Boosting the Interval Narrowing Al-
gorithm

Olivier Lhomme
Ecole des Mines de Nantes
4, rue Alfred Kastler, La Chantrerie, 44070 Nantes Cedex 03, France

Arnaud Gotlieb
Dassault Electronique and Université de Nice — Sophia Antipolis

Michel Rueher
Université de Nice — Sophia Antipolis I3S-CNRS
Route des colles, BP 145, 06903 Sophia Antipolis, France

Patrick Taillibert
Dassault Electronique

55, Quai Marcel Dassault 92214 Saint-Cloud, France

Abstract

Interval narrowing techniques are a key issue for handling constraints over
real numbers in the logic programming framework. However, the standard
fixed-point algorithm used for interval narrowing may give rise to cyclic
phenomena and hence to problems of slow convergence. Analysis of these
cyclic phenomena shows: 1) that a large number of operations carried out
during a cycle are unnecessary; 2) that many others could be removed from
cycles and performed only once when these cycles have been processed. What
is proposed here is a revised interval narrowing algorithm for identifying and
simplifying such cyclic phenomena dynamically. First experimental results
show that this approach improves performance significantly.

1 Introduction

Interval narrowing techniques allow a safe approximation of the set of values
that satisfy an arbitrary constraint system to be computed. Lee and Van
Emden [13] have shown that the logic programming framework can be ex-
tended with relational interval arithmetic in such a way that its logic seman-
tics is preserved, i.e., answers are logical consequences of declarative logic
programs, even when floating-point computations have been used. These
reasons have motivated the development of numerous CLP systems based
on interval arithmetic (e.g., BNR-Prolog [20], Newton [1], CLP(BNR) [3],
Interlog [12, 5, 14], Prolog IV [4]). All these systems use an arc consistency
like algorithm [17] adapted for numeric constraints [8, 7].

The standard interval narrowing algorithm has two main limitations :

e the so-called problem of early quiescence [8], i.e., the algorithm stops
before reaching a good approximation of the set of possible values. This
problem is due to the fact that interval narrowing algorithm guarantees
only a partial consistency;

e the problem of the existence of slow convergences, leading to impossibly
long response times for certain constraint systems.

Unlike the first problem, for which many algorithms have been proposed [11,
14, 10, 9, 1, 6], the second problem has never been studied in the literature.
This paper addresses this second problem. It shows that there is a strong
connection between the existence of cyclic phenomena and slow convergence.
The aim is to identify cyclic slow convergence phenomena while executing the
interval narrowing algorithm and then to simplify them in order to improve
performance.

1.1 Motivating example

The interval narrowing algorithm works iteratively: constraints are used
for reducing domains until a fixed point is reached. Experimental running
times of this algorithm are generally well below the upper bound of the
running time as given by a theoretical analysis (i.e., O(ma) where m is the
number of constraints and a the size of the largest domain). However, slow
— or asymptotic — convergence phenomena sometimes occur, and then
the experimental running time approaches the theoretical bound, as in the
example described in figure 1.

X (@) Y =1001«X (b) Y=2+X (c)
7, =¥ (d) Zo = e%1 (e)
Dx =[0,10] Dy = (—00,4) Dz, = (—00,40) Dz, = (—o0, +0)

(a) & Dx = [0,10] — Dy = [0, 10] (b) & Dy =1[0,10] — Dx = [0,9.99]
(¢) & Dy =[0,10] — Dx = [0, 5] (d) & Dy = [0,10] — Dy, = [1, €]
() & Dy, =[1,e!% — Dy, =[e,e?"] (a) & Dx =[0,5] — Dy = [0, 5]

(b) & Dy =1[0,5] — Dx =[0,4.99] (c) & Dy =[0,5] — Dx = [0,2.5]
(d) & Dy =[0,5] — Dz, = [1,€%] (e) & Dy, = [1,65] — Dy, = [e, €]
etc.

Figure 1: A slow convergence phenomenon

Intuitively these phenomena are cyclic. In the above case the cycle is made
up of the five constraints («a, b, ¢, d,). However, the reduction of Dy induced
by constraint (c) is stronger than the reduction of Dy induced by constraint
(b), so there is no point in applying constraint (b). Only (a), (¢), (d) and (e)
are relevant and the cycle could be simplified to (a,c,d,).

