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Abstract, Global search algorithms have been widely used in the ¢onstraint programming framework
to solve consiraint systems over continuous domains. This paper precisely states the relations among
the different partial consistencies which are main emphasis of these algorithms.

The capability of these partial consistencies to handle the so-called dependency problem is
analysed and some efficiency aspects of the filtering algorithms are mentioned.

1. Intreduction

Global search algorithms that are based upon partial consistency filtering techniques
have proven their efficiency to solve non-trivial constraint systems over the reals. For
instance, systems like Newt on and Numerica [2], [28] behave better than interval
methods on classical benchmarks of numerical analysis and interval analysis (e.g.,
Moré-Cosnard non-linear integral equation, Broyden banded functions). Morcover,
it has been shown recently {9] that combining algorithms based on different partial
consistencies can even lead to better performances.

These global search algorithms are actually “branch and prune” algorithms, i.e.,
algorithms that can be defined as an iteration of two steps:

1. Pruning the search space by reducing the intervals associated with the variables.

2. Generating subproblems by splitting the domains of a variable {the choice of
the variable may be non deterministic or based on some heuristic).

The pruning step achieves a filtering of the domains, in other words, it reduces the
intervals associated with the variables until a given partial consistency property is
satisfied.

1.1. PARTIAL CONSISTENCIES

Informally speaking, a constraint system C satisfies a partial consistency property
if a relaxation of C is consistent. For instance, local consistency just requires that,
taken individually, the constraints are consistent. The relevance of consistency
properties is that whenever a consistency property is viclated, there is an associated

* Thisis arevised version of the paper presented at the 4th International Conference on Constraint
Programming [6].
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recipe for pruning some interval. Most constraint solvers over finite domains [18],
[27] are based on a partial consistency named Arc-Consistency. Assume c is a k-ary
constraint over variables (xj, ..., x}; ¢ is arc-consistent if, for any value in x;, there
exists at least one value in each domain x; (j # i) such that ¢ holds. In the same
way, many solvers over continuous domains [1], [25], [28] rely upon relaxations of
Arc-Consistency. A relaxation of Arc-Consistency has also been used in the context
of global optimization [22].

2B-Consistency (also known as hull consistency) [3], [5], [15], [16] is a relax-
ation of Arc-Consistency which only requires to check the Arc-Consistency prop-
erty for each bound of the intervals. The key point is that this relaxation is more
easily verifiable than Arc-Consistency itself. Informally speaking, variable x is
2B-Consistent for constraint “f(x, x, ..., x,} = 0" if the lower (resp. upper) bound
of the domain of x is the smallest (resp. largest) solution of f(x,x,...,x,). Box-
Consistency [2], [11] is a coarser relaxation (i.e., it allows more stringent pruning) of
Arc-Consistency than 2B-Consistency. Variable x is Box-Consistent for constraint
“f(x,x1, ..., %,) = 07 if the bounds of the domain of x correspond to the leftmost and
the rightmost zero of the optimal interval extension of f(x, x|, ..., x,}.

3B-Consistency and Bound-Consistency are higher order extensions of 2B-
Consistency and Box-Consistency which have been introduced to limit the effects
of a strictly local processing:

* 3B-Consistency [16] is a relaxation of path consistency [8], a higher order exten-
sion of Arc-Consistency. Roughly speaking, 3B-Consistency checks whether
2B-Consistency can be enforced when the domain of a variable is reduced to
the value of one of its bounds in the whole system.

s Bound-Consistency [24], [28] applies the principle of 3B-Consistency to Box-
Consistency: Bound-Consistency checks whether Box-Consistency can be
enforced when the domain of a variable is reduced to the value of one of
its bounds in the whole system.

1.2. AIM OF THE PAPER

This paper investigates the relations between 2B-Consistency, Box-Consistency,
3B-Consistency and Bound-Consistency. More precisely, we prove the following
properties;

¢ 2B-Consistency algorithms actvally achieve a weaker filtering (i.e., a filtering
that yields bigger intervals) than Box-Consistency, especially when a variable
occurs more than once in some constraint (see Proposition 4.2). This is due to the
fact that 2B-Consistency algorithms require a decomposition of the constraints
with multiple occurrences of the same variable.

s The filtering achieved by Box-Consistency algorithms is weaker than the one
computed by 3B-Consistency algorithms (see Proposition 5.2).
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This paper also provides an analysis of both the capabilities and the limits of
the filtering algorithms which achieve these partial consistencies. We pay special
attention to their ability to handle the so-called dependency problem [10].

