Blind channel identification in Alamouti coded systems: a comparative study of eigendecomposition methods in indoor transmissions at 2.4 GHz†

Héctor J. Pérez-Iglesias1, José A. García-Naya1, Adriana Dapena1*, Luis Castedo1 and Vicente Zarzoso2

1Departamento de Electrónica y Sistemas, Universidade da Coruña, Facultad de Informática, Campus de Elviña, no. 5, 15071 A Coruña, Spain
2Laboratoire I3S, Université de Nice-Sophia Antipolis, Les Algoirishes, Euclide-B, BP 121 06903 Sophia Antipolis, France

SUMMARY

This paper focuses on blind channel estimation in Alamouti coded systems with one receiving antenna working in indoor scenarios where the flat fading assumption is reasonable. A comparative study of several channel estimation techniques in both simulated and realistic scenarios is presented. The tested methods exploit the orthogonality property of the Alamouti coded channel matrix, and are based on the eigendecomposition of a square matrix made up of second-order statistics (SOS) or higher order statistics (HOS) of the observed signals. An experimental evaluation is carried out on a testbed developed at the University of A Coruña (UDC) and operating at 2.4 GHz. The results show the superior performance of the SOS-based blind channel estimation technique in both line of sight (LOS) and non-LOS (NLOS) channels.

1. INTRODUCTION

During the last decade, a large number of space-time coding (STC) techniques have been proposed to exploit the spatial diversity in multiple input multiple output (MIMO) wireless communication systems that employ multiple antennas at both transmission and reception (see, for instance, References [1, 2] and references therein). A remarkable example is orthogonal space time block coding (OSTBC) because it is able to provide full transmit diversity without any channel state information (CSI) at transmission and with very simple encoding and decoding procedures [3, 4]. The basic premise of OSTBC is the encoding of the transmitted symbols into an orthogonal matrix which reduces the optimum maximum likelihood (ML) decoder to a matrix-matched filter followed by a symbol-by-symbol detector.

The OSTBC scheme for MIMO systems with two transmit antennas is known as the Alamouti code [3] and it is the only OSTBC capable of achieving full spatial rate for complex constellations. Other OSTBCs have been proposed for more than two transmit antennas but they suffer from severe spatial rate loss [4, 5]. The Alamouti code can be used in systems with one or multiple antennas at the receiver. Here, (2 \times 1) Alamouti coded systems are used due to their simplicity and their ability to provide maximum diversity gain while achieving the full available channel capacity. It should be noted that Alamouti schemes do not achieve the full potential capacity with more than one receive antenna [6], although the difference is small and of course both diversity and capacity are significantly increased with more than one receive antenna. Because of these advantages, the Alamouti code has been incorporated in the IEEE 802.11 and IEEE 802.16 standards [7].

Coherent detection in (2 \times 1) Alamouti coded systems requires the identification of a (2 \times 2) unitary channel matrix. The standard way to estimate this channel matrix is through the transmission of pilot symbols, also referred to as training sequences. However, the inclusion of pilot symbols reduces the system throughput (equivalently, it reduces the...
system spectral efficiency) and wastes transmission energy because training sequences do not convey information. One way to avoid this limitation is the utilisation of differential STBC (DSTBC) [8], a generalisation of differential modulations to the transmission over MIMO channels. Indeed, DSTBCs can be incoherently decoded without the aid of channel estimates but at the cost of a 3-dB performance penalty when compared to coherent detection.

Alternatively, training sequences can be avoided by the use of blind channel identification methods. Although a lot of techniques exist in the literature, in this paper we focus on blind channel estimation methods that are based on the eigenvector decomposition of a (2×2) matrix because of their good trade-off between complexity and performance. In particular, we propose novel methods based on diagonalising matrices containing second-order statistics (SOS) and higher order statistics (HOS) of the receiving signals. These methods, originally proposed in Reference [9], are particularly suitable for the application at hand for three reasons: they exploit the orthogonal property of the channel matrix to be identified; their complexity is very low and they provide an adequate channel estimation for small data blocks. We also consider the method proposed by Beres and Adve [10] for OSTBC which has similar complexity load. As a benchmark, we compare the results with the joint approximate diagonalisation of eigenmatrices (JADE) algorithm [11] although its feasibility in real-time systems is very limited due to its high complexity.

