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Abstract — In this paper, we first present a theoreti-
cal framework aimed at generalizing the scaling laws
of delay, secrecy and throughput in mobile ad-hoc
networks for various network models and schedul-
ing policies available in the literature. We derive
scaling laws for throughput-delay tradeoffs for new
routing policies such as Spray-and-Wait. A model
based on threshold secrecy constraint is developed
and it is shown that scaling laws are not impacted
provided the eavesdropper density is lower than the
node density.

1 Introduction

Gupta and Kumar in [1], showed that the per-
user throughput of a static wireless ad-hoc net-
work scales to zero with increasing node density
(N). Grossglauser and Tse in [2], however showed
that, the per-user throughput can be maintained
constant with N , provided the nodes are mobile
and large delay D is permitted in the data delivery.

The delay and throughput trade-off in MANETs
was studied by Neely and Modiano in [3]. Using
a cellular spatial division scheme [3] showed that
the delay of the two-hop routing of [2], increases
with node-density. The delay can be reduced by
introducing redundant data in the network which,
in turns, reduces the throughput. The fundamen-
tal delay-throughput trade-off was discovered to be
λ = O(D/N), where λ is the per-user through-
put and D is average delay. Ying et al. improved
this trade-off by scaling the transmission radius in-
versely to the permissible delay [4]. The achievable
trade-off resulted in λ = O(

√
D/N).

Apart from throughput and delay, security is a
major performance bottleneck in MANET deploy-
ment. The broadcast nature of wireless links makes
interception of transmission extremely easy and the
lack of centralized infrastructure hinders implemen-
tation of admission control policies or distribution
of secret keys. In such a scenario, it is important
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to exploit security opportunities at all levels of the
system. (For an introduction to physical layer se-
curity refer to [10].)

The delay-throughput performance of MANETs
in the presence of passive and active attacks was
studied by Liang et al. in [5] which extends the
framework in [4]. It was shown that performance
of MANETs can be divided in two regimes ac-
cording to the density of eavesdroppers (M). For
passive colluding attackers, if M = o(

√
ND), the

same delay throughput performance can be guar-
anteed as [4]. If M = Ω(

√
NDpoly(N)), then the

throughput is O(1/M). For active attackers, the
same throughput was achieved but with more strin-
gent conditions on the densities.

The paper makes the following contributions:
Generalized Framework: We first present a

theoretical framework aimed at characterizing the
scaling laws of delay, secrecy and throughput in
mobile ad-hoc networks. The framework extracts
important system parameters which code for the
eavesdropping intensity and the scheduling policy.
This allows to use mean field approximations and
queuing theory tools to get results depending on
the system parameters only, thereby encompassing
previous results [3, 4, 5].

Tradeoffs for two-hop routing and Spray-
and-Wait: We derive new scaling laws for secrecy-
throughput-delay tradeoffs for other routing poli-
cies such as Spray-and-Wait. The results are given
in terms of the redundancy allowed per packet in
the system, both for two-hop routing and Spray-
and-Wait. We show that two-hop routing gives bet-
ter trade-off however Spray-and-Wait must be used
to improve delay beyond certain threshold. The
throughput costs are then much higher.

2 Network Model and Preliminaries

The network consists of N legitimate and M eaves-
dropping nodes. Each legitimate node serves as the
source and destination for equal amount of traffic.
All nodes move according to a uniform i.i.d mobil-
ity (independent among users as well as time-slots).
A maximum of one-hop transmissions can be done
in a time-slot (Fast Mobility). In this paper, “rout-
ing” only refers to opportunistic forwarding with
possible packet replication. All order notation is
borrowed from [4]



Definition 1 Per-user Throughput: Let, Λi(T )
be the number of unique packets received (decoded,
in case coding is used) by node i during the time
duration (0, T ). Then, per-user throughput λ is said
to be feasible if: limT→∞ P (Λi(T )/T ≥ λ,∀i) = 1
The average per-user throughput, we defined it as λ
such that λi ≥ λ for all i.

