
Automatic Verification of Loop Invariants
Olivier Ponsini, Hélène Collavizza, Carine Fédèle, Claude Michel and Michel Rueher

University of Nice–Sophia Antipolis, I3S/CNRS
BP 121, 06903 Sophia Antipolis Cedex, France

email: firstname.lastname@unice.fr

Abstract—Loop invariants play a major role in program verifi-
cation. Though various techniques have been applied to automatic
loop invariants generation, most interesting ones often generate
only candidate invariants. Thus, a key issue to take advantage
of these invariants in a verification process is to check that
these candidate loop invariants are actual invariants. This paper
introduces a new technique based on constraint programming
for automatic verification of inductive loop invariants. This
approach is efficient to detect spurious invariants and is also
able to verify valid invariants under boundedness restrictions.
First experiments on classical benchmarks are very promising.

I. INTRODUCTION

A major obstacle to automatic software verification lies in
iteration, that is loop constructs of programming languages.
Loops are difficult to reason about because the number of
iterations cannot always be statically determined. A solution
to this problem is to reason about loops independently of the
number of iterations: loop invariants are logical statements
that describe properties of a loop holding for all possible
executions of the loop. As such, they play a major role in
program verification. For instance, a sufficiently strong loop
invariant can avoid unfolding the loop in bounded model-
checking approaches. In some other verification approaches,
e.g., theorem proving [1], it is even mandatory to provide such
invariants. Loop invariants are also useful for testing, e.g., they
can improve test-case generation [2].

Despite numerous works, automatic generation of sound
invariants from program source code remains challenging:
proposed tools are not efficient and-or generated invariants
are too weak for most practical purposes. Some recent ap-
proaches relax the soundness constraint so as to efficiently
produce interesting candidate invariants by analysis of execu-
tion traces [3] or by static analysis based on heuristics [4]–[7].
Verifying that the candidates are sound invariants is postponed
to a second step and requires some kind of decision procedure.
Such a decision procedure is also useful for user-provided loop
invariants: handcrafted invariants may contain errors, and if so,
the error must be detected before further usage of the invariant.
Conversely, user invariants may be a desired specification from
which a programmer writes the loop body code: a decision
procedure is then needed to verify that the written code meets
the loop invariant.

In this paper, we use constraint solvers for automatic
verification of candidate loop invariants in single-loop imper-

This work was partially supported by the ANR-07-SESUR-003 project
CAVERN and the ANR-07-TLOG-022 project TESTEC.

ative procedures. We use the translation of Java-like methods
annotated with JML statements into constraint problems in-
troduced in CPBPV [8], a constraint programming framework
for bounded program verification. Our contributions are:
• the use of constraint solvers as a bounded decision

procedure for checking the validity of inductive loop
invariant;

• a set of experiments on classical benchmarks inspired by
the gallery of Why [1], using existing tools (Daikon and
InvGen) for invariant generation.

In addition, we implemented a more generic handling of JML
“exist” and “for all” quantifiers than the one of CPBPV. Our
approach efficiently refutes spurious inductive loop invariants
and produces a counter-example that is a real test case leading
to the violation of the invariant. Proving a valid invariant holds
is sensitive to the size of the program variable domains and
the size of arrays: it ranges from fast on small domains to
intractable on larger domains.

Checking candidate invariants is close to the more general
problem of proving verification conditions in theorem prov-
ing. However, the boundedness hypotheses inherent to our
approach render our validity checks unsuitable to theorem
proving, only refutation results could be useful in this context.

The next section introduces our approach on a typical
example. Then, Section III gives some details of our approach.
Experimental results are shown in Section IV. Related work
is discussed in Section V, and Section VI concludes.

II. MOTIVATING EXAMPLES

In this section, we illustrate our approach on the example
of the sum of the first n integers. A program computing this
sum is showed in Fig. 1. This is a Java method enhanced
with JML specifications : the precondition (requires clause)
and the post-condition (ensures clause). We suppose that we
need to verify the inductive loop invariant given at line 6.
This invariant states that at each iteration of the loop body,
variable s stores the sum of the first integers up to i−1 and
that i will not increase over n+1. From axiomatic logic [9],
we know that a loop invariant is inductive if it holds before
entering the while loop (this is the base case), and if, holding
before the while loop, it also holds after one execution of the
loop body (the inductive case). To check whether an invariant
holds, we build two constraint systems corresponding to these
two cases.

