

Andrea G. B. Tettamanzi

Université Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.fr Unit 8

Web Science

PageRank and how Google turns words into money

Web Science

- A deliberately ambiguous phrase.
 - Physical Science is an analytic discipline that aims to find laws that generate or explain observed phenomena
 - Computer Science is predominantly (though not exclusively) synthetic, in that formalisms and algorithms are created in order to support particular desired behavior
- Web science is a merging of these two paradigms
 - The Web needs to be studied and understood
 - ...and it needs to be engineered.
- At the micro scale, the Web is a piece of engineering
- At the macro scale, the Web is an emergent phenomenon
- Interdisciplinary: CS + Mathematics + Sociology + Economics

(cc-attrib Steffen Staab. http://west.uni-koblenz.de)

Web Science Topics

- Modeling Web-related structures, data, users and behaviors
- Analysis of online social and information networks, social media analysis
- Social machines, crowd computing, collective intelligence, and collaborative production (e.g., prediction markets)
- Web Economics
- Sentiment Analysis and Opinion Mining
- Legal Aspects of the Web
- Ethical Challenges
- Web access, literacy, divides, inclusion, exclusions, and development
- Humanities, arts, and culture on the Web

Introduction to PageRank

- Key statistics about Alphabet Inc. (= Google), as of April 9, 2019
 - Market capitalization: ~ \$838 billion (2014: \$375 billion)
 - Revenue : \$136 billion (2014: \$62 billion)
 - EBITDA : \$34.9 billion (2014: \$18.6 billion)

\$1,107/s !!!

- Full-time employees: 98,771 (2014: 54,000)
- As a comparison:
 - GDP of Ukraine: ~ \$126.4 billion
 - If Google were a country, it would be 57^{th} by GDP out of 186
 - In 2016, Alphabet was 94th among the world's corporations by capitalization and 2nd among publicly traded companies
- Not bad for "just" a search engine...

The Key of Success

- Google's success is based on two algorithms :
 - PageRank
 - AdWords + AdSense
- The former allows Google to rank search results:
 - It gives Google its **use value**
 - It has imposed Google as a market leader
- The latter generates the impression of advertisements targeted on the interests of the audience of a Web page:
 - It gives Google its exchange value
 - AdWords allows buying traffic, AdSense allows selling traffic

Agenda

- PageRank
- AdWords + AdSense
- Lab work

Part I PageRank

Andrea G. B. Tettamanzi, 2019

Basic Intuition

- The WWW as a directed graph
 - Its nodes are the HTML pages
 - Its <u>arcs</u> are the . . . hyperlinks
- Which pages would a **random surfer** visit?
 - The random surfers would start at a random page
 - They would jump from one page to the next by clicking a random hyperlink
 - Idea: measure the importance of a page by the probability that it is visited at time t by a random surfer!
- This probability is the visit frequency of the page

Events

Random Variables

Random Processes

A sequence of random variables

$$X_1, X_2, \ldots, X_t, \ldots$$

Each equipped with its own probability distribution.

Notation:
$$\{X_t(\omega)\}_{t=0,1,\dots}$$

Markov Chains

A random process
$$\{X_t(\omega)\}_{t=0,1,\dots}$$

is a Markov chain if and only if, for all *t*,

$$\Pr[X_t = x \mid X_0, X_1, \dots, X_{t-1}] = \Pr[X_t = x \mid X_{t-1}]$$

Transition Matrix

$$\mathbf{T} = \begin{bmatrix} \Pr(X_t = x_1 \mid X_{t-1} = x_1) & \dots & \Pr(X_t = x_n \mid X_{t-1} = x_1) \\ \Pr(X_t = x_1 \mid X_{t-1} = x_2) & \dots & \Pr(X_t = x_n \mid X_{t-1} = x_2) \\ \vdots & & \vdots \\ \Pr(X_t = x_1 \mid X_{t-1} = x_n) & \dots & \Pr(X_t = x_n \mid X_{t-1} = x_n) \end{bmatrix}$$

T is a stochastic matrix:

$$\forall i, \quad \sum_{j=1}^{n} \Pr(X_t = x_j \mid X_{t-1} = x_i) = 1$$

"Idealized" Definition of PageRank

 $q_i = \# \text{ outgoing links from page } i$ $\mathbf{H} = (h_{ij})$ $h_{ij} = \begin{cases} 1/q_i & \text{there exists a link from } i \text{ to } j;\\ 0 & \text{otherwise.} \end{cases}$