IL.AYOUT OF THE PAPER

Section 2 reviews some basic concepts and introduces the notation used in the
rest of the paper. Section 3 is devoted to the analysis of 2B-Consistency. Features
and properties of Box-Consistency are the focus of Section 4. 3B-Consistency
and Bound-Consistency are introduced in Section 5. Section 6 mentions efficiency
issues.

2. Interval Constraint Solving

This section recalls some basics of interval analysis [2], [3], [12] and formally
defines a constraint system over intervals of real numbers.

2.1, NOTATION

We mainly use the notations suggested by Kearfott [13]. Thus, throughout, boldface
will denote intervals, lower case will denote scalar quantities, and upper case will
denote vectors and sets. Brackets “[.]7 will delimit intervals while parentheses
“(.y” will delimit vectors. Underscores will denote lower bounds of intervals and
overscores will denote upper bounds of intervals. X denotes any value in interval x
(nsually not the center of x).

We will also use the following notations,which are slightly non-standard:

* R® =R U {—o0,+o0} denotes the set of real numbers augmented with the
two infinity symbols. F denotes a finite subset of R* containing {—oo, +oo}.
Practically speaking, I corresponds to the set of floating-point numbers used in
the implementation of non linear constraint solvers;

e if ais a constant in F, a* (resp. a ") corresponds to the smallest (resp. largest)
number of F strictly greater (resp. lower) than a;

s f, g denote functions over the reals; ¢ : R™ — Boeol denotes a constraint over
the reals, ¢ denotes a constraint over the intervals; Var(c) denotes the variables
occurring in constraint c.

2.2. INTERVAL ANALYSIS

DEFINITION 2.1 (Interval). An interval x = [x, ], with x and X e T, is the set of
real numbers {r e R | x < r < X}; if x or X is the infinity symbol, then x is an
opened interval.

T denotes the set of intervals and is ordered by set inclusion. I/(Z) denotes the
set of unions of intervals.
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DEFINITION 2.2 (Set Extension). Let S be a subset of R. The Hulf of S—denoted
O8—is the smallest interval I such that S < 1.

The term “smallest subset” (w.r.t. inclusion} must be understood according to
the precision of floating-point operations. In the rest of the paper, we consider—as
in [15], [2]—that results of floating-point operations are outward-rounded to pre-
serve the correctness of the computation. However, we also assume that the largest
computing error when computing a bound of a variable of the initial constraint
system is always smaller than one float. This hypothesis may require the use of big
floats [4] when computing intermediate results.

DEFINITION 2.3 (Interval Extension [10], [20]).

o f: 7% — T is an interval extension of f : R" — R iff ¥xq,...,x, ¢ T :
f(i], ...,fn) € f(Xl, ...,Xn).

e ¢c:I" = Bool is an interval extension of ¢ : R" = Bool iff Vx|,....x, e T :
c(®1,..., %) = cfXy, ..., Xa).

Similarly, f is the natural interval extension of f (see [20]) if f is obtained by
replacing in f each constant £ with the smallest interval containing k, each variable
x with an interval variable x, and each arithmetic operation with its optimal interval
extension [20].

In the rest of this paper, ¢ denotes the natural interval extension of ¢ and @, &,
®, @ denote the optimal interval extensions of +, —, %, /.

We now recall a fundamental result of interval analysis with many consequences
on efficiency and precision of interval constraint solving methods.

PROPOSITION 2.1 [20}. Let £ : I — I be the natural interval extension of
f:R" > R. If each x; occurs only once in f then {f(X1,.... 50} = t(x1, ... Xn)
else O{f(X1,.... %)} cf(x1, ..., xp).

