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Abstract

Due to the cost-efficiency of the ECG, the interest in
noninvasive techniques to assess atrial fibrillation (AF)
electrophysiological complexity is increasingly high. Still,
ECG-based methods to measure AF complexity are limited
in clinical practice and need estimation of the atrial activ-
ity (AA) signal from sufficiently long ECG recordings. The
present work proposes an algorithm for tensor decomposi-
tion called constrained alternating group lasso (CAGL) as
a noninvasive tool to quantify AF complexity. Experiments
with a database of 59 ECG recordings from 20 patients
suffering from persistent AF show that CAGL is able to
both extract the AA and quantify its complexity from very
short ECG recordings (1.06± 0.20 s). All the patients had
undergone step-wise catheter ablation (CA) that ended in
procedural AF termination. CAGL is applied on the ECG
recording before CA and at each step procedure, measur-
ing the rank of the tensor that provides the AA signal. It is
observed that such rank decreases at each step of the CA
procedure, showing a less complex AA signal as the ab-
lation is performed. A statistical correlation between AA
complexity measured by the new index and AF recurrence
after CA is observed. The proposed index is a potential
tool to guide CA procedures in real time.

1. Introduction

Atrial fibrillation (AF) is the most frequent sustained
arrhythmia encountered in clinical practice, responsible
for an increasingly high number of hospitalizations and
deaths [1]. This challenging cardiac condition is known as
the last great frontier in cardiac electrophysiology, as the
electrophysiological mechanisms responsible for its trig-
gering and maintenance are not completely understood. A
noninvasive and cost-effective way to study this cardiac
rhythm disorder is analyzing the atrial activity (AA) signal
from the standard 12-lead electrocardiogram (ECG). How-
ever, the AA during AF is characterized by low-amplitude
fibrillatory waves, called f-waves, that are masked by the

QRS complex responsible for the ventricular activity (VA)
in each heartbeat. In addition, the AA sometimes presents
an amplitude lower than the noise, hampering its analy-
sis [2].

During AF, the AA and the VA signals are typically
assumed uncoupled, so that the extraction of AA from
the ECG admits a blind source separation (BSS) formula-
tion [3]. The block-term decomposition (BTD) built from
Hankel matrices, proposed as a technique to solve BSS
problems in [4], was used to noninvasively extract the AA
signal from AF ECG recordings, showing that it can out-
perform the matrix-based techniques in this particular ap-
plication [5], [6].

Step-wise catheter ablation (CA) is an effective ther-
apy to treat persistent AF and restore sinus rhythm [7].
Hence, methods to measure AA complexity at each pro-
cedural step are relevant to improve clinical analysis and
guide CA in real time. Furthermore, it would be desirable
to clarify the impact on AF of each intervention step such
as pulmonary vein isolation (PVI) and other widely used
techniques [8], [9]. However, existing methods for nonin-
vasive quantification of AF complexity are limited due to
the fact that sufficiently long ECG recordings are required,
hindering their use in clinical practice.

Aiming to overcome such limitations, the present work
introduces a recently proposed algorithm to compute the
BTD, called CAGL [10], as an AF complexity index.
CAGL is able to jointly extract the AA signal from the
ECG and measure AF complexity from very short record-
ings (1.06± 0.20 s). The AF complexity is measured from
the rank of the tensor block associated with the AA signal.

2. Methods

2.1. Block Term Decomposition

An ECG recording from K leads composed by N time
samples can be modeled as a matrix factorization:

Y = MS ∈ RK×N (1)
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where M ∈ RK×R is the mixing matrix, modeling the
propagation of the cardiac electrical sources from the heart
to the body surface, S ∈ RR×N is the source matrix that
contains mainly the atrial and ventricular sources and R
is the number of sources [3]. Nevertheless, matrix-based
methods impose constraints that may lack physiological
grounds. In this case, we propose a tensor approach using
Hankel-BTD model that outperform matrix-based tech-
niques under much milder constraints [4], [10].

A tensor is an extension of the matrix concept. While
matrices are two-dimensional arrays, a third-order tensor
Y ∈ RI×J×K is a three-dimensional array, whose BTD is
written as:

Y =

R∑
r=1

(
ArB

>
r

)
◦ xr (2)

where Ar∈RI×Lr and Br∈RJ×Lr are the factors matri-
ces, and have rank Lr. The symbols (·)> and ◦ denote the
transposition operator, and the outer product, respectively.