Example

Basic Hypothesis

A Web page is important insofar as it is referenced by other important pages

Analysis of the Definition

- There are three factors that determine the PageRank of a page:
 - The number of links pointing towards it;
 - The propensity of the pages containing those links to direct surfers towards it, i.e., the total number of outgoing links;
 - The PageRank of the pages containing those links
- The idealized model has two problems:
 - Pages without outgoing links (*dangling pages*), which can capture surfers.
 - A surfer may also get trapped in a *bucket*, a reachable and strongly connected component, without outgoing arcs towards the rest of the graph.

Real Model: the Google Matrix

- The lines of matrix **H** having all zero elements, corresponding to pages without outgoing links, are replaced by a uniform or arbitrary distribution.
- Let **S** be the matrix thus modified.
- To solve the problem with *buckets*, Brin and Page propose to replace matrix **S** by the Google matrix:

$$\mathbf{G} = \delta \mathbf{S} + (1 - \delta) \mathbf{E} - \mathbf{Teleportation \ matrix}$$

$$\mathbf{damping \ factor} \mathbf{E} = \begin{bmatrix} 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \ddots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{bmatrix}$$

Interpreting the Google Matrix

- The definition of the Google matrix may be explained as follows
 - With probability $\delta,$ the random surfer follows the next link
 - With probability 1δ , the random surfer gets tired following links and directs the browser to a novel URL, which has nothing to do with the current page.
 - In this case, the surfer is "teleported" to this novel page
- The inventors of PageRank suggest a damping factor δ = 0.85 :
 - On average, after following 5 links, the surfer chooses a new random page.
- The PageRank vector is therefore π such that

$$\pi = \pi \mathbf{G}$$

Existence and Uniqueness of the PageRank vector

- The π vector is an eigenvector of **G** of eigenvalue 1.
- The **S** matrix is stochastic, as is matrix **E**.
- The **G** matrix is, therefore, stochastic as well.
- If **G** is stochastic, equation $\pi = \pi \mathbf{G}$ has at least one solution.
- According to Perron-Frobenius' Theorem, if A is an irreducible non-negative square matrix, then there exists a vector x such that x A = r x, where r is the spectral radius of A.
- The **S** matrix is likely to be reducible; however, thanks to the teleportation matrix, **G** is certainly irreducible.
- Furthermore, since **G** is stochastic, its spectral radius is 1.
- As a consequence, a PageRank vector > 0 exists and is unique.

PageRank and Markov Theory

- The random walk model on the Web graph, modified with teleportation, naturally induces a Markov chain with a finite (albeit huge) number n of states (= pages)
- **G** is the transition matrix of such Markov chain
- Since **G** is irreducible, the chain is ergodic and it has a unique stationary distribution, corresponding to the PageRank vector π .

Computing the PageRank Vector (1)

- The **power method** is a numerical method which allows to determine the greatest (in absolute value) eigenvalue of a matrix with real coefficients.
- We take a random vector **x** and we compute the recurrence:

$$\mathbf{x}^{(0)} = \mathbf{x}, \quad \mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} \mathbf{A} / \|\mathbf{A}\|$$

- This sequence converges to the greatest (in absolute value) eigenvalue of matrix A
- To compute π , we start from vector $\mathbf{u} = (1/n, ..., 1/n)$ and we stop as soon as

$$\|\pi^{(t+1)} - \pi^{(t)}\| < \epsilon$$

Computing the PageRank Vector (2)

- The convergence speed of the power method applied to matrix G is of the same order as the rate by which δ^k goes to 0.
- For instance, for $\delta = 0.85$:
 - 43 iterations \rightarrow precision of 3 decimal digits
 - 142 iteration \rightarrow precision of 10 decimal digits
- We also observe that the power method applied to matrix G can be expressed in terms of matrix H
- **H** is an extremely sparse matrix, which can be stored in a memory space of size O(*n*)
- According to rumors, Google recomputes π once per month
- "Google dance": oscillation of π during the computation

Part II AdWords + AdSense ... or how Google turns words into money

What is it all about?