This result can be trivially extended to relations over R™:

PROPOSITION 2.2. Let ¢ : 1" — Bool be the natural extension of ¢ : R" — Bool,
if each x; occurs only once in ¢, then c(Xy, ..., X,) & (X1, ..., %)

2.3. INTERVAL CONSTRAINT SYSTEM

DEFINITION 2.4 (CSP). A CSP (Constraint System Problem) [18] is a couple
(X,C) where X = {xy,...,x,} denotes a set of variables with associated interval
domains {x1, ...,Xn}, and C = {cy, ..., o} denotes a set of constraints.

Py denotes an empty CSP, i.e., a CSP with at least one empty domain. X' ¢ X
means X; ¢ x; for all i We define a C5P P = (X, C) to be smaller than a CSP
P =X, O)if X' ¢ X. We write P =< P’ for this relation. By convention, Py is the
smallest CSP.
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In the following passage, we define and discuss several kinds of consistency,
and the associated filtering of a CSP P.

3. 2B-Consistency

Most of the CSP systems over intervals (e.g., [1], [3], [23]. [25]) compute a relax-
ation of Arc-Consistency [18] called 2B-Consistency (or Hull consistency). In this
section, we give the definition of 2B-Consistency and explain why its computation
requires a relaxation of the constraint system.

3.1. DEFINITIONS

2B-Consistency [16] states a local property on the bounds of the domains of a vari-
able at a single constraint level. Roughly speaking, a constraint ¢ is 2B-Consistent
if, for any variable x, there exist values in the domains of all other variables which
satisfy ¢ when x is fixed to x and &.

DEFINITION 3.1 (2B-Consistency). Let (X, ) be a CSP and ¢ € C a k-ary con-

straint over (xy, ..., x). ¢ is 2B-Consistent iff:
Vix; = D{f,‘ 1 A% e xy,....3% 1 € x; 1, 3K 1 € Xi1, ..., dXp € Ky
such that ¢y, ..., % -1, X, Xists - X0 hOldS}

A CSP is 2B-Consistent 1ff all its constraints are 2B-Consistent.,

By definition, 2B-Consistency is weaker than Arc-Consistency. This point is
illustrated in Example 3.1.

EXAMPLE 3.1, Let Py = ({x),x2}, {x1 =x3 *x}) be aCSP withxy ={1,4],x2 =
[—2,2]. P, is 2B-Consistent but not arc-Consistent since there is no value in x;
which satisfies the constraint when x» = 0.

DEFINITION 3.2 (Closure by 2B-Consistency [16]). The filtering by 2B-Consis-
tency of P = (X, C) is the CSP P’ = (X’, C) such that:

» Pand P’ have the same solutions;
s+ P’ is 2B-Consistent;

» X’ < X and the domains in X" are the largest ones for which £’ is 2B-Consistent.

We note @,5(P) the filtering by 2B-Consistency of P. In the following we will
use the term closure by 2B-Consistency to emphasize the fact that this filtering
always exists and is unique [16].

Proposition 3.1 states a property which is useful when comparing 2B-Consis-
tency and Box-Consistency.
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IN(in C, inout X)
Queune « C;
while Queue # 0
¢ <— POP Queune;
X’ « narrow(c, X);
if X’ # X then
X « X’
Queue < Queve U {¢’ e C | Var(c) n Var(c') # 0}
endif
endwhile

Figure I.  Algorithm TN.

PROPOSITION 3.1. Let P = (X, C) be a CSP such that no variable occurs more
than once in any constraint of C. Let ¢ € C be a k-ary constraint over the variables

(x1,...xt). P is 2B-Consistent iff Ve e C, ¥i € 1,...,k the following relations
hold:

* C(Xp, .0 Xio1, [Xi, X7) X, .o, Xe), and

. C(Xls ---sxi—ls(ff79fi]!xi+ly ---,X-k)-

Proof. Assume that both c(xl,...,x;_l,[ﬁ,ﬁ"),x,-ﬂ,...,xk) and

c(xy, ..., %X -1, (X, X], Xi+1, --.» Xg) hold. By Proposition 2.2 we have:
1. 3% e xy,...,3% 1 € X-1,3x; € [)ﬁ,ici+),3fi+] € Xi4ls ..., % € Xi such that
c(Xy, ., X1, %, K01, 0 X)) holds, and
2.3 e xq,.., 3% e x; 1, Ax € (XX, 3% € Xieds ..., A% € Xi such that
C()T?l, ...,)Ei_l,ij,f”l, ...,fk) holds.
Thus, x; = D{ii | A%y € x1,..., 3% € X;_1,3%4| € Xigl,..., A%, € Xi such that
c(¥1, ..., %, ..., %) holds}.
The counterpart results from the definition of 2B-Coensistency. O

