
Heavy Virtualization

Guillaume Urvoy-Keller

January 15, 2021

1 / 41

Source documents

Bugnion, Edouard, Jason Nieh, and Dan Tsafrir. "Hardware and software support for
virtualization." Synthesis Lectures on Computer Architecture 12.1 (2017): 1-206.

https://www.intel.com/content/www/us/en/virtualization/
virtualization-technology/intel-virtualization-technology.html

https://en.wikipedia.org/wiki/X86_virtualization

https://www.hardwaresecrets.com/
everything-you-need-to-know-about-the-intel-virtualization-technology/
3/

2 / 41

https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://en.wikipedia.org/wiki/X86_virtualization
https://www.hardwaresecrets.com/everything-you-need-to-know-about-the-intel-virtualization-technology/3/
https://www.hardwaresecrets.com/everything-you-need-to-know-about-the-intel-virtualization-technology/3/
https://www.hardwaresecrets.com/everything-you-need-to-know-about-the-intel-virtualization-technology/3/

Heavy Virtualization dates back to the mainframes era...

.... and made a come-back at the very end of the 90s:

In 1999, VMware released VMware Workstation 1.0 the first
commercial virtualization solution for x86 processors.

Intel introduced its first-generation hardware support for virtual
machines in 2004.

3 / 41

Heavy Virtualization ages

Age 1: Virtualization without Architectural Support
Age 2: Virtualization with Architectural Support

KVM was built on top of the hardware support provided by Intel

What we need to cover first:

Some details about what virtualization is ... as virtualization is not
limited to VM

The role of the hypervisor

The Popek and Goldberg Theorem

4 / 41

Virtualization Reloaded

5 / 41

Virtualization : definition from Bugnion et al.

6 / 41

Virtualization : definition from Bugnion et al.

Definition is grounded in two fundamental principles of computer
systems.

Layering : presentation of a single abstraction
Enforced modularity: guarantees that the clients of the layer
cannot bypass the abstraction layer, for example :

to access the physical resource directly
or have visibility into the usage of the underlying physical
resource.

Virtualization
An instance of layering for which the exposed abstraction is equivalent
to the underlying physical resource.

7 / 41

Virtualization : Definition is not limited to virtual machines

RAID: a redundant array of inexpensive disk is aggregated to
form a single, virtual disk. Two key advantages:

A compatible interface (a block device for both the virtual and
physical disks)→ a filesystem can be deployed identically, with or
without the RAID !!
RAID hides the physical addresses from the abstraction→
physical disks can be swapped into the virtual disk transparently
from the filesystem using it.

8 / 41

Virtualization : Definition is not limited to virtual machines:

OS safely exposes the resources of a computer—CPU, memory,
and I/O—to multiple, concurrent applications.
For example, an operating system controls the MMU to expose
the abstraction of isolated address spaces to pro- cesses;

MMU: Memory Management Unit controls the mapping between
virtual addresses (seen by appli) and physical addresses (seen by
kernel only)

9 / 41

Virtualization Techniques

Multiplexing ex: OS with CPU or memory

Aggregation ex: RAID disk

Emulation ex: a RAM disk emulates a disk in RAM (e.g. /proc in
Linux)

10 / 41

Hypervisor

11 / 41

Hypervisor

Definition
A software (a simple soft like Virtualbox or complete OS like VMware
ESX) runs virtual machines with the goal of minimizing execution
overheads.

Popek and Goldberg in 1974 specifies 3 key features of hypervisor:

Equivalence: exposed resource (i.e., the virtual machine) is
equivalent with the underlying computer.

Safety: VMs are isolated from each other as well as from the
hypervisor.

Performance: VM must show at worst a minor decrease in speed.
• The latter separates hypervisors from machine simulators, e.g.
to simulate ARM processor on Intel (ex: Android simulator)
• Simulator means that no native code of VM is sent to processor
while this is the case of hypervisor→ Direct Execution

12 / 41

Ideal Hypervisor

To achieve high performance→ direct code execution of VM, ie.
from virtual CPU to physical

As guest OS is unprivileged→ frequent traps.

