
Heavy and Light
Virtualization

Guillaume Urvoy-Keller
UCA/I3S

01/07/2022

2

Part I: Introduction

3

Introduction

➢ Set of techniques to enable several OS to run
simultaneously on a physical machine/server (≠
multi-boot)

➢ Virtualization entails a specific layer called
a hypervisor, a.k.a, virtual machine
monitor (VMM)

➔ Mediator between physical resources and the OSes
that are virtualized

4

➢ Processors features two modes : user and kernel

Virtualization = unpriviledging an OS

OS

apps

kernel
mode

user
mode

5

Unpriviledging an OS

OS

apps

kernel
mode

user
mode

virtual machine monitor

OS

apps

OS in user
mode is called
Guest OSGuest OS

6

Hypervisors Zoo

➢ For servers :
➔ VmWare Vsphere ~ 60% market share

➔ Microsoft Hyper-V ~ 20%

➔ Citrix XenServer ~ 4% - Amazon Web Services

➔ QEMU/KVM – default openstack deployment

➢ For clients
➔ Oracle Virtualbox

➔ Vmware player

➢ Source :
http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtua
lization-market-cm316783

http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtualization-market-cm316783
http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtualization-market-cm316783

7

Why virtualizing?

➢ In the 90s, cost of servers decreased gradually

➢ Software editors (Microsoft, distribution Linux)
advocate one application/service per server →

➔ One DNS server

➔ One mail server

➔ One NFS server

➢ Each server with specific OS version and libraries

➢ Servers isolation

8

Why virtualizing

➢ Net result:
➔ A host of servers in servers rooms (data centers)

➔ 80% have an average utilization below 10%

➔ Maintenance/operational costs increase with the number of servers

➔ Server rooms are not infinitely extensible lack of→

 place

➔ Non negligible electricity/air conditioning cost

9

Why virtualizing

➢ Servers are less expensive but also more powerful
➔ 64 bits multi-core with tons of RAMs are the norm

➔ One server in 2009 is roughly estimated to be one order of
magnitude more powerful than a server in 2004

➢ Replacing servers on a one to one basis is not an
option any more

➢ Still, one wants to ensure service isolation

10

Advantages of virtualization

➢ Consider a company that has virtualized its IT

➢ Typical set-up for an SME:

➔ Two high-end servers, a SAN (Storage Area Network) to
share/consolidate storage between the servers

➔ Licensing cost, e.g., Vmware

➔ Training cost for IT service

SANSource : http://oracle-base.com

11

Advantages of virtualization

➢ Cost reduction

➔ 20 to 40% (even if you had a a few tens of servers before and
just 2 after)

➢ More space in the server room

➢ New functionalities

12

Virtualization: New features

➢ Migration of VM from one physical server to the other one

➔ In case of failure (rare) higher availability→

➔ Maintenance of physical servers (regular, e.g. security patches)

13

Virtualization: New features

➢ Fast start-up of new machines through a GUI:

➔ Pick number of CPU, amount of memory, disk type and size, network access, OS

➔ Indicate where the ISO image of OS

➔ Start installation

➢ Using ISO takes time

➔ Use of templates(one for Linux Debian, etc) that are duplicated (aka clone in
the virtualization world) on the fly

➔ Called images in Virtualization world

✗ Vagrant images, AMI (Amazon Images), Docker images

➢ Current trend : automatic preparation of images out of ISO

➔ See Packer https://packer.io/

14

Virtualization: New features

➢ Snapshots of VM stage

➢ Example :
➔ You want to update a library/software but you are unaware of final

outcome

➔ You can :

✗ Make a snapshot
✗ Install the library/software
✗ Roll-back time if it is not satisfactory

➔ Also used by hypervisor when freezing (stopping/saving) a virtual
machine

15

Snapshots

Source : https://www.altaro.com/vmware/wp-content/uploads/2017/02/022817_1130_Workingwith1.png

16

Virtualization: New features

➢ Isolation

➔ Virtualization still enforces the one server per machine rule

➔ If one VM is compromised, the other services remain safe

➢ On the fly reconfiguration of VMs more CPU, more memory, new virtual disks→

➢ Easier configuration of VM as hypervisor always displays the same interface to the VM