For the base case, the formula to be verified is built from the
variables of the program (~x), the precondition (Pre), a suitable

Fig. 1. Sum of the first n integers

1 /∗@ requires n >= 0;
2 @ ensures \ result == (n∗(n +1))/2; @∗/
3 public static int sumN(int n) {
4 int i=0, s=0;
5 /∗@ loop invariant
6 @ (s == (i∗(i−1))/2) && (i <= n+1); @∗/
7 /∗ erroneous invariant
8 ∗ (s == (i∗(n−1))/2) && (i <= n+1); ∗/
9 while(i <= n) {

10 s = s + i;
11 i = i + 1; }
12 return s; }

logical encoding of the initializations (Init) occurring before
the loop (line 5), and the loop invariant (I) such that:

∀~x(Pre ∧ Init =⇒ I) (1)

which is equivalent to (applying a double negation):

¬(∃~x(Pre ∧ Init ∧ ¬I)).

The existential quantification of this latter formula suggests
how a constraint solver can be used as a bounded decision
procedure for the formula: we translate Pre , Init , and ¬I
into constraints over the variables ~x, then the solver searches
for a solution to ∃~x(Pre ∧ Init ∧ ¬I). If no solution is
found, then Formula (1) is true, which means that the invariant
holds after the initializations for all valuations of the method
input data. If a solution is found, then Formula (1) is false
and so is the invariant; moreover, the solution is a counter-
example providing a valuation of the method input and local
data that falsifies the invariant. This counter-example is a test
case that helps to understand why the program does not meet
the invariant. It may be used to correct the invariant or the
program.

The translation from JML annotated Java programs in
this example is straightforward and leads to the following
constraint set over variables n, i, and s, whose domain is the
one of the Java integers:

{n ≥ 0, i = 0, s = 0, (s 6= (i ∗ (i− 1))/2) ∨ (i > n + 1)}.

This constraint system is trivially inconsistent. Our approach
relies on two constraint solvers: a MILP (Mixed-integer linear
programming) solver and a constraint programming (CP)
solver over finite domains. Here, the CP solver detects the
inconsistency at once. Since there is no solution, the candidate
invariant is valid for the base case.

The same principles apply for the inductive case which
implies checking the following formula:

¬(∃(~x~x′)(I ∧ Cond ∧ Body ∧ ¬I [~x′/~x]))

where Cond is the loop condition, Body a logical encoding of
the loop body statements, and ~x′ are fresh variables introduced
by the encoding of the body statements. Roughly, introduction
of new variables allows I [~x′/~x] to correctly reflect the values

of the program variables after one execution of the loop body.
In the example, it leads to the following constraint set over
program variables n, i, and s, and fresh variables s1, and i1:{

s = (i ∗ (i− 1))/2, i ≤ n + 1, i ≤ n, s1 = s + i,
i1 = i + 1, (s1 6= (i1 ∗ (i1 − 1))/2) ∨ (i1 > n + 1)

}
.

This constraint system is nonlinear and cannot be easily
simplified. The CP solver can still detect instantly the incon-
sistency on small variable domains, but it will need more time
on larger domains since some enumeration is required.

As another example, let us consider the erroneous invariant
given as a comment at line 8, where an occurrence of variable
i has been replaced by variable n in the first conjunct. The CP
solver shows instantly—for 32-bit integer variable domains—
that the proposed invariant is true for the base case and
false for the inductive case. Our system produces the counter-
example: n = 0, s = 1073741824, i = −2147483648,
s1 = −1073741824, and i1 = −2147483647.

These examples illustrate the strong points of our approach:
refutation of spurious invariants is fast and produces a test
case; proof of valid invariants is fast on small integer domains,
but can be much longer on large domains.

III. PROPOSED APPROACH

The principle is to transform loop invariant verification
in single-loop programs into assertion verification in loop-
free programs. Then, we consider each execution path of the
programs, i.e., each path through the programs’ control flow
graph. Number and length of execution paths are finite because
programs are loop-free. Before and after each statement of a
given path, we represent the possible program states with a
finite set of finite-domain variables and constraints, i.e., rela-
tions on variables. Rules define how each statement modifies
the set of possible program states by adding new constraints
and variables. Let p be a program point and Cp the constraints
that describe the possible states at point p. Proving that an
assertion A holds at p is done by refutation: it amounts to show
that Cp∧¬CA—where CA is the translation into constraints of
A—has no solution, i.e., there is no assignment of the program
variables that violates the assertion.