Hypervisor will emulate action for guest OS and give it back
control of CPU

→ Trap-and-Emulate approach
Ex: guest OS wants to manipulate page table. Hypervisor will
take over after trap, update the shadow page table and the real
page table ...and resrtart the VM

13 / 41

Classical Virtual Memory: an OS hides the physical memory
to the processes via page table (next slide)

14 / 41

Classical Virtual Memory: OS controls the Page Table

15 / 41

Virtual Memory with VMs: hypervisor controls the Real Page
Table and Emulate it for guest OS

Tow levels of indirections
Two levels of traductions:

Guest program→ guest OS

Guest OS→ host OS

16 / 41

Virtualization of CPU, RAM, I/O

CPU and RAM virtualization is achieved via temporal and spatial
multiplexing

RAM→ spatial multiplexing
CPU→ temporal multiplexing

I/O virtualization is done via emulation
Key advantage: portability→ a VM sees the same virtual
hardware on different physical platform (when migrated or in case
of change of physical parts)
Hardware support now exists - see age 2 of virtualization

17 / 41

Example with an early type 2 hypervisor : VMware
workstation

One sees a mix of multiplexing and emulation

18 / 41

The different types of virtualization

Full (software) virtualization Runs unmodified guest OS on
architectures (hardware) lacking support for it→ Age 1
Hardware Virtualization: Hypervisors benefits from support from CPU
and possibly peripherals→ Age 2
Paravirtualization: favors simplicity and efficiency over full compatibility
→ modified guest OS.

Popularized by Xen

Still used nowadays in the form of platform specific extensions
often implemented as driver to unmodified guest OS, e.g. to
implement high performance front-end device. Ex: Virtualbox
guest additions

19 / 41

A last problem...is an ISA virtualizable?

What does it mean?
It means that the trap-and-emulate approach is doable ⇐⇒ the
hypervisor can exclusively rely on direct execution

Indeed, imagine that for some instructions the guest OS ends up in an
undesirable state as no trap occurred→ Problem!!

20 / 41

Popek and Golberg theorem

Theorem states if an ISA is virtualizable
Assumptions:

One processor
Processor has two modes of executions
Support of virtual memory via segmentation where physical
memory consists of set of segments of size L and a process sees
a virtual address x ∈ [0,L] mapped to a segment with offset B (ie
physical address ∈ [B,B+L])
Processor state, called processor status word (psw) consitsts of:

execution level (root,user)
segment register (B,L)
current program counter (PC), a virtual address

Trap saves psw in a well-known memory and load in psw another
well-known address (so that OS can take over control and check
psw of stopped process)

21 / 41

Popek and Golberg theorem

Two types of sensitive operations:

Control sensitive can change the system state

behavior-sensitive if its semantics depends on the actual values
of system state

22 / 41

Elements of proof (when ISA virtualizable)

Hypervisor is the only software in root mode

Each VM has a fixed and contiguous part of physical memory→
isolation

Hypervisor has reserved its own physical memory, different from
VMs

Hypervisor keeps in (its own) memory a copy of the psw of each
VM

...

23 / 41

And the bad news....

“Analysis of the Intel Pentiums Ability to Support a Secure Virtual
Machine Monitor” USENIX 2000, J. Robin, C. Irvine
Over the 250 instructions, 17 are sensitive but not privileged (they
are called critical)
Problem is still present in current x86 architecture (common to
Intel and AMD)

ARM processors also feature sensitive but not privileged
instructions

24 / 41

Behavior and control sensitive operations: when things go
wrong

Behavior sensitive example

Assume that an instruction can read the actual PSW state (root or
user) without a trap→ a guest OS could observe that it executes in...
user mode !

Control sensitive example

In x86: popf

Popf in user mode: change ALU flag

Popf en kernel mode: change ALU and system flag

Problem: if guest OS executes this command, no trap to hypervisor
and guest OS in inconsistent state

25 / 41

Age 1: Non Hardware Assisted Virtualization
Subtitle: How to deal with a an ISA that does not respect the Popek and Goldberg criterion

26 / 41

The VMware approach

Combine direct execution with dynamic binary translation which
consists in patching the instructions sent by guest OS.