➔ This is the hypervisor that handles the gory details, e.g., supports of SSD drive while
VMs are exposed always an SCSI drive no need to install driver in VMs!!!!→

17

Various types of virtualization

➢ Different types:
➔ Bare-metal (native) versus host-based

➔ Virtual versus para-virtual.. versus hardware assisted

➔ Container-based versus hypervisor-based

18

Bare metal vs. host-based

➢ Bare-metal :
➔ Layer 1

➔ Production servers, data centers

➔ Hypervisor seats directly on top of hardware

✗ Machine boots on hypervisor directly
✗ Installed as an OS

➔ Examples :

✗ VMware VSphere Hypervisor
✗ Microsoft Hyper-V
✗ Citrix XenServer

19

Bare metal vs. host-based

➢ Host-based
➔ Hypervisor is an application running in an existing OS

➔ Layer 2 virtualization

➔ Typically deployed on end-user machines

✗ VMware player
✗ Virtualbox

Source : wikipedia

20

Bare metal vs. host-based

➢ KVM – Kernel Virtual Machine

➔ Support of virtualization in Linux kernel

➔ Not an hypervisor per se

➢ Need QEMU – Quick emulator

➔ Layer 1 in terms of perf

➔ Layer 2 in style…

➢ QEMU/KVM Default in
Openstack

➢ Hyper-V similar (hybrid layer
1/layer2)

Source :

21

Full vs. Para-virtulization

➢ Key question : is there a need to patch the guest OS?

➔ No full virtualization→
✗ Direct support by hypervisor
✗ VMware approach

➔ Yes para-virtualization→
✗ A (typically small) part of the kernel is patched to interact with

 hypervisor
✗ Better performance
✗ Used by Xen initially

➢ Current trend : no patch but installation of guest additions
inside OS

22

Hardware assisted Virtualization

➢ Intel and AMD propose various solutions to support virtualization at
hardware level ease of hypervisor task→

➢ Intel VT-x, AMD-V

➢ Enable OS of virtual machines to do more actions natively addition of a →
duplicated structures within processor and a new control level called (-1) for
hypervisor

Ring -1

23

Container-based vs. Hypervisor-based

➢ Rather than using an hypervisor, the container
approach shares kernel among VM

➢ On a typical server :

➔ 10-100 virtual machines

➔ 100-1000 containers

➢ Container engines:

➔ LXC (LinuX Containers – August 2008)

➔ Docker (started in March 2013)

➔ Openvz (started in 2005)

24

Containers in Linux

➢ Docker, LXC and the other engines rely on Linux
kernel support for containerization

➢ A container is a group of processes on a Linux host,
grouped together in an isolated environment.

➔ Use of namespaces so as to assign to a set of processes :
isolation, their own network stack (interfaces, sockets, routing), volumes

➔ Use of cgroups to assign resources to processes, eg., CPU share,
memory limit

25

Container-based vs. Hypervisor-based

➢ Containers:
➔ Inside the box, it looks like a VM.

➔ Outside the box, it looks like normal processes.

➔ A container often does not contain a full VM, but application
processes, eg. Apache or MySQL server.

➢ VM:
➔ You are really root inside the VM as compared to containers

➔ A “top or ps” command in host OS will display one process
per VM with heavy virt. against all the processes inside the
containers with light virt.

26

Container-based vs. Hypervisor-based

➢ Typical arguments for container approach
➔ Source : http://goo.gl/bFHSh
➔ Ships = physical delivery...or download for light/heavy virt

No virtualization

http://goo.gl/bFHSh

27

Around virtualization: management of
VMs, containers, virtual network

➢ Management of VMs
➔ Vmware Vsphere, Citrix Xen are hypervisors and can offer

management of a handful nodes of the same type (ESX servers
only or Citrix Server only)

➔ Vagrant: Management of VMs a hypervisor independent approach

✗ Notion of images (boxes in Vagrant)
✗ Provisioning of VM: Puppet, Chef, Ansible to configure

 automatically the VMs
✗ A single file that includes everything

28

Vagrantfile (excerpt)

29

Around virtualization: management of
VMs, containers, virtual network

➔ Cloud platforms to orchestrate at a larger scale, with possibly different
hypervisors