Constraints (d) and (e) only intervene in the cycle to reduce the domains of
Zy and Z3. It would be better to defer applying constraints (d) and (e). The

cycle would thus be simplified to (a,c) and constraints (d, e) would only be
applied once the fixed point has been reached. The number of computations
carried out by the interval narrowing algorithm at each step would hence be
minimized.
The presence of a cycle implies the existence of a series uy = f(ug_1) which
converges towards a fixed point u such that « = f(u). The equation z = f(z)
could be solved by a computer algebra system. In the above example, con-
straints (a) and (b) are linear and can be solved symbolically. However, a
symbolic solution cannot be computed for arbitrary systems of constraints.
The equation z = f(z) could also be solved by numeric methods. In par-
ticular, methods from interval analysis [19] have the same nice property
as interval narrowing: a safe approximation of the set of solutions can be
computed. However it is unclear how such methods can be generalized to
non-square systems.
Thus the aim of this research is to simplify the equation # = f(z) in order
to accelerate convergence towards the fixed point u. Two types of cycle
simplifications are proposed: removing the non-relevant narrowing functions
and postponing some other ones. More precisely, given a cyclic phenomenon
(a,b,c,d,e) such that:

e b performs a weaker reduction than c,

e d and e could be processed only once at the end of cycle,
the goal is to replace n iterations of (a,b,c,d,e) by n iterations of (a,c)
followed by one iteration of (d,e).

1.2 Relevance of automatic cycle simplification

At first sight, one could think that slow convergence phenomena do not occur
very often. It is true that early quiescence of interval narrowing algorithm
is far more frequent than slow convergence. However, when the interval nar-
rowing algorithm ends prematurely, a kind of enumeration interleaved with
this algorithm is generally performed (e.g. domain splitting [7] or stronger
consistencies [14]). During this interleaved process, slow convergence phe-
nomena have a great chance to occur and to increase the required computing
time considerably.

Slow convergence phenomena move very often into cyclic phenomena after
a transient period (a kind of stabilization step). For linear systems of con-
straints, slow convergence always entails a cyclic phenomenon. Of course, in
this case the slow convergence phenomenon can be removed by simplifying
the linear system with a linear solver. Cooperation between the interval
narrowing solver and a linear solver is especially worthwhile in this latter
case [6, 22, 18]. For arbitrary non-linear systems, slow convergence very
often leads to a cyclic phenomenon. As arbitrary non-linear systems cannot
be tackled with a symbolic solver, automatic cycle simplification is the only
way to accelerate convergence in the majority of real applications.

1.3 Organization of the paper

Section 2 introduces some basic definitions. In section 3, the concept of
propagation cycle is introduced. This section shows that the standard inter-
val narrowing algorithm will not allow cyclic phenomena to be satisfactorily
simplified. Thus, a revised interval narrowing algorithm is proposed in which
cyclic phenomena can be significantly simplified. Such a simplification of a
cycle is proposed in section 4. In section 5, first experimental results are
provided. Finally, in section 6, the limits of such an approach are discussed.

2 Interval narrowing

2.1 Basic notations and definitions

e I denotes the set of floating-point numbers augmented with the two
symbols {—o0, 400} which represents respectively all numbers smaller
(resp. greater) than the smallest (resp. the biggest) floating-point
number;

e Z(IF) denotes the set of intervals [a,b] where a,b € IF;
e A CSP [17] is a triple (X,B,C) where X' = {zq,...,z,} denotes a

%
set of variables, D= (Dy,..., D,) denotes a vector of domains, D; the

it" component of B being the domain of z;, and C = {C4,...,Cy}

denotes a set of constraints.
This paper concentrates only on CSPs whose domains are intervals
over the floating-point numbers, i.e., 7_5 € Z(IF)" [8, 11, 14, 10, 1];

e A k-ary constraint C' is a relation over the reals (i.e. a subset of
IRF). appz(C) denotes the smallest (w.r.t. inclusion) subset of Z(IF)*
which contains C' (we consider as in [13, 1] that results of floating-
points operations are outward-rounded to preserve correctness of the
computation).