The proposed approach takes place in a forward analysis
framework: program paths are analyzed starting from the
program beginning. It is based on our previous work on
constraint-based bounded verification of Java programs [8],
which was implemented in the CPBPV system. The interested
reader may refer to this work for the programming language
syntax accepted by CPBPV and complete set of transition rules
between program states. Here, we first recall the relevant key
points of the interpretation of program states as constraints, as
done in CPBPV, for loop invariant verification in single-loop
programs. Next, we describe how we handle JML quantifiers.

A. Constraint-based verification

We use constraint stores to represent both an execution
path in a Java method and its specification, i.e., method
precondition and postcondition. Execution paths are explored

nondeterministically and on-the-fly. To contain the combina-
torial explosion of possible paths, we prune unreachable exe-
cution paths as soon as the corresponding constraint stores are
inconsistent. We impose bounds on the domain of variables,
which are all signed (up to) 32-bit integers, and on the number
of elements in arrays. As for integers, this is not a limitation
because hardware integers are also bounded and the Java int
data type is a 32-bit integer. However, our approach does
not handle overflows. As for array size, in practice, there are
numerous situations where a bound is known. Furthermore,
even when a bound is unknown, verifying for some small array
sizes increases confidence in the code, just as testing does.
Verifying out of bounds array accesses is not yet implemented,
but this can be done by adding new constraints on the index
expressions. Since we only deal here with loop-free paths,
we are not concerned by bounds on the length of the paths.
To search for a solution, we call several constraint solvers
in sequence, starting with the fastest ones, but likely to find a
spurious solution, up to more costly exact solvers if necessary.

B. JML quantifiers

Among the JML quantifiers, we support the universal and
existential quantifiers, restricted to quantification over inte-
ger values. The JML syntax of the universal quantifier is:
(\forall int k; BR; BQ), where k is the quantified
variable, BR is the range predicate, and BQ is the quantified
predicate. The meaning is that the quantified predicate holds
for all potential values of the quantified variables that satisfy
the range predicate. Similarly, the syntax of the existential
quantifier is: (\exists int k; BR; BQ), which means that
BQ holds for some values of k that satisfy BR.

In our approach, integers are bounded and so is the quan-
tified variable in a quantifier expression. When a reasonably
small bound is known, the quantifier can be eliminated as
explained in Section III-B1. Otherwise, Section III-B2 gives a
general technique to deal with quantifiers.

1) Known bound quantifiers: Often, a small bound on the
quantified variable can be inferred from the range predicate,
or the quantified predicate. In particular, when quantification
ranges over arrays, range predicates of the form i1 ≤ k ∧ k ≤
i2, where i1 and i2 are statically known integer values, are very
common. In these cases, we expand a quantifier expression,
substituting possible values to the quantified variable, as a
conjunction of constraints for a universal quantifier, or as a
disjunction of constraints for an existential quantifier.

For instance, let us consider the expression (\forall int
k; 0 ≤ k ∧ k < t.length− 1; t[k] ≤ t[k + 1]). Since array
t has a known bounded size, say 3 for this example, we can
expand the expression into:

(t[0] ≤ t[1]) ∧ (t[1] ≤ t[2]).

Let us turn to another example: (\forall int k; 0 ≤
k ∧ k < left; t[k] 6= x). We do not know a priori any
interesting bound for the variable left . However, k indexes
the array t in the quantified predicate, thus, k should always
be less than t.length. This also gives an upper bound for left

that we can check by adding the assertion left ≤ t.length to
the constraint store. Hence, the quantified expression can be
expanded into (with t.length = 3 as before):

left = 1 =⇒ t[0] 6= x
∧ left = 2 =⇒ (t[0] 6= x) ∧ (t[1] 6= x)
∧ left = 3 =⇒ (t[0] 6= x) ∧ (t[1] 6= x) ∧ (t[2] 6= x)

2) Unknown bound quantifiers: When no other bound than
that of the integer domain is known, expanding quantifier ex-
pressions is too costly. In the case of universal quantification,
we transform the JML form into its logical equivalent: ∀k(Q),
with Q = (BR =⇒ BQ). Let C be the current conjunction
of program constraints, built from the set of variables ~v. To
prove that the assertion ∀k(Q) holds, we proceed by refutation
and build the formula:

¬ (∃~v(C ∧ ¬(∀k(Q)))) ≡ ¬ (∃~v(C ∧ (∃k(¬Q))))

Without loss of generality, we assume k does not appear in
C, then we can add k to V and rewrite the last formula into:

¬ (∃~v(C ∧ (¬Q)))

Finally, this formula can be solved by a constraint solver.
If we try to do the same with existential quantification, we

end up with a formula like:

¬ (∃~v(C ∧ ¬(∃k(Q)))) ≡ ¬ (∃~v∀k(C ∧ (¬Q)))

Because of the presence of a universal quantifier, we cannot
directly solve this formula with a constraint-programming
solver. Nevertheless, we can also rewrite it as:

¬ (∃~v(C ∧ ¬(∃k(Q)))) ≡ ∀~v(¬C ∨ ∃k(Q))
≡ ∀~v(C =⇒ ∃k(Q))

The last formula states that for all tuple solution of C, there
must exist a k that is solution of Q. We can check this
formula with constraint-programming solvers by applying the
following strategy:

1) solve ∃~v(C) enumerating all the solutions;
2) for each solution found, report the values in Q to obtain

Q′, and solve ∃k(Q′).
Depending on the number of solutions of the first resolution,
this strategy can be computationally expensive.

We have presented here the handling of quantifiers that
appear in assertions and postconditions. A similar reasoning
applies to JML quantifiers that appear in preconditions or
in loop invariants. However, since we do not negate the
quantifier expression in these cases, universal quantification
is the computationally expensive case.

IV. EXPERIMENTS

We performed experiments on a set of Java programs known
in software verification to be challenging; some of them are
inspired by the gallery of certified programs of Why [1]. In
our implementation, we rely on two constraint solvers from
IBM/Ilog: Cplex1, an optimization software package based

1Cplex works with floating point numbers and thus requires to use the
simple procedure introduced by Neumaier et al. [10] to get rigorous answers.

on the simplex method and on MILP (Mixed-integer linear
programming) techniques, and CP Optimizer, a constraint
solver over finite domains. The strategy is to call the fast
linear solver as often as possible and to resort to the more
time demanding CP solver only when necessary.

A. Program set and candidate invariants

The first program computes the sum of the first n integers.
Although, the code itself only contains linear arithmetic ex-
pressions, the specification requires nonlinear operations (mul-
tiplications between variables), as well as the loop invariant.
The second program is a slight variation of the previous one,
it computes the sum of the integers from p to n. This variation
is interesting because it introduces a second unknown bound,
p, in the summation. Our third program computes an integer
approximate square root. This time, not only the specification
contains nonlinear expressions, but also the code does. The
fourth program computes the same approximate square root
as the previous example, except that the program does not
contain any nonlinear expression. The last program performs
a binary search and introduces two important features: arrays,
and quantification.

Candidate invariants come from four different sources:
• Daikon infers candidate invariants from program execu-

tion traces. We produced traces by running one hundred
random tests on each Java program. Each set of traces
was analyzed by the Daikon tool which generated several
candidate invariants guaranteed to hold on the traces.

• InvGen [11] produces correct-by-construction invariants.
As such, these invariants do not have to be verified, but
they contribute an unbiased source of correct invariants.
InvGen does not handle nonlinearity and arrays, so we
could only apply it on three of our five program.

• The heuristics set of candidate invariants was made by
applying well-known heuristics to program postcondi-
tions, such as “replacing a constant by a variable” [12]
or changing the relational operators. This set is close to
invariants generated by some techniques for which no
implementation was available and simple to reuse.

• The user set of candidate invariants is made up of the
invariants as used in manual proofs of the programs. They
are strong enough to imply the program postcondition.

We checked by hand the validity of all the invariants to classify
them. The complete list of invariants is available at: http://
users.polytech.unice.fr/∼rueher/invariants/.

B. Results

All benchmarks were run on a 64-bit Linux quad-core Intel
Xeon (3.16 GHz) platform with 16 GB of RAM. However, our
system was run on a single core and did not take advantage of
the three supplementary cores. Memory was never a concern
and we stayed far below the platform capacity. The figures,
except otherwise specified, are for 32-bit integers. Execution
times for each source of invariants are gathered in Table I.
They are further detailed between the valid invariants (True)
and the spurious ones (False). Table I contains:

TABLE I
EXECUTION TIMES ACCORDING TO INVARIANTS’ SOURCE AND VALIDITY

Time
Source # < 1 s < 1 min TO

True 7 7 (100%) 0 0
Daikon False 41 37 (90.2%) 0 4 (9.8%)