✗ Openstack
✗ Each function (management of VM, of network, of volumes, of identities) is a component

✗ Nova: compute nodes (hypervisors)
✗ Cinder : volumes
✗ Neutron : network

✗ Components interact through a REST API
✗ Compute nodes (physical servers) might run different hypervisors: KVM, Xen, Citrix, etc

30

Around virtualization: management of
VMs, containers, virtual network

➢ Orchestration of containers
➔ Single server level: Docker, LXC

➔ Several servers level: Docker Swarm

➢ Advanced orchestration: Kubernetes

31

Part II: the nuts and bolts of
(hypervisor-based) virtualization

32

Refresher on computer architecture and OS
➔ Computer Components

➔ ISA (Instruction Set Architecture)

➔ Operating System

33

33

34

Processor

➢ Nowadays processors

➔ Several cores

➔ Hyperthreading 2 processes sharing the same core→

➢ Consequence: if you have p processors with c core and
hyperthreading, VMware, Xen and others will expose 2 * p * c
vCPU (virtual CPUs)

➢ We talk hereafter about processor by referring to a basic
computation unit (a processor or a core or half a core..)

➢ Important : at a given time instant, a processor is servicing a
single program:

➔ Either a user program (processor in user mode)

➔ Or the OS (processor in kernel mode)

35

ISA

➢ Architecture of a processor defines

➔ A set of resources : memory, registers, ...

➔ A set of instructions that operate on registers and memory

➢ Definition of storage resources + instructions Instruction Set →
Architectures (ISA)

➢ One distinguishes :

➔ User instructions for programs computations→

➔ System instructions for OS management of resources→

36

Typical ISA: instructions + HW archi

37

Registers

➢ Generic(aka working) registers
➔ Can host different types of values

➢ Typed registers: for specific operands
➔ ISA dependent

➔ ex: pointers towards memory segments in Intel IA-32 ISA

➢ Specific registers:
➔ Program counters: index of current instuction

➔ Condition

38

User ISA

➢ Four main categories
➔ Load/store memory ↔ registers
➔ Integral/logical operations and shifting
➔ Floating point operations
➔ Branching and jumps

39

System ISA

➢ Processors features several execution modes :
➔ In general 4, from 0 to 3

➔ Windows and Unix use levels 0 and 3

➔ Level 0 : system mod for OS to control and share fairly resources
among programs

➔ Level 3 : user programs

➢ Execution mode is stored in a specific register

40

System registers

➢ Time Register

➢ Traps and interruptions registers

➢ Traps and interruptions masking registers

➢ Page table pointer
➔ Mapping between logical and physical spaces. Kept in RAM

➔ “Page table pointer” points to the memory location of this table

41

Traps and interruptions

➢ Traps and Interruptions lead to a transfer of control
of processor to OS

➢ Interruption: request from an I/O device to the OS

➢ Trap:
➔ An error during the execution of an instructions(page fault ,

division by 0, ..)

or
➔ An explicit demand from a program

42

System ISA : management of processor

➢ OS must be able to hand over control of the
processor to a user program

➔ Jump to an instruction of a user program

➔ Modification of execution state register

➢ … and must be able to gain control later again
➔ Thanks to a timer that will generate an interruption

43

System ISA : I/O management

➢ Can be specific instructions

➢ Can be specific addresses translated as instructions
to be executed by memory controller

➢ Wide variety of I/O devices ISA offers in general →
only a few basic instructions

➔ OS in charge of communication with devices through the device driver

44

Refresher on Operating system

4
4

45

OS tasks

➢ Manage resources on behalf of user programs
➔ Time multiplexing of processor

➔ Management of physical memory via page table and TLB

✗ When page error, OS takes over control of CPU

➔ I/O management:

➔ Processes perform requests to OS via system calls (that result in traps)

➔ OS uses device drivers (that are added to OS) to control devices

46

47

Interface with OS

➢ User mode ISA directly accessible to user programs
➢ ABI (Application Binary Interface) is the interface with OS
➢ API: high-level libraries (as compared to ABI)
➢ System calls:

➔ Process management, ex : fork()
➔ Memory management, ex : malloc()
➔ I/O, ex : . read()

➢ Abstraction of traps and interruptions at ABI = signals

48

ISA, ABI, API