3.2. COMPUTING 2B-CONSISTENCY

2B-Consistency is enferced by narrowing the domains of the variables. Using the
above notations, the scheme of the standard interval narrowing algorithin—derived
from AC3 [18]—can be written down as in Figure 1. IN implements the computation
of the closure by 2B-Consistency of a CSP P = (X, C). narrow(c, X) is a function
which prunes the domains of variables Var(c) until ¢ ts 2B-Consistent.

The approximation of the projection functions is the basic tool for the narrowing
of domains in rnarrow(c, X). Let ¢ be a k-ary constraint over X = (x|, ..., x;): for
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eachiin 1,..., &, m(c, X) denotes the projection over x; of the solutions of ¢ in the
space delimited by X.

DEFINITION 3.3 (Projection of a Constraint). m(c,X) : (C.1%) — U(D) is the
projection of ¢ on x; iff m(c,X) = {&; | IE, ... %i—1, Fiv1 - %) € X X -+ X
X;_1 X X1, - X X such that ¢(%y, ..., %, ..., %) holds}.

DEFINITION 3.4 (Approximation of the Projection). AP;i(c,X) : (C, I8 5 T is
an approximation of w(c,X) iff AP{c,X) = 0O m(ce,X) = [min m(e, X),
max m(c, X)]. In other words, AP;i(c, X} is the smallest interval encompassing
projection m{c, X).

The following proposition trivially holds:

PROPOSITION 3.2. Constraint ¢ is 2B-Consistent on X iff for all i in {1, ...k},
X = APi(C, X)

In general, AP; cannot be computed efficiently because it is difficult to define
functions min and max, especially when ¢ is not monotonic. For instance, if
variable x has multiple occurrences in ¢, defining these functions would require
x to be isolated”. Since such a symbolic transformation is not always possible,
this problem is usually solved by decomposing the constraint system into a set
of primitive constraints for which the AP; can easily be computed [17]. Primitive
constraints are generated syntactically by introducing new variables.

DEFINITION 3.5 (Decomposition of a Constraint System). Let P = (X,C) be a
CSP and ¢ € C aconstraint. We define M, < X as the set of variables having multi-
ple oceurrences in ¢. decomp{c) is the set of constraints obtained by substituting in ¢
each occurrence of variables x € M, with a new variable y with domain y = x and
by adding a constraint x = y. New(;  is the set of new variables introduced to remove
multiple occurrences of variable x in ¢, Xyow = [J{New( o | x € X and ¢ € C}.
P gecomp 18 the CSP (X', C”) where X’ = X U Xy, and C’ = {decomp(c) | c € C}.

Decomposition does not change the semantics of the constraint system: P and
Pgecomp have the same solutions since Pgecomp just results from a rewriting™ of
P. However, a local consistency like Arc-Consistency is not preserved by such a
rewriting. Indeed, decomposition reduces the scope of local consistency filtering
algorithms. Thus, Pgecomp i8 a relaxation of P when computing a relaxation of
Arc-Consistency.

* B. Faltings [7] has recently introduced a new method for computing the projection without
defining projection function. However, this method requires a complex analysis of constraints in
order to find extrema.

** In practice, ¢ is decomposed into binary and ternary constraints for which projection functions
are straightforward to compute. Since there are no multiple occurrences in decomp(c) and interval
calculus is associative, this binary and ternary constraint system has the same solutions as Peecomp.
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EXAMPLE 3.2 {(Decomposition of the Constraint System). Letc: xj+xx—x; =0
be a constraint and x; = [—1,1], xp = [0, 1] the domains of x; and x». Since x;
appears twice in ¢, its second occurrence will be replaced with a new variable x3:
decomp(c) = {x1 +x2 —x3 =0,x; =x3}.