Total 48 44 (91.7%) 0 4 (8.3%)
InvGen True 3 3 (100%) 0 0

True 7 4 (57.1%) 0 3 (42.9%)
Heuristics False 118 104 (88.1%) 3 (2.5%) 11 (9.4%)

Total 125 107 (85.6%) 3 (2.4%) 15 (12%)
User True 7 0 1 (14.3%) 6 (85.7%)

TABLE II
EXECUTION TIMES ACCORDING TO VALIDITY AND LINEARITY

< 1 s < 1 min TO
True 24 14 (58.3%) 1 (4.2%) 9 (37.5%)
False 159 141 (88.7%) 3 (1.9%) 15 (9.4%)
Linear 76 73 (96.1%) 1 (1.3%) 2 (2.6%)
Nonlinear 107 82 (76.6%) 3 (2.8%) 22 (20.6%)

• the number (#) of invariants for the considered category;
• the number and percentage of invariants checked in less

than 1 second each (< 1 s), in between 1 second and 1
minute each (< 1 min);

• the number and percentage of invariants whose verifica-
tion timed out — beyond 1 minute, we did not record the
precise time and considered it as a time-out (TO).

A large majority of invariants are checked in less than a
second, at the exception of valid invariants provided by the
user or heuristically produced from the postcondition. These
valid invariants convey more meaning about the loop and the
program than those generated by Daikon or InvGen do. They
are not “simple” consequences of the program constraints
and require enumerating over the program variable domains.
Moreover, all the candidates generated by Daikon and InvGen
are linear, whereas the valid invariants that time out are mostly
nonlinear. Spurious invariants predominate in the generated
candidates, whether it is by heuristics or by Daikon. They are
mostly quickly discarded by our method, which shows that the
proposed approach can be efficiently used as a filter for the
candidate invariants automatically generated. The few spurious
invariants that time out are nonlinear or relate to arrays. In
this latter case, the number of variables weakly constrained to
enumerate over (here 10) may explain the bad performance.

Table II gathers the data according to the validity of the
candidate loop invariants and to the linearity of the constraint
problem built to check this validity. This table confirms that
the approach performs well in detecting spurious invariants.
Results are more contrasted with valid invariants: on the
one hand, complex invariants such as produced by hand,
involving several program variables and logical operators, may
cause the resolution to time out; on the other hand, simpler
valid invariants can be checked as quickly as spurious ones.
Regarding linearity, most of the time-outs occur on nonlinear
constraint systems. The CP solver is clearly less efficient than
the MILP solver, however, our approach may still perform well
in presence of nonlinearity in two situations:

TABLE III
EXECUTION TIMES VARYING THE INTEGER DOMAIN SIZE

< 1 s < 1 min TO
8 bits 183 177 (96.8%) 3 (1.6%) 3 (1.6%)
16 bits 183 166 (90.7%) 8 (4.4%) 9 (4.9%)
32 bits 183 155 (84.7%) 4 (2.2%) 24 (13.1%)

• a linear subset of the nonlinear system is sufficient to
prove that the invariants hold: if the linear subset is
unsatisfiable, so is the complete nonlinear system;

• the candidate is spurious: CP Optimizer does not need
to fully explore the search space and may quickly find a
counter-example (82% of the nonlinear spurious invari-
ants are refuted in less than a second).

The longest execution times occur when the CP solver enu-
merates on the variable domains to prove a valid candidate.

Table III shows how execution times vary when we reduce
the size of the integers to 16 bits and 8 bits. A smaller
integer domain improves the performances of the approach
and drastically decreases the number of time-outs. Of course,
it can only increase confidence in a candidate, not ensure its
validity. Yet, it may be enough to discard a spurious invariant,
and it is sound then: with 8-bit integers, 99.4% of the spurious
invariants are discarded in less than one second each.

V. RELATED WORK

Few works specifically deal with verifying candidate loop
invariants. Close to our work is [13] in which candidate
program invariants generated by Daikon are checked using
constraint solving. The considered invariants are akin to pro-
gram postconditions, not loop invariants. As the authors point
out, they handle loops with unusual constraint systems that
are very hard to solve. Our work focuses on loop invariant
verification and thus avoids the complications due to loops.
Indeed, our results show that constraint solvers can be very
efficient in this context.

