the logic formulas to obtain a single representation. We have 
chosen the disjunctive normal form because disjunction is usually represented by 
clauses having the same head, the predicates of the different rule bodies being 
connected by conjunctions. A first version on Macintosh with PrologII [19] has been 
made more powerful (this, however, is still an early prototype) on Sun workstations 
with Delphia-Prolog. r 

4. Appl icat ion 

We illustrate our approach on a causal tree management Prolog program. A causal 
tree is a kind of decision tree which has a dreaded event as root, whose nodes 
represent events resulting from the conjunction or disjunction of the events associated 
with their children, and whose leaves are elementary events. These kinds of trees are 
used to model emergency system in such areas as aeronautics. We will only examine 
the qualitative-analysis function which is aimed at identifying all critical sets of causal 
trees, i.e. all minimal sets of events leading to the dreaded event. 

A causal tree is described in Prolog by and-decompositions, or-decompositions and 
elementary events. 

c Delphia-Prolog [34] is a modular Prolog interfaced with a graphical toolbox named Pixia. 
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4.1. Beginning the Session and Defining the Basic Relations 

When we start up the VLP system, the standard menu bar with four pull-down menus 
appears on the screen (see Figure 20). 

The FILE menu contains various items for: 

�9 saving; 
�9 storing into the differents components libraries (e.g. user library, project library, 

etc.); 
�9 retrieving from the differents components libraries; 
�9 changing between a textual and a visual representation; 
�9 tracing the program; 
�9 leaving the session. 

The EDIT menu contains various items for: 

�9 various items for combining components by means of and; and or, 
, erasing, 
�9 zooming, 
�9 cut, copy and paste facilities. 

The ARGUMENTS menu contains various items for: 

�9 adding an argument; 
�9 unifying two arguments; 
�9 annotating arguments by means of: 

�9 quantification; 
�9 ~ ~' annotations. 

The BUILT-IN menu contains all standard which are available in Cprolog. 
First of all, let us define the basic relations by the following Prolog facts: 

and-decomp (oi, a, b). 
or-decomp (a, c, 7). 
or-decomp (g, 5, 6). 
basic-err (1). 
basic-evt (4). 
basioevt (7). 

and-decomp (c, e, f). 
or-decomp (b, d, 8). 
orodecomp (f, 1,2) 
basic-evt (2). 
basic-evt (5). 
bas i c -e r r  (8). 

and-decomp (d, f, g). 
or-decomp (e, 4, 3) 

basic-err (3). 
basic-evt (6). 

c~t 

~op~ ~a~tq 

Figure 20. The standard menu bar and pull-down menus 
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�9 ' f '  'g 
, ' ,  . 

Figure 21. A graphical representation of the causal tree 

The basic relations are often the first part of the Prolog program that is built, 
because these static relations are easily expressed due to the declarativeness of the 
Prolog programming language. These Prolog facts contain constants that are not easily 
visually represented but written in a graphic (even if an iconifieation of these constants 
is possible!). So, a visual representation of these basic relations is not well adapted and 
the basic relations will be better built on the textual view with a syntax directed 
editor. However, the data object which is modelized by those relations could be 
displayed by using specific visual formalisms (e.g. a graph like the one of Figure 21) 
but this is not yet possible in VLP. For future visual use, they can nevertheless be 
saved in the components library with a visual representation, as indicated in Figure 22. 

4.2. Defining Functional Clauses 

The definition of the qualitative-analysis/2 function is based upon the second order 
predicate setof/3 as shown by the following clause: 

qualitative-analysis (Ev, AlI-Sets):- 
setof (S, set (Ev, S), Sets), 
critical (Sets, All-Sets). 

Second order predicates are out of the scope of our relational symbolism and they 
have therefore to be represented either in a textual or in an iconic way; here, we have 
choosen the textual one but this choice is somewhat arbitrary. 

and-deoomp(ol,a,b) and-decomp(c,e,f) 

L , , r o r ,  : u . . r  [  l]Ic.nce, } , on : 

C o m p o n e n t  n a m e  : l  and-eecon~p I 

C o m m e n t s  : 
i Mode : 
__1 r e s u l t s  f r o m  t h e  c o n j u n c t i o n  o f  __2 a n d  ~' [ 

?,?,? I 
Figure 22. Saving a component in the user library 
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E 

set 

q or-deco~p q s e t  b 

Figure 23(a). The structure of the set/2 relationship 

The user can now ask to build visually the set/2 component. By reusing the 
and-decomp/2, or-decomp/2, basic-r components, the predefined icons (e.g. the 
list constructor '.', and the set union operator ' U  ') and doing logical connections, 
he gets the result of Figure 23(a). 