2.2 Narrowing functions

The interval narrowing algorithm uses an approximation of the unary pro-
jection of the constraints to reduce the domains of the variables.
Let C be a k-ary constraint over (z;,,...,2;,), and (I1,...,I;) € Z(IF):
for each j in 1.k, m; (C, Iy x ... x Ir) denotes the projection of appz(C) on
z;, in the part of the space delimited by I x ... X I, i.e.,

ﬂ'i](C,Il X ... X Ik) = {a]- | 3(@1,... ,ak) € appx(C) NI x...x Ik}
AP, (C, I x ... x I) denotes an approximation of the projection of a con-
straint equal to the smallest interval encompassing the projection:

[inf m(C, I X ...x It), sup m(C, Iy x ... x I})]

Such an approximation! is computed by the evaluation of what will be called
a narrowing function. For convenience, a narrowing function will be consid-

ered as a filtering operator over all the domains, i.e, from Z(IF)"* to Z(IF)".
For a k-ary constraint C' over (z;,,...,z;,) there are k narrowing functions,
one for each z; where ¢ € {iy,...,4t}. The narrowing function of C' over the

%
variable z; is the function f : Z(IF)" — Z(IF)" defined as f() =D’ such
that :

[] D;zAPZ'(C,DZ'l X ... X le))
e je{l,.,n},i# j= D; = D; (except the it" domain, all domains

- —
of D' and P are identical)
A narrowing function f may reduce the domain of only one variable (z; in the
above definition), called left-variable of f and denoted f.y. The constraint
from which the function f is issued is denoted f.c and the set of variables
whose domains are required for the evaluation of the domain of f.y is called
right-variables set and is denoted f.z;.

Properties 2.1. The three following properties trivially hold:
%
e f(D)CD
- —
o [(f(D)) = /(D)
e if f and g are narrowing functions of the same constraint (i.e, g.c =
— —
f.c) then f(g(f(D))) = g(f(D))
%
In this paper, a numeric CSP (X, D,C) will also be denoted by a triple

(X,l_;,]:) where F is the set of narrowing functions corresponding to the
constraints in C. Figure 2 shows such a view of a CSP (II;(C') denotes the
narrowing function of C' over the variable z;; thus f = Il;(a) reduces Dy
based on Ds).

Let <X,7_)>,C> be a CSP where C = {a,b}:
(a) 21 —22+3=0

(b) 3 = I .
This CSP can be formulated in the form < X, D, F > where F = {f, g,h,i}
f = Hl(a) h = HQ(CE) 1= H1 (b) g = Hg(b)

Figure 2: A CSP in the form < X,’B,]: >

Using the above notations, the standard interval narrowing algorithm [8, 7]
can be written as in figure 3.
In the rest of this paper, a set of narrowing functions 7 will be associated to a

filtering operator 7 that computes the intersection of the domains narrowed
by the functions in 7: Let T = {fi...,f,} C F, ’T() is defined by
fl(B) N...0 f,(D) If 7 =0 then by convention ’T() —D.

Just note that 1f D’ is the fixed point reached by the interval narrowing
algorithm then D’ F (D’).

IN-1(in F, inout 7_5)
Queue «+ F ;
while Queue #
- —
f < POP Queue; D'+ f(D);
— — — —
if D' #p then D« 7D
Queue «Queue U{g € F |g.c# fcand fy € g.as}
endif

endwhile

Figure 3: Interval narrowing algorithm

3 Towards a characterization of the cyclic phe-
nomenon

When the interval narrowing algorithm runs into a slow convergence phe-
nomenon a cyclic phenomenon may occur after a transient period. In this
section, we give a precise definition of a cyclic phenomenon. Further defini-
tions are now required to formalize such cyclic phenomena. Let us outline
our approach in very general terms:
(1) we show that information about some dynamic dependencies (in place
of static ones) between narrowing functions is required;

(2) such information about dynamic dependencies cannot be identified in
the framework of the IN-1 algorithm. This is due to the fact that the
order in which the narrowing functions are en-queued plays a major
role in IN-1;

(3) in order to get information about some dynamic dependencies we in-
troduce a revised version of the IN-1 algorithm.

3.1 Static dependency

A static dependency between two narrowing functions f and g — denoted
by f 2> g — means that after an evaluation of f which modifies the domain
of f.y, g may reduce the domain of ¢g.y (the narrowing functions en-queued
in interval narrowing algorithm are the ones which statically depend on f).