In this paper, we evaluate the performance of the blind channel estimation techniques over both computer simulated flat fading channels and realistic indoor scenarios. For this latter performance evaluation, we have used a MIMO hardware demonstrator developed at the University of A Coruña (UDC), Spain, that operates at the 2.4 GHz Industrial, Scientific and Medical (ISM) band. The evaluation results show the superior performance of the SOS-based method and its ability to approach the same performance as if the channel were least squares (LS) estimated with long training sequences. The SOS-based method is also the least computationally demanding of all compared techniques.

This paper is structured as follows. Section 2 presents the signal model of a (2×1) Alamouti coded system. Section 3 explains the blind methods used to estimate the channel matrix. Section 4 presents the performance results obtained by means of computer simulations. Section 5 describes the MIMO testbed and presents the obtained experimental results. Finally, Section 6 is devoted to the conclusions.

Notations. Throughout this work, boldface uppercase letters are used to denote matrices, for example X, with elements $x_{i,j}$; boldface lowercase letters for column vectors, for example x, and lightface lowercase letters for scalar quantities. Superscripts $(\cdot)^*$, $(\cdot)^T$ and $(\cdot)^H$ represent the conjugate, transpose and Hermitian operators, respectively. The identity matrix of dimensions $(p \times p)$ will be denoted as I_p and $E[\cdot]$ stands for the expectation operator.

2. ALAMOUTI CODED SYSTEMS

Figure 1 depicts the baseband representation of an Alamouti coded system with one receiving antenna. Each pair of symbols $\{s_1, s_2\}$ is transmitted in two adjacent periods using a simple strategy: in the first period s_1 and s_2 are transmitted
BLIND CHANNEL IDENTIFICATION IN ALAMOUTI CODED SYSTEMS

3. MIMO CHANNEL ESTIMATION

This section describes the channel estimation techniques that will be tested in Sections 4 and 5. The methods are based on computing a (2×2) squared matrix, C, containing SOS or HOS of the received signals. The basic premise of the considered methods is that C has an algebraic structure of the form $H A H^H$ where A is a diagonal matrix. Due to the orthogonal structure of H, if the diagonal entries of A are different, the channel matrix can be identified from the eigenvectors of C with a possible change of scale and permutation.

3.1. SOS-based approach

We will start by describing a method that estimates the channel from the eigenvectors of the observations autocorrelation matrix. Unlike other SOS-based algorithms [12, 13], this method does not require the use of an additional outer encoder.

According to the signal model in Equation (1), the observations autocorrelation matrix can be written as

$$
C_{SOS} = E[x x^H] = H R_s H^H + \sigma_n^2 I_2
$$

where σ_n^2 is the noise power and $R_s = E[s s^H]$ is the correlation matrix of the transmitted signals. Since H is orthogonal, Equation (4) can be rewritten as the following eigenvalue decomposition:

$$
C_{SOS} = H \left(R_s + \frac{\sigma_n^2}{\|h\|^2} I_2 \right) H^H
$$

Notice that if the two transmitted sources have the same power C_{SOS} is diagonal and, as a consequence, H is not identifiable from an eigenvalue decomposition.

For the system to be identifiable, we propose to unbalance the power of the transmitted sources as follows:

$$
E[|s_1'|^2] = \frac{2 \sigma_1^2}{1 + \gamma^2}, \quad E[|s_2'|^2] = \frac{2 \gamma^2 \sigma_2^2}{1 + \gamma^2}
$$

where $0 < \gamma^2 < 1$ and s_1', s_2' are the new unbalanced sources. In spite of the power unbalancing, notice that the total mean power remains unchanged (i.e. σ_s^2). Now, the eigenvalue decomposition of C_{SOS} is

$$
C_{SOS} = \sigma_s^2 H A_{SOS} H^H
$$

DOI: 10.1002/ett

Copyright © 2008 John Wiley & Sons, Ltd.
where

\[
\Delta_{\text{SOS}} = \begin{bmatrix} 1 + \sigma_h^2 & 0 \\ 0 & \gamma^2 + \sigma_h^2 \end{bmatrix}
\]

(8)

contains the eigenvalues of \(\mathbf{C}_{\text{SOS}} \) and \(\sigma_h^2 = \frac{\sigma_n^2}{\sigma_s^2} \). Thanks to the source power imbalance, now matrix \(\mathbf{H} \) is identifiable from \(\mathbf{C}_{\text{SOS}} \), as \(\Delta_{\text{SOS}} \) contains different eigenvalues.