Now, he just has to fill the arguments with the possible patterns or copy from a 
previous pattern in case of identical variables to obtain the set/2 component of Figure 
23(b). When filling with a pattern, the palette is displayed. When unifying the two 
arguments, the current pattern is displayed at the left of the palette. 

This figure expresses that the set of basic events leading to an event Ev is: 

�9 the set containing only Ev if Ev is a basic event; 
�9 the union of the sets of basic events associated with two sub-events, if the 

conjunction of these sub-events leads to Ev; 
�9 the set of basic events associated with one of the sub-events connected to Ev by 

an or-decomposition relationship. 
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~Z 

set 

Figure 23(b). Using the standard pattern for defining arguments 

Figure 23(b) corresponds to the following Prolog clauses. 
set (Ev, [Evl):- 

basic-err (Ev). 
set (Ev, S):- 

and-decornp (Ev, Sevl, Sev2), 
set (Scvl, Sl), 
set (Sev2, S2), 
union (SI, S2, S). 

set (Ev, S):- 
or-decomp (Ev, Sevl, Sev2), 
set (Sevl, S). 

set (Ev, S):- 
or-decomp (Ev, Sev1, Sev2), 
set (S~, S). 
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We can notice that the variable-free graphical representation constrains the user to 
have a relational view of the invertible predicate. 

The critical/2 relation which defines the critical sets (i.e. the minimal ones) is 
displayed in Figures 24(a-d). 

Figure 24(a) describes the rewriting rule of crit ical/2 in crit ical ' /3. It outlines better 
the encapsulation of these two relations than the corresponding Prolog clause given 
below. 

critical (Sets, Cdticals-Sets):- 
critical' (Sets, Sets, Criticals-Sets). 

To define critical'/3 we will use both textual and graphical representations. As a 
matter of fact, the first clause required for defining critical'/3 contains two constants 
and a textual representation is thus well adapted: 

critical'([ ], Sets, [ ]). 
The two other clauses needed for defining this relation contain many abstract 

variables and a graphical representation is better suited for them [cf. Figures 24(b)]. 
The corresponding Prolog code is: 

critical' ([SlOthers-setsl, Sets, [SlOthers-Criticals-Sets]):- 
retract (S~ Sets, Sets-without-S), 
not (exist-subset(S, Sets-without-S)), 
critical' (Others-Sets~ Sets, Others-Criticals-Sets). 

critical' ([S[Others-Sets], Sets, Others-Criticals-Sets):- 
retract (S, Sets, Sets-without-S), 
subset (S, Sets-without-S), 
critical' (Others-Sets, Sets, Others-Criticals-Sets). 

A normalized representation of the complete relation is displayed in Figure 24(c). We 
may remark that the graphical representation enables a better understanding of the 
overall structure than the textual representation. 

The two elementary clauses used to define critical'/3 are shown in Figure 24(d); the 
corresponding Prolog clauses are: 

subset (S, [SetlSetsl):- 
inclusion(Set, S). 

subset (S, I_lSetsD:- 
subset (S, Sets). 

retract (S, [SlSets], [Sets]). 
retract (S, [XlSets], [XlSet'D:- 

retract (S, [Sets], Sets'). 

4.3. Execution 

To determine all the minimal sets of basic events that could lead to the dreadful event 
oi, we have to compute the question qualitative-analysis (oi, All-sets) which calls the 
non-deterministic predicate set/2. In order to illustrate the benefit of our approach 
when testing, we are now going to visualize the execution of set (oi, s). The synospsis 
of the execution is shown in Figure 25. The inverted display of or-decomp/3 
indicates that this component is currently being executed. The shaded predicates have 
been backtracked. However, often the result of the Prolog execution is an 
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instanciation of the free variables into ground terms (i.e. constants), the results are 
displayed textually, as it can also be seen in Figure 25. The set (oi, [7, 81 relation, 
displayed in the textual window, is the answers already given by execution of the 
set/2 component. 

Here are some comments to explain the displayed state of the program. When 
computing set (oi, s), the first clause will not succeed because oi is not a basic event. 
But oi can be decomposed in a and b by using the second clause. The event a is 

critical 

Figure 24(a). The critical/2 relationship 

critical' 

critical' 

Figure 24(b). The critical'/3 relationship 
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i 

critical' 

Figure 24(c). A normalize representation of critical'/3 

subset 

Fi 

retract 

;ure 24(d). The subset/2 and retract/3 elementary clauses 

neither a basic one nor can it be decomposed by the and-decomp/3 predicate. Hence 
the third clause will be used and succeed by computing set (a, [7]). The event b is not 
basic and cannot be decomposed by the and-decomp/3 predicate. It can be 
decomposed in 8 and d with the or-decomp/3 predicate. In this way set (b, [8]) can 
be computed and we get the first answer set (oi, [7, 81). 