Definition 2 Delay: Let Di be the time taken by
a packet to reach the destination from its arrival at
the top of source buffer. Delay D would denote the
delay averaged over all packets in the system.

Delay in [5] is measured from the point of first
transmission of the packet and does not include
waiting time for the first transmission. D′ will refer
to the average delay using such definition.

Eavesdroppers, if present, are passive and are as-
sumed not to collude. This means that the aim
of a secret code is to protect the information from
eavesdroppers individually. We now define the im-
portant model parameters which allow to account
for various scheduling policies and eavesdropping
intensity and use mean field approximations.
R: The maximum number of copies of a packet

(redundancy) allowed to be created by the routing
policy, including the source.
σ: Given a pair of nodes A and B, consider the

probability that transmission from A to B is pos-
sible according to the chosen transmission criterion
(defined in the next section). The average of such
probability over all node locations is denoted by σ.
δ: Given that node A carries a packet to be

relayed by B, consider the probability that A is
scheduled as a transmitter in that time-slot and the
transmission criterion is met (B can hear A) and
B selects A over all other transmitters that B can
hear (B listens to A). δ is the average probability
over all node locations.
η: Given that A holds a packet destined to B,

consider the probability that A is scheduled as a
transmitter at that time-slot and the transmission
criterion is met (B can hear A) and B selects A
over all the transmitters B can hear (B listens to
A). The average of such probability over all node
locations is denoted by η.

Note: R is dependent on the routing policy only,
σ is dependent on the network parameters only (N
andM), while δ and η are dependent of the schedul-
ing policy. For example, with perfect scheduling
η = σ (entailing that some infrastructure is avail-
able or some feedback is feasible), otherwise η = δ
when the destination has no means to select the
source with a packet for it other than randomly.

In the following section, we calculate the value
of these parameters for a special Maximum Secrecy

Rate based model. Note that probability of having
threshold MSR from the intended receiver to the
transmitter (for feedback) does not not vary with
N , and thus feedback mechanisms are assumed to
be available for the model as scaling is not im-
pacted.

3 MSR Model

The N nodes and M eavesdroppers are present in
a unit disc (radius 1/

√
π). Mobility model is as

described above. Based on a scheduling policy Π,
in a given slot, certain set of nodes NT are assigned
as potential transmitters and others as receivers.
Let T be the set of all designated transmitters and
R be the set of all designated receivers.

Channel gain between two nodes (Ui, Uj) located
distance d apart is denoted by γ(Ui, Uj) = d−α.
We assume that all transmitters transmit with unit
power, and therefore, the received signal power
from Ui to Uj equals γ(Ui, Uj) and has the following
distribution: P (γ(Ui, Uj) ≥ z) = πz−2/α.

Interference is caused at a receiver Ri which is
scheduled to receive data from designated trans-
mitter Ti ∈ T , owing to concurrent transmission.
I(Ti, Ri) =

∑
Tj∈T \{Ti} γ(Tj , Ri) represents the in-

terference caused to the transmission Ti → Ri.
In the absence of eavesdroppers, the transmis-

sion criteria for a transmitter-receiver pair (Ti, Ri)
is based on a threshold SINR (S(Ti, Ri)), that is

given by S(Ti, Ri) = γ(Ti,Ri)
N0+I(Ti,Ri)

.

Lemma 1

P (S(Ti, Ri) ≥ y) = y−2/αΘ(1/N).

Proof: SINR is equivalent to the ratio of one ran-
dom variable with the sum of N identical and inde-
pendent random variables (each one with a Pareto
distribution). Distribution of I can be approx-
imated by a stable distribution with appropriate
scaling and the result can be readily derived.

Secure communication can be ensured if and only
if none of the eavesdroppers has a better channel
(SINR) than the receiver because eavesdroppers are
assumed not to collude. This criteria is defined
in terms of Maximum Secrecy Rate, defined for a
transmitter-receiver pair (T,R) as:

MSR(Ti, Ri) =
1

2

[
log

(1 + S(Ti, Ri)

maxEj∈E(1 + S(Ti, Ej))

]
,

where, E is the set of all eavesdropper and has
cardinality M .