Obviously, if the power of the two sources is unbalanced, the total channel capacity is lower than that of equally balanced sources. This is the price to be paid for making the SOS-based method applicable and taking advantage of its extremely low computational requirements. However, in Sections 4 and 5, we will show that the best choice is \(\gamma^2 \approx 0.6 \) and that in this case the total channel capacity is quite close to the balanced case.

3.2. HOS-based approaches

The orthogonal MIMO channel matrix \(\mathbf{H} \) can also be estimated from the eigendecomposition of matrices made up of HOS of the received signals without the need of unbalancing the source powers. Indeed, for a \((2 \times 1) \) observation vector, \(\mathbf{x} \), the fourth-order cumulant matrix \(\mathbf{C}_{\text{HOS}}(\mathbf{M}) \) is a \((2 \times 2) \) matrix with components

\[
[C_{\text{HOS}}(\mathbf{M})]_{ij} = \sum_{k,l=1}^{2} \text{cum}(x_i, x_s^k, x_s^l) m_{lk}
\]

(9)

where \(m_{lk}, k, l = 1, 2 \), denote the entries of a \((2 \times 2) \) matrix \(\mathbf{M} \) and the fourth-order cumulant is defined by

\[
\text{cum}(x_1, x_2, x_3, x_4) = E[x_1 x_2 x_3 x_4] - E[x_1 x_2] E[x_3 x_4] - E[x_1 x_3] E[x_2 x_4] - E[x_1 x_4] E[x_2 x_3]
\]

(10)

It has been proved in Reference [11] that, for the particular case of zero-mean signals, the cumulant matrix admits the following decomposition

\[
\mathbf{C}_{\text{HOS}}(\mathbf{M}) = \mathbf{H} \Delta_{\text{HOS}}(\mathbf{M}) \mathbf{H}^H
\]

(11)

where \(\rho_{4i} = \text{cum}(s_i, s_s^k, s_s^l) \) is the kurtosis of the \(i \)th source and \(\Delta(\mathbf{M}) \) is a diagonal matrix given by

\[
\Delta_{\text{HOS}}(\mathbf{M}) = \text{diag}(\rho_{41} h_1^H \mathbf{M} h_1, \rho_{42} h_2^H \mathbf{M} h_2)
\]

(12)

Here, \(h_i \) is the \(i \)th column of \(\mathbf{H} \), that is \(h_1 = [h_1 \ h_2]^T \) and \(h_2 = [h_2 - h_1]^T \). Since for the Alamouti coded scheme the channel matrix is orthogonal, \(\mathbf{H}^H \) diagonalises \(\mathbf{C}_{\text{HOS}}(\mathbf{M}) \) for any \(\mathbf{M} \) provided that \(\Delta(\mathbf{M}) \) contains different entries, that is

\[
L = |\rho_{41} h_1^H \mathbf{M} h_1 - \rho_{42} h_2^H \mathbf{M} h_2| \neq 0
\]

(13)

In particular, the approach proposed by Beres and Adve in Reference [10] considers the cases \(m_{11} = 1, m_{12} = m_{21} = m_{22} = 0 \); and \(m_{11} = m_{12} = m_{21} = 0 \) and \(m_{22} = 1 \). Assuming that the transmitted signals have the same kurtosis, we obtain from Equation (13) that the channel matrix is identifiable as long as \(|h_1|^2 \neq |h_2|^2 \).

As an extension of this approach, we propose to identify \(\mathbf{H} \) by computing the eigenvectors of a linear combination of fourth-order cross-cumulant matrices. This can be obtained by using a matrix \(\mathbf{M} \) with entries \(m_{11} = 1, m_{12} = m_{21} = 0 \) and \(m_{22} = \lambda \), being \(\lambda \) a real valued parameter. From Equation (13), we conclude that this method allows to estimate \(\mathbf{H} \) as long as

\[
L = (1 - \lambda)(|h_1|^2 - |h_2|^2) \neq 0
\]

(14)

Thus, the channel is identifiable if \(\lambda \neq 1 \) and \(|h_1|^2 \neq |h_2|^2 \). In particular, we propose the utilisation of \(\lambda = -1 \) since this choice provides a significant performance improvement with respect to the Beres and Adve approach in Reference [10], as will be shown in the following sections.