Another approach to the static verification of candidate pro-
gram invariants, again produced by Daikon, was investigated
in [14]. In this approach, the static checker ESC/Java is called
on the program source code annotated with candidate invari-
ants. As stated by the authors, ESC/Java itself is unsound, so
even if the proof succeeds, the candidate invariant may still
be spurious. Moreover, as the proof engine of ESC/Java is an
automatic theorem prover, when a proof fails, one cannot tell
whether the candidate invariant is false or additional lemmas
are needed to complete the proof. Similarly, other tools based
on an undecidable logic, such as Why [1], usually do not
disprove a spurious candidate. Indeed, a failed proof attempt
does not imply the proof is impossible. In contrast, constraint
programming cannot prove a property in general, but it can
prove properties under boundedness restrictions and disprove
properties that a theorem prover cannot handle.

Our work shares ideas with [15], [16] which also interpret
semantics of programs as constraint systems. In [15], focus is
on heap and shape analyses. Gulwani et al. [16] address in-
terprocedural verification, weakest precondition and strongest

postcondition inference but user-provided hints are needed for
generating the constraint system. Both works use SAT solvers.

Other bounded model checking tools, like CBMC [17],
should be able to disprove a spurious candidate like we do.
However, CBMC computes only an error path: unlike our
approach, it does not provide a counter-example with values
for the input data when the invariant does not hold.

VI. CONCLUSION

In this paper, we showed that constraint solvers could be
used as an efficient bounded decision procedure to verify loop
invariants. A remarkable feature of our approach is to be able
to quickly refute spurious candidates, and not only prove valid
ones. Moreover, a counter-example is then provided, which is
a complete test case for the violated property.

In our work, we focused on single-loop programs, but
the approach can be extended to programs with multiple
loops, including nested loops. Yet, in such programs, multiple
candidate invariants are mutually dependent. The impact on
efficiency of this extension must be studied in a future work.

In addition, we believe that the complete test case provided
as counter-example for spurious invariants may greatly help
in refining candidates. The next step of our work will be to
exploit this property to provide sound loop invariants to our
bounded program verification tool CPBPV and improve its
loop unfolding process.

REFERENCES

[1] J.-C. Filliâtre and C. Marché, “The why/krakatoa/caduceus platform for
deductive program verification,” in CAV, ser. LNCS, vol. 4590, 2007,
pp. 173–177, http://why.lri.fr/examples.

[2] C. Gladisch, “Verification-based test case generation for full feasible
branch coverage,” in SEFM. IEEE CS, 2008, pp. 159–168.

[3] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1–3,
pp. 35–45, dec 2007.

[4] A. Ireland, B. J. Ellis, and T. Ingulfsen, “Invariant patterns for program
reasoning,” in MCAI, ser. LNCS, vol. 2972, 2004, pp. 190–201.

[5] S. Kauer and J. F. Winkler, “Mechanical inference of invariants for for-
loops,” Journal of Symbolic Computation, 2009.

[6] P. H. Schmitt and B. Weiß, “Inferring invariants by symbolic execution,”
in VERIFY, ser. CEUR Workshop Proc., vol. 259, 2007, pp. 195–210.

[7] C. A. Furia and B. Meyer, “Inferring loop invariants using postcondi-
tions,” 2010, http://arxiv.org/abs/0909.0884.

[8] H. Collavizza, M. Rueher, and P. V. Hentenryck, “CPBPV: A constraint-
programming framework for bounded program verification,” Constraint
Journal, vol. 15, no. 2, pp. 238–264, apr 2010.

[9] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communication of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[10] A. Neumaier and O. Shcherbina, “Safe bounds in linear and mixed-
integer programming,” Mathematical Programming, vol. 99, no. 2, pp.
283–296, 2004.

[11] A. Gupta and A. Rybalchenko, “InvGen: An efficient invariant genera-
tor,” in CAV, ser. LNCS, vol. 5643, 2009, pp. 634–640.

[12] D. Gries, The Science of Programming. Springer, 1981.
[13] T. Denmat, A. Gotlieb, and M. Ducassé, “Proving or disproving likely

invariants with constraint reasoning,” in WLPE, 2005, pp. 1–13.
[14] J. W. Nimmer and M. D. Ernst, “Automatic generation of program

specifications,” in ISSTA. ACM, 2002, pp. 232–242.
[15] D. Jackson and M. Vaziri, “Finding bugs with a constraint solver,” in

ISSTA. ACM, 2000, pp. 14–25.
[16] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program analysis as

constraint solving,” in PLDI. ACM, 2008, pp. 281–292.
[17] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C

programs,” in TACAS, ser. LNCS, vol. 2988, 2004, pp. 168–176.