Definition 3.1. (static dependency) A static dependency f > g holds iff:
e g.c# f.c (f and g are functions not issued from the same constraint)

o f.y € g.xs (the left-variable of f occurs in the right-variables set of g)
We note succs(7) the successors in the static dependency graph of a set of
narrowing functions 7: suces(T)={g € F|If €T A f>g}.

Static dependency information may not be sufficient for cycle simplification.

For instance, consider the example in figure 2: f 3 g, i.e., g(f(B)) may
—

be different from f(B) However, let D'= f(B) and suppose that D is

included in Df, then g(f(l_;)) = f(B) Such an equality would allow g to be

removed from a possible cycle; unfortunately, f = ¢ does not allow to infer
this equality and thus no cycle simplification can be performed in this case.

What is needed is a dynamic dependency f A g that ensures that a mod-
ification induced by f actually implies a modification induced by g. The
first idea is to follow interval narrowing algorithm and try to identify such
dynamic dependencies.

3.2 Dynamic dependency

Algorithm IN-1 computes the terms of a sequence of i*" term f;(fi_1(...
fo(B))) characterizing the order in which the narrowing functions f; are en-
queued: fi(fi—1 (fO(B))) corresponds to the en-queueing order (fo, f1, ..., fi).
Let us assume that a dynamic dependency holds between f and g if f > ¢
and g(f(Y_S)) # f(Y_S) Such a definition would lead to several problems:

—
(1) g(f(D)) is not always computed by algorithm IN-1 since some narrow-
ing functions may have been en-queued between f and g, e.g., IN-1

%
may compute g(hi(...(he(f(D))))).
(2) The fact that f > ¢ and g(f(B)) # f(B) does not always imply
an effective dynamic dependency between f and g since g(B) could

already be different from D. For instance, if g(f(hl(...(hk(l_so))))) is
computed, then the effective dynamic dependency may hold between
h; and g.

(3) The narrowing functions from which g dynamically depends may be
dynamically dependent between themselves, meaning that the depen-
dencies are interleaved.

Example
—
Let < X, D, F > be a CSP where :
« F={f.g,h} eDi=10,2n].

° f:Hl(l‘l :Ig) OgIHQ(IQI.Z‘l) Oh:H3(I3:CL‘2—|—COS(I4—|—1‘1))
Suppose that h(g(f(B))) is computed (according to en-queueing order of the nar-

rowing functions). Suppose also that D verifies:

«9(D) =D and h(D) =D, /(D) £, B
* 9(f(D)) # F(D), * h(g(f(D))) # 9(f(D))-

That is f, g and h perform a reduction. The static dependencies are: f 3 g, f =
h,g > h. According to the above naive definition, f % h and g % h hold. However
h actually depends only on g (the reduction of D3 is only due to the modification
of Dy computed by g).

Identifying dynamic dependencies which allow optimal cycle simplifications

would require considering a great number of permutations of narrowing func-

tions in the queue, and thus, would be far too expensive to be computed.

What is proposed here is a definition of the dynamic dependencies such that:
e most of the cycles can be reduced significantly,

e the set of dynamic dependencies can be computed in an efficient way.

%
A dynamic dependency is parameterized by the domains of the variables D
and by a set of narrowing functions 7 (whose meaning will be made clear in
the next subsection).

Definition 3.2. (dynamic dependency)

A dynamic dependency f d(T—’Z;)

-fGT >y,
e 9(T (D)) #T (D)

(intuitively g reduces a domain due to a narrowing function in T).

g holds iff

3.3 Revised algorithm for interval narrowing
We reformulate the interval narrowing algorithm such that the dynamic de-
pendencies can be computed in an efficient way. The revised version (Figure

%
4) applies on the same vector P all the narrowing functions which may reduce
a domain. This will make it possible to find the dynamic dependencies.
The fixed point towards which the revised algorithm? converges is identical
_>

~
to that of the standard algorithm (i.e., a domain vector D’ such that F (D)
%
=D').