Theorem 1 For sufficiently small ρ,

σ = P (MSR(Ti, Ri) ≥ ρ) = Θ

(
1

max(M,N)

)
.



Proof: SINR for legitimate receivers or eaves-
droppers have the same distribution. If the M =
o(N), then the probability of threshold MSR is lim-
ited by the probability of threshold SINR (hence,
Θ(1/N)). If N = o(M), then the probability of
threshold MSR is limited by the maximum SINR
for M eavesdroppers and can be proven to be
Θ(1/M).

4 Analysis of end-to-end delay

In order to derive the minimum end-to-end delay,
we first consider the case where a single packet is
delivered over an empty network. We build on [6, 7]
to derive the approximate end-to-end delay in each
case. We assume that, at each transmission, all the
receivers not carrying the packet yet are potential
targets.

4.1 Two-hop routing

Theorem 2 When two-hop forwarding is used and
the number of possible copies is not limited, then the
mean end-to-end delay verifies:

E[D] ≤ Θ

(
1

δ
√
N

)
.

For the MSR model described in Section III, this
gives

E[D] =

 Θ
(√

N
)

when N = max(N,M)

Θ
(
M√
N

)
when M = max(N,M)

Proof: Defining δ and η allows us to use the results
of Benäım and Le Boudec [6] to express the mean
field limit of the fraction µ1(t) of nodes holding the
packet, as the branching process we are looking at
has a vanishing intensity.

µ1(t) = 1− (1− 1

N
) exp(−δt) . (1)

We use the lower-bound η: η ≥ δ to express the cu-
mulative distribution function (CDF) of the delay
for the packet to reach the destination, in a simi-
lar way as Zhang et al. [7] did for sparse networks
without interference.

Corollary 1 With two-hop routing, when the
number of copies is limited to R, then the end-to-
end delay satisfies E[delay] ≤ T1(R) + T2(R) where

T1(R) = −1

δ
log

(
N −R
N − 1

)
, T2(R) =

1

ηR
.

Proof: T1(R) stands for the mean number of
time slots required for the source to disseminate
R copies, and T2 for the mean time required for
the destination to get the packet, once there are
already R copies in the network. Hence, we have

E[delay] ≤ T1(R) + T2(R). From eq. (1), T1(R) =
1
δ log

(
N−1
N−R

)
. And the expression of the CDF of

the delay: P (t) = 1 − exp
(
−Nη

∫ t
0
µ1(s)ds

)
gives

T2(R) by computing the mean time for reception.
Remark 1: For R =

√
N , we thereby obtain

E[delay] ≤ Θ( 1
δ
√
N

). Limiting R =
√
N achieves

minimum delay. This is the same result found by
Neely and Modiano in [3], Lemma 1.
Remark 2: We consider the D′ definition of delay
to draw a connection with [5]. The transmission
radius L is adapted so that the range includes R
nodes on average (the nodes in the transmission
range of a transmitter are assumed to be silent).
Therefore D′ = T2(R). We can get the same op-
timal transmission range L by solving 1

ηR = D′.

Owing to the so-called cell-scheduling in [5], η = σ
and the results follow.

4.2 Epidemic forwarding

Theorem 3 When epidemic forwarding, a.k.a.
flooding, is used and the number of possible copies
is not restricted, then the mean delay achieved is:

E[delay] ≤ log(N)
(N−1)δ .

For the MSR model described in Section III, this
gives

E[D] =

{
Θ (log(N)) when N = max(N,M)
Θ
(
M
N log(N)

)
when M = max(N,M)

Proof: The proof is based on the same arguments
as proof of Theorem 2, except that we have to dis-
tinguish between process with non-vanishing and
vanishing intensities. Specifically, we get µ1(t) =

1
1+(N−1) exp(−Nδt)

4.3 Spray-and-Wait

In the same way as for two-hop, we will consider
epidemic routing under the constraint of a max-
imum number of copies per packet, i.e., Spray-
and-Wait [9] introduced by Spyropoulos et al. with
R ≤ N−1. If R = N−1, then Spray-and-Wait boils
down to flooding. It has been shown that Spray-
and-Wait achieves the lowest end-to-end delay for
given R [9].