In this new constraint system, each projection can easily be computed with
interval arithmetic. Forinstance, AP1{x)+x —x3 = 0, (X1, X2, X3)) is X3 n (X35X;3).
However, this decomposition increases the locality problem: the first constraint is
checked independently of the second one and so x; and x3 can take distinct values.
More specifically, the initial constraint ¢ is not 2B-Consistent since there is no
value of x; which satisfies ¢ when x, = 1. On the contrary, decomp(c) is 2B-
Consistent since the values x; = —1 and x3 = 0 satisfy x; + x» — x3 = 0 when
Xx; = 1. On the initial constraint, 2B-Consistency reduces x» to [0, 0] while it yields
x; = [—1,1], x2 = [0, 1] for decomp(c).

Remark. Like almost all other examples in this paper, Example 3.2 can be
trivially simplified. However, the reader can more easily check partial consistencies
on such examples than on non-linear constraints where the same problems occur.

4. Box-Consistency

Box-Consistency [2], [11] is a coarser relaxation of Arc-Consistency than 2B-
Consistency. It mainly consists of replacing every existentially quantified variable
but one with its interval in the definition of 2B-Consistency. Thus, Box-Consistency
generates a system of univariate interval functions which can be tackled by numer-
ical methods such as Newton. Contrary to 2B-Consistency, Box-Consistency does
not require any constraint decomposition and thus does not amplify the locality
problem. Moreover, Box-Consistency can tackle some dependency problems when
each constraint of a CSP contains only one variable which has multiple occur-
Tences.

4.1, DEFINITION AND PROPERTIES OF BOX-CONSISTENCY

DEFINITION 4.1 {Box-Consistency). Let (X, C) be a CSP and ¢ € C a k-ary con-
straint over the variables (x1, ..., Xz). ¢ is Box-Consistent if, for all x; the following
relations hold:

Loe(xg, o0 Xi— 1, [X X1, X1, 00 X ),
2. Xy, . X1, (% XKL Xigts e Xk

Closure by Box-Consistency of P is defined similarly to closure by 2B-Consis-
tency of P, and is denoted by @g,,(P).

PROPOSITION 4.1. ®5(P) = @g,(P) and ©5(P) = ©p,, (P) when no variable
occurs more than once in the constraints of C.
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Proof. From the definitions of 2B-Consistency, Box-Consistency and interval
extension of a relation, it results that ©;p(F) = ®p,(P). By Proposition 2.2 the
equivalence holds when no variable occurs more than once in the constraints of C. O

It follows that any CSP which is 2B-Consistent is also Box-Consistent. On the
contrary a CSP which is Box-Consistent may not be 2B-Consistent {see Exam-
ple 4.1).

EXAMPLE 4.1. Example 3.2 is not 2B-Consistent for x; but it is Box-Consistent
for x; since ([—1,1] @ [0,0*]18[-1, 1)~ [0,0] and (-1, 1] & [1 7, 1] S [-1,1])
M [0, 0] are non-empty. ‘

Of course, the decomposition of a constraint system amplifies the limit due
ta the local scope of 2B-Consistency. As a consequence, 2B-Consistency on the
decomposed system yields a weaker filtering than Box-Consistency on the initial
system:

PROPOSITION 4.2. (I)Box(P) = (I)ZB(Pdewmp)-

Proof. The different occurrences of the same variable are connected by the
existential quantifier as stated in the definition of the 2B-Consistency. However, the
decomposition step breaks down the links among these different occurrences and
generates a CSP P,comp Which is a relaxation of £ for the computation of a local
consistency. It follows that ®g,,(P) < ®g,:(Pgecomp). By Proposition 4.1 we have:
(I)Box(Pdecomp) = q)ZB(Pdecomp), and thus ‘I}Box(P) = q)ZB(Pdecomp)- |

EXAMPLE 4.2. Let ¢ be the constraint x; + x; — x; — x1 = 0 where x; = [—1,1]
and x; = [0.5, 1]. ¢ is not Box-Consistent since [-1, —1*] @ [0.5, 1]1&[-1, -1 8
[—1,—1*] ~ [0, 0] is empty. But decomp(c) is 2B-Consistent for x| and x;.

Box-Consistency can tackle some dependency problems in a constraint ¢ which
contains only one variable occurring more than ance. More precisely, Box-Cons-
istency enables us to reduce the domain x if variable x occurs more than once in
¢ and if x contains inconsistent values. For instance, in Example 4.2, filtering by
Box-Consistency reduces x; because value —1 of x; has no support in x;.