Revised-IN-1(in F, inout 7_5)
T« F;
while 7 #£ ()
- = -+ o~ =
D'«D; DT (D);
d—{feT|D;#D;and fy=uz;};
T « suces(d);

Figure 4: Revised interval narrowing algorithm

The revised interval narrowing algorithm computes the terms of a sequence
of n** term %n(%n_l(. (%0(7_50)))) where

) BO—B To =

o 7. = succs({f € ’T 1| foy =2 and D; has been reduced by;}]‘z 1}).
Let also DZ be the domain vector at the it" step DZ_ ’TZ 1(To(Do))-

~1+1

Of course, ’TZ'(Z) = ;‘(_:) and so Ti(---To(Do)) =F (Do)

3.4 Relevant narrowing functions

As outlined in the introduction, when two narrowing functions perform a
reduction of the same domain of the variables, it is possible to remove the
narrowing function which performs the weakest reduction of the domain.

The relevant narrowing functions are the one which perform the strongest
reductions of the domains of the variables during the application of the

operator ’% The domains being intervals, there may be 0, 1 or 2 (one for
the lower bound, one for the upper bound) relevant narrowing functions for
each variable. Let R; be the set of those relevant narrowing functions.

Definition 3.3. (relevant narrowing functions)

~ ~ = ~ =
Ri C T; is a minimal subset of T; such that R; (D;) =T: (D:) = F(Di)-
Computing R; only consists — when applying ’%2 in Revised-IN-1 — in
keeping, for each bound of a domain, the narrowing function that leads to

the strongest reduction.
In a cyclic phenomenon, the relevant narrowing functions will be a priori

known and then it will be sufficient to compute 7N€Z (7_))2) in place of %Z (BZ)

3.5 Computing the dynamic dependencies

As the non-relevant narrowing functions will be removed from the cycle, the
dynamic dependencies have to be computed only for the relevant narrowing
functions.

Let G be the dynamic dependency graph. The dynamic dependencies are

functions of R; and 7_52 The vertices are some pairs < f,7 > where f is
a narrowing function and ¢ is the index of the inference step. An arc from
—

< f,t>to < g,1+ 1 > will represent a dynamic dependency f d“ﬂf” g.
Let G; be the subgraph of G which is only concerned with the ** step of
the algorithm. G is a bipartite graph from < R;,72 > to < Rjp1,0+ 1 >.

A function g in R;4q being relevant it performs a reduction of a domain.
Thus there is an arc from < f,i > to < ¢g,i+ 1 > iff f 5 g. Then, the
set of dynamic dependencies represented by G; is the subset of the static
dependencies whose starting functions are in R; and the ending ones are in
Ri-l—l-

The dynamic dependency graph G is just the union of its subgraphs G; at
the different steps. An example of a dynamic dependency graph is given in

figure 5 (a).

<f1,0>— < fo,1 > < f5,2> <fi,0>— < fo,i>—> < f5,2>

< f2,0 >

(a)

Figure 5: Dynamic dependency graphs

3.6 Definition of a cyclic phenomenon

A propagation cycle formalizes a cyclic phenomenon:

%

Definition 3.4. A propagation cycle is a quintuple < X, D, F,p, ArrayR >
where: .

o <X, D, F>isaCSP; |F|=m;

— -

e AN >> m, FN(D) # FN-YD) i.e, a slow convergence* occurs;

e p is the period of the cycle;

o let R; be the relevant narrowing functions al the step 1,

then Vi < N, Ry, = R; ,i.e., the sets of relevant narrowing functions
re-occurs periodically;

o ArrayR[i mod p| = R; (the relevant narrowing functions are kept in
ArrayR).
A propagation cycle of period 3 means that the subgraph G, is equal to the
subgraph G ;04 3; thus the dynamic dependency graph is cyclic (see figure
5 (b) where 0 denotes all the steps i such that i mod 3 = 0).

4 Simplifying a cycle
4.1 Pruning the dynamic dependency graph

Two types of simplifications were mentioned in the introduction:
(1) Removing the non-relevant narrowing functions;

(2) Postponing some narrowing functions.
The first one is now interleaved with the cycle definition (where the R; sets
have to be known).

The second one can now be formulated easily: a vertex < f,¢ > which does
not have any successor in the dynamic dependency graph corresponds to a
narrowing function that can be postponed. Such a vertex can be removed
from the dynamic dependency graph. Applying this recursively will remove
all the non-cyclic paths from the graph. For instance, in the graph (b) of
the figure 5, the white arrows will be pruned.