Let us now examine the backtrack step: ' U '  cannot be backtracked, but set (b, 
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File Edit Rrquments Bui l t - in 

set 

d 

d 

~] 

(1,8] 
[] 

Figure 25. Execution of the set/2 relationship 

File Edit Rrgurnent l  

[81) can be undo. Thus, we will compute the forth clause where we are going to solve 
the set (d, S) goal. 

5. Discuss ion 

We have introduced the concept of VLP in this paper. VLP, a visual logic 
programming language, is based upon some simple psychological laws concerning the 
perception of graphics. This work was started with the aim of using graphics not as an 
art, but as a system of strict ~ind simple signs allowing a better understanding of set 
relationships which exist in graphics. 

Conforming to the laws of graphics, the resulting visual logic program is more 
expressive than just the textual Prolog program. The choices of symbols or icons for 
representing the basic objects (i.e. Prolog terms) have been made with care for 
simplicity and efficiency in order to enable a graphical normalization. The graphical 
assembly rules have been designed to yield an algebra of construction. The picture 
variables (i.e. X and Y plane dimensions) enabled us to express clearly the logical 
connections between components while the graphical separation variables (i.e. grain, 
orientation and form) allowed us to represent terms which can be unified without 
naming them. Hence, we are rid of many textual constraints and we produce a graphic 
to be watched. Our box representation of the clauses also involves a strong 
encapsulation which eliminates the spaghetti ball phenomenon of numerous graphical 
representations. 
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However, visual programming cannot efficiently cover all the requirements of 
software development. In particular, graphical interaction appears too cumbersome a 
means for entering elementary relations. Taking inspiration from multicode theory 
which argues that visual and textual representation have distinct optimal domains, we 
propose using graphical and textual languages in a complementary way. It is possible 
to link their distinct optimal domains to the classification of Prolog clauses when 
prototyping (e.g. textual representation of basic relations but also of second order 
clauses). But the best suited view cannot be defined for every kind of clause and hence 
we have to enable parallel use of both representations. 

First experiments showed that the visual representation really improves both static 
and dynamic understanding of Prolog programs. Visual and iconic representations 
(e.g. criticar/3, no t / l ,  ' U ') allow a global understanding of the meaning of displayed 
relationships while encapsulating of the relations symbols enables the apprehension of 
their structure. The higher degree of abstraction for Prolog variables prevents both 
beginners and experienced users from viewing their programs in a procedural way. 
Hence, the use of identificator-free variables emphazise the relational nature of Prolog 
predicates (e.g. the invertibility of set/3). Of course, many examples do not become 
easier to program when using visual logic programming but the resulting program is 
easier to understand and errors such as loops will be detected faster. The construction 
of the program if not quicker, can at least be more convenient in a graphical way. For 
some kinds of clauses like basic relations, the textual representation remains a better 
support. Thus, using visual and textual representation of logic programs seems to be a 
promising approach for rapid prototyping and a valuable support for documenting, 
normalizing and hence reusing Prolog components. However, extensive experiments 
are still necessary to validate VLP and to refine it. Likewise, we still continue to 
explore the new works on the properties of graphics (e.g. [9]) in order to improve the 
visual representation in a systematic way. 

VLP would of course have to be enhanced and improved in many ways for the 
system to become production quality software. First, the subset of built-in predicates 
which are defined in an iconic way should be extended to cover at least all standard 
predicates. The user interface can also be improved significantly. In addition, more 
work is required to support program debugging (e.g. visualization of the complete 
execution space, use of colours to highlight failure v s .  success, etc.). These 
enhancements will be incorporated in future versions, but before implementing them 
we would like to get more experimental validation on VLP. 

In this paper, we have only explored the capabilities of the laws of graphics for 
visual logic programming. Of course, the use of these laws would be of great interest 
for other programming paradigms. However, the application to other programming 
paradigms depends on the syntactical complexity of the underlying programming 
language. As a matter of fact,-it would certainly be difficult to apply our approach to 
languages like Ada because we would need to define many basic symbols that could 
make visual normalization difficult. The use of the laws of graphics could also 
improve more conventional editors. For instance, a syntax driven editor should 
neither enable different indentations for the same syntactical structure, nor allow the 
use of the same font format for different objects (e.g. inherited features and local 
redefined features in an object-oriented programming language). 
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