Corollary 2 With Spray-and-Wait routing, when
the number of copies is limited to R, then the end-
to-end delay satisfies E[delay] ≤ T1(R) + T2(R)

where, T1(R) = 1
Nδ log

(
N−1
N/R−1

)
, T2(R) = 1

ηR .

5 Throughput analysis

In this section, we analyze what the throughput
can be for such minimum delay when all sessions
are active. Equalities are in order sense in what
follows.



5.1 Two-hop routing with R redundancy

Lemma 2 For two-hop routing with R copies per-
packet, each user experiences the above-mentioned
minimum delay, provided that λ ≤ Θ (1/T1(R))

Proof: 1
T1(R) is the average rate at which the

source can introduce the packets to the network,
and rate of reception can not be greater than the
rate of transmission. To show that this bound is
tight, we resort to feedback in case it is achievable,
or declare a deadline of D > 2T2 for each packet.
Using Markov inequality one can prove that reduc-
tion in throughput caused by dropped packets is
fractional.

From Corollary 1, we have T1(R) =
1
δ log

(
N−1
N−R

)
, T2 = 1

δR For R = o(N),

T1(R) = R
δN . So we have throughput λ(R) = δN

R
and mean end-to-end delay D(R) ≤ T1(R)+T2(R).

Comparison with [4]: from Remark 2 in Section

IV, we have R =
√
N/D′, and δ = L2

L2N , whereby

T1(R) = R
δN = L2N =

√
(N/D), to get back

the result of Ying et al. [4] for per-user delay and
throughput. Comparison with [5] is non-trivial as
their transmission criteria is end-to-end (allowing
for colluding eavesdroppers).

5.2 Spray-and-Wait with R redundancy

Theorem 4 For Spray-and-Wait with a maximum
of R copies per packet, each user experiences at
most a delay mentioned in Corollary 2, provided
the per-user throughput is no greater than

λR ≤ Θ

(
1

RT1(R)

)
= Θ

(
Nδ

R

[
log

N − 1

N/R− 1

]−1)
Proof: The network is seen by the N sessions as
N/R servers with service time T1(R) each. Buffer
size is maintained constant due to equal intensity
of meeting the source and the destination.

With the model described in Section III, a con-
stant (with N) fraction of nodes are scheduled as
transmitters or receivers at each time-slot. Thus
δ = σ and σ = P (MSR > ρ). Therefore we
get when R = o(N): λR = 1

RT1(R) = δN
R log(R) =

min(1,N/M)
R log(R) . Under such algorithm, the end-to-end

delay of a source packet is still D ≤ T1(R) +T2(R).
The particular case of R = N − 1 corresponds to

flooding and gives λ = Θ
(

1
max(M,N) logN

)
.

6 Delay-Throughput trade-off

Let us now express a bound on the trade-off be-
tween delay and throughput. This bound relies on
the framework described in Section II, and allows
to unify all transmission schemes based on hop-by-
hop criterion, such as [3, 4] and our MSR model of
Section III.

Theorem 5 Under delay D, the per-session
throughput cannot be greater than λ ≤ δηND .

Proof: The number of replicas sent by all sessions
within a time-slot is λRN . The average number of
nodes receiving a packet (replica) at that time-slot
is Θ(δNN). Whereby λR ≤ δN . Moreover, since
T2(R) = 1

ηR and D(R) ≥ T2(R), we get the result.

7 Conclusions

We have developed a framework that generalizes
the study of scaling laws of MANETs. Important
parameters were identified and a uniform analysis
was performed for secrecy, throughput and delay,
specifically, for previously unexplored Spray-and-
wait routing. A model based on MSR is studied
with this framework and analyzed under various
routing schemes.
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