When a vertex is removed, the corresponding narrowing function is pushed
onto a stack (the removing order must be preserved). Let R'; C R; be
the sets of narrowing functions whose corresponding vertices have not been
removed from the graph, let sy, sq, ..., s; be the stacked narrowing functions
(s1 being the first stacked one); then it can be shown that

~T

s1(s2(s1(RY (RYiy (oo Rlo (Do) =Rs (Ricr (o Ro (Do) = F (Do)

4.2 IN-2 algorithm

The algorithm proposed for cycle simplification is called IN-2. IN-2 operates
in 4 steps:
(1) observe the dynamic behavior and try to detect a cycle;

(2) simplify the detected cycle and stack the narrowing functions corre-
sponding to a removed vertex in the dynamic dependency graph;

(3) iterate on the simplified cycle until a fixed point is reached;

(4) when the fixed point has been reached, evaluate the stacked narrowing

functions.
Step 1 boils down to running the IN-1 and observing that it continues to

iterate after k iterations where k& depends on the number of variables and
the number of constraints of the problem. Henceforth the existence of a
propagation cycle is assumed. Then Revised-IN-1 is started for finding the
period of the propagation cycle and building ArrayR.

To the authors-knowledge, there exists no efficient algorithm for finding the
period of the propagation cycle for the general case. However, it is always
possible to find the period of a sub-cycle. A history of the relevant narrowing
functions just needs to be kept: when ArrayR[k] is built, ArrayR[k] and
ArrayR[0] need to be compared (implementation is a little more complex
since a stabilization step has to be performed). If they are equal, we have
a candidate that could be a sub-cycle of period p = k. It is then possible
to verify that it is repeated during the following k steps. It is difficult to be
sure that this sub-cycle is the propagation cycle as it could just be a cycle
within the actual propagation cycle. Be this as it may, in most cases it is
acceptable to take the first sub-cycle to be encountered.

Step 2 has been described in section 4.1. An upper bound of the running
time for simplifying the cycle is O(v) where v is the number of vertices in
the dynamic dependency graph. Note that in examples built for this special
purpose v could be a very large number. However, v is generally of the same
order of magnitude as m, the number of narrowing functions. The first step
of the algorithm can take into account an upper bound for the number of
vertices in the sub-cycle.

Step 3 consists in computing R'; (R'i—1 (... R’y (Bo))), using the fact that
R. = ArrayR[i mod p]. An upper bound of the running time of this itera-
tion procedure is O(a * m’) where m’ is the number of different narrowing
functions occurring in ArrayR and a is the maximum size of the domain of
the variables (note that a is here a very large number). Since the existence
of a propagation cycle leads to a phenomenon of slow convergence it is rea-
sonable to suppose that the other parts of the general algorithm represent
but a tiny part of the computation time, and O(a * m’) can be compared
with the complexity of the standard interval narrowing algorithm: O(a * m)
where m is the total number of narrowing functions[16, 23, 14].

Step 4 evaluates the relevant narrowing functions corresponding to the re-
moved vertices when the fixed point of the interval narrowing algorithm has
been reached. This must be done in reverse order to their removal. This
procedure is in O(l) where [is the number of the removed vertices.

Table 1: List of Examples
Problem System of Constraints

1 1 = sin(zg) z2 =1

2 1= sin(zg) T3 =11 % T2 Ty =21
3 1 = sin(zq) z3=exp(z1) x4 = exp(zs) 22 =21
4 1 = sin(zg) z3 = exp(z1) x4 = exp(zs)

5 =3k xq g = exp(Ts) T7 = T6

T =Dk X7 Tg=a7 XT1g=4%Tg x9 = a1

Table 2: Computation Results
Problem Postponed narrowing functions Improvement rate

1 0 3.4
2 1 6.2
3 2 12
4 8 32.3

5 Implementation & experimental results

The IN-2 algorithm has been implemented and integrated in Interlog [12,
15], a CLP(Intervals) system. The standard interval narrowing algorithm is
always restarted after the four steps of IN-2 in order to make sure that the
same fixed point is computed.

The examples in Table 1 only differ by an increasing number of narrowing
functions that can be postponed. Table 2 reports the improvement factor
gained with dynamic cycle simplification. Improvement rate represents the
ratio ¢y /ty where ¢y is the running time of the standard interval narrowing
IN-1 and {5 is the running time of the revised interval narrowing with cycle
simplification IN-2. Note that even for a problem without any cycle simpli-
fication (first problem) the improvement factor is more than 3 times. This
is only due to the fact that the en-queueing/de-queueing operations are no
longer performed.