- March 2000 : the bursting of the "Internet" or "Dot-Com" Bubble
 - Many start-ups which offered a use value but no exchange value did not survive
 - Google had a better idea than simply selling advertising space
 - It accumulated "linguistic capital" thanks to its services
 - The idea was to exploit this capital
- An algorithm which automatically organizes speculation on words has allowed Google to create the first global linguistic market
- *Trademarks*: it was already possible to purchase certain words
- Google has boosted and liberalized that market

Annonces - Pourquoi ces annonces ?	
K-Helvetic Tours helvetictours.ch	
www.helvetictours.ch/xHelveticTours	
Jes vacances a la mer aussi peu cheres, ca fait vraiment du bien!	
Vacances tout compris clubmed.ch	
www.clubmed.cn/ 15% surves vacances d'hiver 12/13 ou jusqu'à 480 CHE offerts new l	
15% surves vacances univer 12/15 ou jusqu'à 400 CHP offerts now :	
/overen lungu/à 70% Offren Imbetteblen: Ven Veveren	
voyages Jusqu a -70% - Offices imballables, vos voyages	
Jusqu'à -70% avec Groupon. Ici !	
Vacances 2012 L'été à la mer, en France, Corse, Var, Bretagne	
www.vacances.com/	
Nombreuses annonces, de professionnels et de particuliers, pour les vacances d'hiver.	
Chalets, studios, appartements au ski. Week-ends, voyages, séjours en	
Location - Espagne - Location Aquitaine - Provence et Côte d'Azur	
_e calendrier scolaire - Ministère de l'Éducation nationale	
www.education.gouv.fr > > Le ministère > Repères, histoire et patrimoine	
/acances, Zone A, Zone B, Zone C Vacances de la Toussaint Le départ en	
vacances a lieu après la classe, la reprise des cours le matin des jours indiqués.	
Vacances Scolaires 2011-2012 - Le calendrier scolaire MENE0914826A	
Vacances Look Voyages : séjour pas cher en famille, club tout	
www.look-voyages.fr/	
/otre séjour en club de vacances Lookea, en hôtel ou en formule circuit au meilleur prix	
avec Look Voyages. Départ dernière minute, pas cher ou en promo !	
Villages et Clubs de vacances en tout inclus Thomas Cook	
t.thomascook.fr/village-club-vacances/	
Ambiance. Une ambiance animée en journée comme en soirée. CHAQUE SEMAINE,	
NUS ANIMATEURS CONCOCTENT LE PROGRAMME DU VILLAGE :	

Andrea G. B. Tettamanzi, 2019

les meilleures offres de voyages Culturels, Escapades, Plages Site Officiel Air Transat www.airtransat.ch/ 5 Les plus bas prix pour les vols vers le Canada. Réservez en ligne! Voyager Moins Cher www.voyagermoinscher.com/ Voyage et billet d'avion Promotions et dernière minute. Vacances en France www.declicfrance.com/Vacance France Trouvez vos vacances en France parmi plus de 5000 offres ! Vacances Go Voyages www.govoyages.com/Vacances 8 Choisissez vos vacances au prix le plus bas chez Go Voyages! Vacances à l'étranger www.sejour-express.com/ g Trouvez les moins chères sur le comparateur de vacances

Annonces - Pourquoi ces annonces ?

Tech Travel www.techtravel.ch/

Vacances en Club

www.club-vacances-express.fr/ Trouvez les moins chères sur le comparateur de location en Club

- - - -- -

6

AdWords

- Auction mechanism on words to place advertisements
- All (key)words can bring about an auction
- The algorithm automatically ranks the advertisements according to a calculation in four steps:
 - Bid on a word (E): the advertiser fixes a maximum price she is willing to pay per click
 - Compute the quality score *Q* for the ad (relevance): secret !
 - Compute the rating of the ad, R = E Q, and its rank *i*
 - Compute the price to pay per click:

$$P_i = E_{i+1} \frac{Q_i}{Q_{i+1}}$$

GoogleTrends

Holidays

Buying and Selling Traffic

Ad Words

Ad Sense

on the words to buy their traffic

The Web sites sell their traffic to Google to show the ads

Advantages for the users

- "Free" services (search, docs, email, maps, translate, etc.)
- Useful, relevant, non-invasive advertisement
- Great user experience of on-line contents

Two Sources of Revenue