The Hankel-BTD method suits the characteristics of AA
in AF episodes. Due to the quasi-periodic nature of AF sig-
nals, atrial sources can be well represented by an all-pole
model, i.e., a sum of complex exponentials [11]. Hence,
each ECG lead can be mapped onto a Hankel matrix, and
these matrices are stacked in a third-order tensor YH, as
described in [4], [6], that admits the following model:

YH =

R∑
r=1

H(r)

S ◦m.r (3)

where H(r)

S is a Hankel matrix built from the rth source of

S, and m.r is the rth mixing matrix column.

2.2. Constrained Alternating Group Lasso

In general, an approximate BTD is computed by mini-
mizing the Euclidean distance between the observed data
tensor Y ∈ CI×J×K and a model of fixed structure with
respect to the model components:

f(A,B,X) ,
∥∥∥Y −∑R

r=1

(
ArB

>
r

)
◦ xr

∥∥∥2
F
. (4)

In the special case of interest, Hr must belong to the
subspace of Hankel matrices with dimensions (I × J),
denoted SH. The mode-3 slices Y..k of the observed
tensor are Hankel by construction. However, a solution
(Â, B̂, X̂) of (4) may not satisfy ÂrB̂

T
r ∈ SH, due to

noise and modeling imperfections. Also, algorithms based
on (4) are strongly dependent of the initialization of its ma-
trix factors and do not estimate the model parameters, i.e.,
the number of blocks and their ranks.

To overcome such limitations, instead of using a fixed
BTD structure as in (4), an algorithm called AGL and its

constrained version described for Hankel matrices called
CAGL are proposed in [10]. This method includes penal-
ization terms promoting low-rank blocks and controlling
the number of blocks, yielding criteria of the form:

F (A,B,X) , f(A,B,X) + γ g(A,B,X) (5)

where γ > 0 is a regularization parameter and g is a regu-
larization function of the form:

g(A,B,X) , ‖A‖2,1 + ‖B‖2,1 + ‖X‖2,1 . (6)

Notation ‖ · ‖2,1 denotes the mixed `2,1-norm, i.e., the
sum of `2 norms of the columns of its matrix assignment.
Due to the geometric properties of the mixed `2,1-norm,
solutions where A, B and X have null columns (for suf-
ficiently high γ values) will be induced, allowing one to
select the relevant low-rank blocks. This method is called
group lasso and is a generalization of the the lasso estima-
tor principle [12].

In order to ensure the Hankel structure of the matrix fac-
tors at the end of iterations, a structured low-rank approxi-
mation is applied at convergence of the algorithm, yielding
CAGL. For this purpose, the Cadzow’s Algorithm [13] is
used at the end of the iterations, which consists in perform-
ing alternating projections onto the Hankel subspace SH,
so that Ĥr ≈ ÂrB̂

T

r ∈ SH. A detailed description of the
CAGL algorithm can be found in [10].

2.3. Tensor-Based AF Complexity Index

The complexity of a signal constructed from complex
exponential sums is intrinsically related to the number of
poles. Since the tensor block correlated with the AA sig-
nal presents a Hankel structure, the rank of its matrix factor
Lr is equal to the number of poles [5]. Therefore, the pro-
posed index is measured from the rank of the block that
represents the atrial source, that allows a more global view
of what goes on in the atria, while a catheter provides more
local information.

2.4. Database and Experimental Setup

The present database consists in 59 ECG recordings
from 20 patients suffering from persistent AF, who had
undergone step-wise CA that ended in procedural AF ter-
mination. All recordings belong to the Cardiology Depart-
ment of Princess Grace Hospital Center, Monaco, acquired
at a 977 Hz sampling rate. They are preprocessed by a
zero-phase forward-backward type-II Chebyshev bandpass
filter with cutoff frequencies of 0.5 and 40 Hz, in order to
suppress high-frequency noise and baseline wandering.