However, Box-Consistency may fail to handle the dependency problem when
the inconsistent values of constraint ¢ are in the domain of variable x; while a
variable x; (7 # £} occurs more than once in ¢. For instance, in Example 3.2, value
1 of %, has no support in x; but Box-Consistency fails to detect the inconsistency
because [—1,1] @ [1 7,11 & [-1,1] n [0, 0] is not empty.

4.2, COMPUTING BOX-CONSISTENCY

The Box-Consistency filtering algorithm proposed in [2], [28], [29] is based on an
iterative narrowing operation using the interval extension of the Newton method.
Computing Box-Consistency follows the generic algorithm IN (see Figure 1) used
for computing 2B-Consistency. The function narrow{c, X) prunes the domains of
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function LNAR (IN: f,, x, RETURN: Interval)
reX
if 0 ¢ f,(x) then return {)
else i « NEWTON({,,x)
if 0 e f ([i,i"]) then return [i, 7]
else SPLIT(,iy,12)
l; « LNAR(,, 1))
if 1; # (0 then return [L, 7]
else return [LINAR(f,,15), ]
endif
endif
endif

Figure 2. Function LNAR.

the variables of ¢ until ¢ is Box-Consistent. Roughly speaking, for each variable x
of constraint ¢, an interval univariate function fy is generated from ¢ by replacing
all variables but x with their intervals. The narrowing process consists of finding the
leftmost and rightmost zeros of fx. Figure 2 shows function LNAR which computes
the leftmost zero of £, for initial domain I, of variable x (this procedure is given
in [29]).

Function LNAR first prunes interval x with function NEWTON which is an interval
version of the classical Newton method. However, depending on the value of x,
Newton may not reduce x enough to make x Box-Consistent. So, a split step is
applied in order to ensure that the left bound of x is actually a zero. Function SPLIT
divides interval i in two intervals i; and iy, i; being the left part of the interval. The
splitting process avoids the problem of finding a safe starting box for Newton (see
[117). As mentioned in [29], even if £y is not differentiable, the function LNAR may
find the leftmost zero thanks to the splitting process (in this case, the call to function
NEWTON is just ignored). Notice that Box-Consistency can be computed in such a
way because it is defined on interval constraints whereas the existential quantifiers
in the definition of 2B-Consistency require the use of projection functions.

5. 3B-Consistency and Bound-Consistency

2B-Consistency and Box-Consistency are only partial consistencies which are often
too weak for computing an relevant superset of solutions of a CSP. In the same
way that Arc-Consistency has been generalized to higher consistencies (e.g., path
consistency [18]), 2B-Consistency and Box-Consistency can be generalized to
higher order consistencies [16].
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5.1. 3B-CONSISTENCY

DEFINITION 5.1 (3B-Consistency [16]). Let P = (X, C)be a CSP and x a variable
of X. Let also:

¢ Py [y De the CSP derived from P by substituting x with [x, x7y;
« P

xe(x,x]

x is 3B-Consistent iff ®yp(Py [y 1)) # Py and $yp(P
3B-Consistent iff all its domains are 3B-Consistent.

be the CSP derived from P by substituting x with (x, x].
) # Pp- ACSPis

xe{(x

It results from Definition 5.1 that any CSP which is 3B-Consistent is also 2B-
Consistent [16]. The generalization of the 3B-Consistency to kB-Consistency is
straightforward and is given in [16], [17].

3B-Consistency is less local than 2B-Consistency or Box-Consistency. Propo-
sition 5.1 shows that 3B-Consistency always prunes more strongly than Box-
Consistency, even if 3B-Consistency is achieved on the decomposed system and
Box-Consistency on the initial system.

PROPOSITION 5.1. Let P = (X, C) be a CSP. If Pgecomp is 3B-Consistent then P is
Box-Consistent.

Proof. Since Box-Consistency is a local consistency we just need to show that
the property holds for a single constraint.

Assume ¢ is a constraint over {x, ..., xz), x is one of the variables occuring more
than once in ¢ and New(, ) = (Xp+1, ..., Xi4m) 18 the set of variables introduced for
replacing the multiple occurrences of x in c. Suppose that P ..oy, is 3B-Consistent
forx.