6 Discussion

First of all, let us not forget that the algorithm suggested here does not
detect a propagation cycle but a sub-cycle. Although, in the vast majority
of cases, this sub-cycle corresponds to the cycle, this is not always the case.
One way of tackling this problem is simply to interrupt the iteration in the
IN-2 algorithm after a certain number of iterations (but before reaching the
fixed point), then to run the algorithm again from step 1. This approach
offers two further advantages:
e In an over-constrained problem (which has no solution) the removed
vertices may possibly detect a contradiction. It may therefore be useful

to periodically re-apply the narrowing functions corresponding to the
removed vertices before reaching the fixed point.

e Secondly, so far the working hypothesis has been that there is a cyclic
phenomenon. In fact, when a phenomenon of slow convergence hap-
pens in the interval narrowing algorithm it is usually, but not always a
single cyclic. As a general rule a phenomenon of slow convergence can
be decomposed into a series of cyclic steps separated by a transient,
acyclic one. By periodically reinitializing the cycle detection process

it should be possible to detect a new cycle and to simplify it.
Using a language where meta-evaluation is authorized, before iteration it is
possible to transform the table ArrayR into explicit code and thus the cycle
would really be compiled. The revised model of the interval narrowing algo-
rithm applies the narrowing functions on the same domain vector whereas
in the standard interval narrowing algorithm they are applied sequentially.
Once a propagation cycle has been detected and simplified, it is possible to
use a sequential iteration procedure (closer to the standard algorithm). Let
ArrayR[k] be the set {f1,..., f}, the iteration procedure (step 3) can apply

fl(fq(l_S)) instead of T(B) where T' = ArrayR[k]. This leads to another
cyclic phenomenon, which could be itself optimized. The order in which
the narrowing functions are evaluated can influence this cyclic phenomenon.
However, it seems difficult to find an order that is “better” than all the
others.

Dynamic cycle simplification is not based upon a specific kind of narrowing
functions but on the fixed point algorithm which is used in almost all in-
terval narrowing systems. The approach could then be combined with some
recent advances in the field like [1] and [10], which propose other narrowing
functions.

A related work is [24]. Although the problems of cycle detection are quite
similar, the aim is not to optimize an algorithm but to generate an abstrac-
tion of repeating cycles of processes to perform more powerful reasoning in
causal simulation.

7 Conclusion

This paper proposes a method for greatly accelerating the convergence of the
cyclic phenomena in the interval narrowing algorithm. The first step requires
simplifying this cyclic phenomenon by keeping just the relevant narrowing
functions (i.e., the narrowing functions that actually perform the task). The
second step consist in removing from the cycle those relevant narrowing
functions that may be deferred. In this way it is possible to reduce the
theoretical upper bound of the running time from O(am) to O(am’), where
m is the total number of narrowing functions, m’ is the number of relevant
narrowing functions occurring in the cycle and @ is the maximum size of the
domains of the variables.

In order to enable the simplification of the propagation cycles, a revised
interval narrowing algorithm has been introduced.

First experimental results indicate that an automatic cycle simplification
can produce significant improvements in efficiency over standard interval
narrowing.

Acknowledgements

Thanks to Christian Bliek, Patrice Boizumault, Bernard Botella, Helene
Collavizza, Narendra Jussien, Emmanuel Kounalis, Philippe Marti, Peter
Sander, Serge Varennes, Dan Vlasie and the reviewers for their helpful com-
ments.

Notes

'For most non-linear constraint systems, AP;(Cyp, I x...x I}) cannot be computed in a
straightforward way. However, interval arithmetic [19] allows it to be computed on a subset
of the constraints set, called basic constraints. Each constraint can be approximated by
decomposition in basic constraints [14]. For instance, let C be the constraint z; —z2+3 = 0,
AP, (C, I, x I3) can be expressed by I; N (Iz — 3) using interval arithmetic. Any other
approximation of the projection (e.g. [1]) could have been taken in place of this one.

2 The theoretical complexity of the revised version is higher than that of the standard
algorithm. However this algorithm will not be used for computing the fixed point but only
for catching the dynamic dependencies. For information, an upper bound of the running
time is in O(n * m x a) instead of O(m * a) where m is the number of constraints, n is the
number of variables and a the size of the largest domain.