Twenty male patients compose the population with av-
erage age, height and weight, respectively, of 60.6 ± 9.4
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Figure 1. Right: Box-and-whisker plot showing the rank estimated by CAGL for all patients at different CA steps: initial
(before ablation); intermediaries (CA between the first and penultimate steps); outcome (after the last CA step). Left: Box-
and-whisker plot at the beginning of CA and after PVI for the group of 17 patients who underwent this CA step. Notation
(n) indicates the number of ECG segments considered in each box.

years, 177.8 ± 6.2 cm and 85.6 ± 12.7 kg. Left atrium1

diameter was 45.8 ± 7.9 mm. In addition, AF history
was of 68.6 ± 59.6 months, while duration of the current
AF episode (ongoing at the time of CA) was 16.3 ± 25.2
months.

The segment with the largest TQ segment is chosen for
each patient, length ranging from 0.72 to 1.42 seconds. A
window with length 1.06 s, yields 1037 samples, a direct
row-Hankelization of this matrix results in a tensor of di-
mensions 519 x 519 x 12, whose approximate BTD de-
mands a large computing time. Therefore, we downsample
the signals by a factor of 10 before apply the decomposi-
tion in order to reduce its computing time, with practically
negligible information loss. In this example, the resulting
tensor Y have dimensions 52 x 53 x 12.

CAGL is applied to ECG recordings after each CA step,
with a γ-sweeping procedure, inspired by solution-path
techniques, by taking 50 equispaced values in the interval
[8 × 10−4, 0.5 × 10−2] and keeping the last solution. We
start the algorithm with R = 6 random blocks and rank
Lr = 40 as initial guess [10]. The task of measuring esti-
mation quality is challenging since the ground truth is un-
known. Nevertheless some AA characteristics during AF
must be exploited to guide sources selection. The parame-
ters used to evaluate AA extraction are spectral concentra-
tion (SC), dominant frequency (DF) and kurtosis as well
as visual inspection, as detailed in [6], [14], [15].

1The value for one patient was replaced by the mean.

3. Experimental Results

3.1. AA Complexity influence by PVI

The impact of CA at each step on AA complexity is as-
sessed in terms of rank estimation by CAGL in the whole
dataset. Before CA, ranks range from 12 to 33, whereas
after all steps of the CA procedure, ranks range from 6 to
16, referred to, respectively, as ‘Initial’ and ‘Outcome’ in
Figure 1. Initially, the population present a median rank
21.5, while at intermediaries steps is 15 and after CA it
becomes 10.5, illustrating that the rank decreases at each
step of the CA procedure as shown in Figure 1. This
plot graphically depicts data through their quartiles, with
boxes’ edges represent the 25th and 75th percentiles, hori-
zontal line in the middle of the box represents sample me-
dian and black whiskers represent the extreme data values
that are not considered as outliers.

In observed segments, the rank of extracted AA sources
becomes less complex as the ablation is performed as one
could intuitively expect. In addition, a separate assessment
of the 17 patients undergoing PVI is also shown in Fig-
ure 1, presenting a drastic reduction of the proposed index
after this CA step, from a median value of 20 to 14.

3.2. AF Recurrence and Complexity

To assess the relationship between population’s features,
Pearson correlation (r) between the initial rank estimated
by CAGL, i.e., before any patient had undergone CA pro-
cedure, and AF recurrence, i.e., the time that each patient
remained in sinus rhythm before AF relapse is −0.63. A
statistical relevant value of negative correlation well illus-
trated by its scatter plot and linear regression in Figure 2,



seems to indicate an influence of initial rank on AF recur-
rence.

Finally, 2 patients registered ranks 12 and 18 but had no
information about AF recurrence after the CA procedure,
since they dropped out of the study. Hence, they were ex-
cluded from this assessment.
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Figure 2. Scatter plot of the initial estimated rank (before
CA) of the tensor block that provides the AA signal versus
AF recurrence. A negative correlation can be observed.

4. Conclusions

The present work proposed a novel index to noninva-
sively measure the AF complexity using tensor models.
This index is based on the CAGL algorithm for BTD com-
putation, which is able to jointly extract the AA signal
and measure AF complexity from very short ECG record-
ings. Experiments on a database of 20 AF patients have
shown that the rank of the block that provides the AA sig-
nal decreases at each step of the CA procedure. Also, it
was observed a negative correlation between the estimated
rank and AF recurrence. In conclusion, this rank param-
eter could improve clinical analysis and support real-time
guided CA, improving its accuracy, while reducing its cost
and duration.

Future work should focus on comparing the proposed
complexity parameter with other state-of-the-art indices
and performing experiments in a larger database of patients
in order to provide more relevant clinical results.
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