Consider Py, the CSP derived from Pgopmp by reducing domain x to [x, N P
is 2B-Consistent for x and thus the domain of all variables in New, . is reduced to
[x, x™); this is due to the equality constraints added when introducing new variables.
From Proposition 3.1, it results that the following relation holds:

C,(X] > ---yxi—l, [E: §+), xi+ls EEEE] Xk, [Ka E+)s [T [Ea §+),xk+m+l, [REE] xn)

¢’ is the very same syntactical expression as ¢ (where some variables have been
renamed).

(Xg+m+1, -..» Xp) are the domains of the variables introduced for replacing the
multiple occurrences of M, \ {x}. As the natural interval extension of a constraint
is defined over the intervals corresponding to the domains of the variables, relation

e(xy, ..., Xi—1, [% X1, Xit1, ..., Xz) holds too.
The same reasoning can be applied when x is replaced with its upper bound
{(x7,X]. So we conclude that x is also Box-Consistent. O

EXAMPLE5.1. Let C = {x1+x2 = 100, x; ~x2 = O} and x; = [0, 100], x5 = [0, 100]
be the constraints and domains of a given CSP P.
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D3p(P gecomp) Teduces the domains of x; and x; to the interval [50,50] whereas
Py, (P) does not achieve any pruning (P is Box-Consistent).

The following proposition is a direct consequence of Proposition 5.1;

PROPOSITION 5.2, ®3p(Psecomp) = oyl P).

Thus, 3B-Consistency allows us to tackle at least the same dependency problems
as Box-Consistency. However, 3B-Consistency is not effective enough to tackle the
dependency problem in general (see Example 5.2).

EXAMPLE 5.2. Let ¢ be the constraint x1 % x; — x1 +x3 — x1 +x; = 0 where x; =
[—4,3),xy = [1,2]and x3 = [—1,5). decomp(c) = {x| *x2 — x4+ x3 — x5 + x5 = 0,
X] = X4 = X5 = Xg}. ¢ is not 2B-Consistent since there are no values in x; and x3
which verify the relation when x3 = 5.

However, decomp(c) is 3B-Consistent. Indeed, the loss of the link between the
two occurrences of x; prevents the pruning of x3.

A question which naturally arises is that of the relation which holds between
D,5(P) and @1p(P gecomp): Example 3.3 shows that @25(P) = @35(P gecomp) does not
hold and Example 5.2 shows that ®3(Pyecomp) = ®25(F) does not hold, even if
only one variable occurs more than once in each constraint of P. It follows that no
order relation between @3z(Pgecomp) and @23(P) can be exhibited.

EXAMPLE 5.3. Let P be a CSP defined by C = {x] +x; = 10;x; +x; — 2xp = 0}
where x; = X3 = [—10,10]. decomp(xy + x; — 2x2 = 0) = {x] +x3 — 2x; = 0,
x3 = x1}. P is 2B-Consistent but P jecomp 1s not 3B-Consistent: Indeed, when x; is
fixed to 10, ®3p(P,, 10~ 10) = Py since xa is reduced to §. In this case, the link
between x) and x3 is preserved and 3B-Consistency reduces x» to {5, 5].

5.2, BOUND-CONSISTENCY

Bound-Consistency was suggested in [17] and was formally defined in [28]. Infor-
mally speaking, Bound-Consistency applies the principle of 3B-Consistency to
Box-Consistency: it checks whether Box-Consistency can be enforced when the
domain of a variable is reduced to the value of one of its bounds in the whole
system.

DEFINITION 5.2 (Bound-Consistency). Let {X,C)becaCSPand ¢ € C ak-ary
constraint over the variables (x(,...,x). ¢ is Bound-Consistent if for all x;, the
following relations hold:

1‘ (I)BOX(C(X]v ---sxi—ls [E,K+)ixf+19-“9xk)) ;é P@s
2. ®po(e(xy, ... X -, (X7, X)), X1, - X)) # P

Since Pp(P) = ©2p(Puecomp) 1t is trivial to show that DPpypne(P) =

D35(Pgecomp). Bound-Consistency achieves the same pruning as 3B-Consistency
when applied to Examples 5.1 and 3.2.
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6. Efficiency Issues

The aim of numerical CSP is not to compute partial consistencies but to find accurate
solutions; that is, either small intervals containing isolated solutions, or intervals
which tightly encompass sets of continuous solutions. Thus, in practical systems
(e.g., Numerica [28], PROLOG IV [25]), partial consistencies are combined
with several search heuristics and splitting techniques. Experimental results of
Numerica and Newton are very impressive. However it is difficult to draw a
conclusion from the published benchmarks because these systems differ in several
critical points:

« They use different splitting heuristics.