*If two narrowing functions perform the same reduction on the same bounds, only the
first one according to a lexical order is considered as relevant.

* The speed of convergence is a relative notion. The revised algorithm is said to

3
converge slowly for (X, D, F) when the number of iterations required to reach the fixed
point is much greater than m (the number of narrowing functions of F), i.e, when AN >>

m,Vk < N, F¥¥1(D) £ F*(D).

References

[1] F. Benhamou, D. Mc Allester, and P. Van Hentenryck, ‘CLP(Intervals) Re-
visited’, in Proc. Logic Programming: Proceedings of the 1994 International
Symposium,MIT Press, (1994).

F. Benhamou, ‘Interval Constraint Logic Programming’, in in [21]

Lo

F. Benhamou and W. Older, ‘Applying interval arithmetic to real, integer and
boolean constraints’, Journal of Logic Programming, (1994).

A. Colmerauer, ‘Spécifications de Prolog IV’, Draft, 1994.

B. Botella and P. Taillibert, INTERLOG : constraint logic programming on
numeric intervals’, 3rd International Workshop on Software Engineering, Ar-
tificial Intelligence and Expert Systems, Oberammergau, 1993.

[6] C. K. Chiu and J. H. M. Lee, ‘Towards Practical Interval Constraint Solv-
ing in Logic Programming’, in ILPS’94: Proceedings 11th International Logic
Programming Symposium, (Ithaca), (1994).

Ot s

[7
(8]
[9]

[10]

[11]

J. Cleary, ‘Logical arithmetic,” Future Computing Systems, vol. 2, no. 2,
pp- 125-149, 1987.

E. Davis, ‘Constraint propagation with interval labels’, Artificial Intelligence,

32, 281-331, (1987).

D. Haroud and B. Faltings, ‘Global consistency for continuous constraints,’
in PPCP’94: Second Workshop on Principles and Practice of Constraint Pro-
gramming (A. Borning, ed.), (Seattle), May 1994.

B. Faltings, ‘Arc consistency for continuous variables,’ Artificial Intelligence,

65(2), 1994.

E. Hyvonen, ‘Constraint reasoning based on interval arithmetic: the tolerance
propagation appoach’, Artificial Intelligence, vol. 58, pp. 71-112, 1992.

Dassault Electronique, INTERLOG 1.0 : Guide d’utilisation’ DE, 55, quai
Marcel Dassault, 92214 Saint Cloud, 1991.

J. H. M. Lee and M. H. van Emden, ‘Interval computation as deduction in
CHIP’, Journal of Logic Programming, 16:3-4, pp.255-276, 1993.

O. Lhomme, ‘Consistency techniques for numeric CSPs’; in Proc. IJCAI93,
Chambery, (France), pp. 232-238, (August 1993).

O. Lhomme, ‘Contribution a la résolution de contraintes sur les réels par prop-
agation d’intervalles’, PhD dissertation, 1994. Université de Nice — Sophia
Antipolis BP 145 06903 Sophia Antipolis

A. Mackworth and E. Freuder, ‘The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems,” Artificial Intelli-

gence, vol. 25, pp. 65-73, 1985.

A. Mackworth, “Consistency in networks of relations,” Artificial Intelligence,

vol. 8, no. 1, pp. 99-118, 1977.

P. Marti and M. Rueher, ‘A distributed cooperating constraints solving sys-
tem’, Special issue of IJAIT (International Journal on Artificial Intelligence
Tools), 4(1-2), 93-113, (June 1995).

R. Moore, Interval Analysis. Prentice Hall, 1966.

W. Older and A. Vellino, ‘Constraint arithmetic on real intervals’, in Con-
straint Logic Programming: Selected Research, eds., Frédéric Benhamou and
Alain Colmerauer. MIT Press, (1993).

Andreas Podelski,Constraint Programming: Basics and Trends, LNCS 910,
231-250, Springer Verlag (1995). (Chatillon-sur-Seine Spring School, France,
May 1994).

M. Rueher, ‘An Architecture for Cooperating Constraint Solvers on Reals’, in
[21]

P. Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-
consistency algorithm and its specializations. Artificial Intelligence, 57(2—

3):291-321, October 1992.

D.S. Weld, ‘The use of aggregation in causal simulation,” Artificial Intelligence,
vol. 30, pp. 1-34, 1986.