Key idea: most of the time, e.g. to execute well-behaving
applications from guest, direct execution is possible and fast!!!

Example : a guest application that mostly performs computations
on its data should benefit from direct execution

Note: still to solve the problem of memory access as guest OS
does not control MMU: we don’t discuss this but VMware
optimized the process.

27 / 41

The VMware approach

VMM runs at the same level as host OS

VMM delegates I/O operations from VM to VMX that acts as a normal
process asking I/O operation to the host OS→ no need to take care
about drivers

World switch: when VM traps, provides all the info for VMM to do its job.
Saves more than a classical trap to help VMM.→ hardware support
from Intel/AMD will replace the world switch with info per VM on
processor.

28 / 41

The Xen approach

Xenserver first released in 2003.

Prohibit the use the 17 offenging commands

Replace them with hypercalls: system calls from guest OS to
hypervisor→ need to patch guest OS

29 / 41

Virtualizing I/O

Where to virtualize
System calls? Drivers? I/O operations? → too complex
Solution used: driver level (emulation)→ offer a normalized
interface to device(e.g., always the same Intel Ethernet card,
irrespectively of physical one) and provide a specific driver to
guest OS to intercept and translate requests

30 / 41

Virtualizing I/O: The Xen approach

Pack all drivers in a specific VM, called Dom0 (to prevents bugs in
drivers from affecting hypervisors)

Offer a specific drivers to VMs (DomU) so as to simplify info
reception at Dom0

31 / 41

Age 2: Hardware Assisted Virtualization

32 / 41

Intel and AMD

x86 ISA common to Intel and AMD processors

Intel Virtualization Technology (Intel VT)

AMD Virtualization (AMD-V)

Introduced in 2006...

....new functionalities introduced gradually.

33 / 41

Intel VT-x

34 / 41

Intel VT-x philosophy

Do not change the semantics of instructions, ie. don’t remove the
17 offending instructions

Duplicates the visible state of the processor and provide a new
mode of execution : the root mode
→ hypervisor and VM on different parts of the processor.

35 / 41

Intel VT CPU virtualization: The Root mode in action

36 / 41

Intel VT-x: provide the hypervisor info on the exited VM

VMCS plays the role (in HW) of the world switch (in SW)

37 / 41

Intel VT portfolio - cont’d

Memory Virtualization

Non virtualized case: there exists already virtual pages (seen by
programs) and real pages seen by OS.
In virtualized cases, two levels of traductions:

Guest program→ guest OS
Guest OS→ host OS

Intel offers extended page tables (EPT)
known under the name SLAT, Second-Level Address Translation
in AMD

38 / 41

Intel Extended Page Tables

Extended Page Tables (EPT) is an Intel x86 virtualization
technology for the memory management unit (MMU), ie circuit in
charge of translating virtual memory (seen by program) to real
memory (on chipset)

EPT support is found in Intel’s Core i3, Core i5, Core i7 and Core
i9 CPUs....

39 / 41

Intel VT portfolio - cont’d

I/O Virtualization
E.g. enable :

packet processing offloading to network adapters (to compute
checksums - a known performance issue at high speed)
Direct disk I/O

Set of technologies:
Intel R© Virtualization Technology for Directed I/O (VT-d)
Virtual Machine Device Queues (VMDQ),
Single Root I/O Virtualization (SR-IOV, a PCI-SIG standard)
Intel R© Data Direct I/O Technology (Intel R© DDIO) enhancements

40 / 41

Intel VT I/O Virtualization: example of DMA

Guest OS would like to do DMA for its programs
DMA: controller of device allowed to directly copy its data to RAM
→ no additional work for CPU

Problem: guest OS does not see physical pages (only hypervisor
does)

Use of I/O MMU→ maps guest-physical address to host-physical
addresses

41 / 41