» There are significant variations in the implementation of the filtering algorithms
{precision parameters in order to force an early halt to the propagation process,
constraint ordering, detection of cycles, ...).

» They use different implementation languages (Proloeg,C,...).

So we limit the discussion to a brief examination of three key points which help
to better understand the performances of the different systems:

1. Cost of the basic narrowing operator: Performing interval newton method
on univariate functions is more expensive than computing projection functions
on primitive constraints. For instance, let C = {x? = 2} and x = [1, 10]. Box-
Consistency requires 6 narrowing steps with the Newton method (about 100
interval operations} whereas 2B-Consistency only requires the computation
of one relational square root operation and one intersection over intervals [9].
Thus, 2B is more efficient than Box on problems where the projection functions
compute an accurate result.

The gain of performance due to accurate projection functions is well illustrated
using the pentagon problem. This problem consists of finding the coordinates
of five points of a circle such that these points define a convex pentagon. The
constraint system consists of five quadratic equations. To avoid an infinite
number of selutions, the first point is given, and the five points are ordered
to avoid symmetrical solutions. On this example, Bound-Consistency and 3B-
Consistency achieve the same pruning. According to [1] Box is about forty
times slower than 2B on this example.

2. Expansion of the constraint system: Decomposition of the initial constraint
system may generate a huge number of primitive constraints when variables
occur more than once. For instance, consider the classical “Broyden 1607
example (160 initial variables, 160 constraints). Box-Consistency will generate
160 variables, 1184 univariate functions whereas 2B-Consistency will generate
2368 variables, 6944 ternary projection functions.

From a practical point of view, 2B-Consistency is seriously weakened by the
decomposition required for computing the narrowing functions. On the other
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hand, the univariate functions generated by Box-Consistency can be handled
very efficiently using Newton-like methods.

3. Precision of the computation: For a fixed final precision, the efficiency of the
computation may strongly depend on the accuracy of the partial consistency
filtering algorithm. For instance, consider again the resolution of the “Broyden
160” problem by combining Box-Consistency filtering and a domain splitting
strategy. If the final intervals have to be computed with a size smaller than or
equal to 1073, the computation is about 10 times faster with a coarse relaxation
of Box-Consistency than with an accurate one [9].

It appears that the following approaches are promising:
» combining different partial consistencies [9];
* pre-processing of the constraints (e.g., symbolic transformations);

» intelligent search strategies {e.g., use of extrapolation techniques before starting
a costly filtering process [14], dynamic choice of the filtering precision).

7. Conclusion

This paper has investigated the relations among 2B-Consistency, 3B-Consistency,
Box-Consistency and Bound-Consistency. The main result is a proof of the follow-
ing propertics;

QBound(P) = (I)3B(Pdecomp) = ‘I)an(P);
(I)ZB(P) = 'l)Box(P) = i:'ZB(:Pi:fer:amp):
P35(Pgecomp) and  Pop(P)  are not comparable.

The advantage of Box-Consistency is that it generates univariate functions which
can be tackled by numerical methods such as Newton, and which do not require any
constraint decomposition. On the other hand, 2B-Consistency algorithms require
a decomposition of the constraints with multiple occurrences of the same vari-
able. This decomposition increases the limitations due to the local nature of 2B-
Consistency. As expected, higher consistencies—e.g., 3B-Consistency and Bound-
Consistency—can reduce the drawbacks due to the local scope of the inconsistency
detection.

Efficiency of the filtering algorithms is a critical issue, but it is difficult to draw
a conclusion from the published benchmarks. Further experimentation combining
these different partial consistencies with various search techniques is required
to better understand their advantages and drawbacks and to define the class of
application in which each of them is most relevant.
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