Another way to estimate the mixing matrix consists in performing a simultaneous diagonalisation of several fourth-order cumulant matrices, as the JADE algorithm [11]. This algorithm provides an excellent performance but, unfortunately, its computational load is very high. In Sections 4 and 5, the JADE algorithm will be used only as a benchmark.

4. COMPUTER SIMULATIONS

This section presents the results of several computer simulations carried out to evaluate the performance of the estimation algorithms proposed in Section 3. The experiments have been carried out by simulating the transmission of QPSK signals in Rayleigh-distributed randomly generated flat fading channels affected by additive white Gaussian noise (AWGN). We assume block fading where the channel remains constant during the transmission of a block of \(K \) symbols. The statistics in Equations (4) and (9) have been calculated by sample averaging over each
Figure 2. Computer simulations: SER versus γ^2 obtained with the SOS-based approach for QPSK signals and different values of SNR = σ^2/N_0. The horizontal dashed lines represent the SER obtained with perfect CSI.

block of symbols and the performance has been measured in terms of the symbol error rate (SER).

We have evaluated the performance of the SOS-based approach for several values of γ^2. Figure 2 shows the SER versus γ^2 for signal to noise ratio (SNR) values of 8, 9, 10, 11 and 12 dB. The autocorrelation matrix has been estimated with $K = 500$ symbols. This figure also plots the SER obtained with perfect CSI (horizontal dashed lines). It is apparent that the SOS-based channel estimation approach fails for $\gamma^2 = 1$ because this case corresponds to signals with the same power. The same occurs when $\gamma^2 = 0$ which corresponds to the limiting case where only s_1 is transmitted. Note also that the best performance is obtained with $\gamma^2 \approx 0.6$.

Figure 3 shows the SER versus SNR curves of a (2×1) Alamouti coded QPSK system using different methods for the channel estimation: Beres et al., JADE, the novel SOS approach with $\gamma^2 = 0.6$ and the novel HOS approach with $\lambda = -1$. The system performance with perfect CSI is also plotted as a benchmark. The SER curves were obtained by simulating data blocks of $K = 500$ symbols and by averaging the results for 10,000 different realisations. Note that the method proposed by Beres et al. is outperformed by the novel HOS approach. However, notice the poor performance of HOS-based methods in the high SNR regime when compared with the novel SOS approach. It is apparent from Figure 3 the superior performance of the SOS approach since it only incurs in a 0.5 dB penalty with respect to the perfect CSI case.

It is still possible to obtain an even better performance, almost reaching the optimum curve, by using the JADE algorithm (see Figure 3). However, notice the high complexity of the JADE algorithm illustrated in Figure 4 that shows the execution time required to compute 10^4 channel estimates, as a function of the block size. On the other hand, the SOS method exhibits the lowest complexity, which remains almost constant with the block size. Figure 4 also shows the higher complexity of the proposed HOS method with respect to that of Beres et al. Thus, we can conclude that the SOS approach exhibits an excellent trade-off between performance and complexity.

Figure 4. Time required to process 10^4 blocks.
5. TESTBED RESULTS

5.1. Description of the \((2 \times 2)\) MIMO testbed

Figure 5 shows a diagram of the Testbed PCs. The hardware testbed is based on a PCI carrier board SMT310Q and a basic processing module: the SMT365 equipped with a Xilinx Virtex-II FPGA and a Texas Instruments C6416 DSP at 600 MHz. The processing module has two buses that can transfer 32-bit words up to 400 MB/s, allowing the connection with the SMT370 module, that contains a dual AD9777 D/A converter and two AD6645 A/D converters. The SMT370 module also has a 2 MB per-channel memory that is used to load the frames to be transmitted. At the receiver side, the data acquired by the A/D converters is stored in real time in a 1 GB FIFO memory SMT351 module and, in an off-line task, passed to the middleware through the PCI bus. Finally, the testbed contains two SMT349 RF front-end modules. They perform the up and down conversion operations from a 70 MHz Intermediate Frequency (IF) to a 2.45 GHz carrier RF, with 16 MHz of maximum bandwidth.

In order to synchronise both the transmitter and the receiver, a simple synchronisation protocol is implemented over a common Ethernet connection. When the transmitter sends data over the channel, it also sends a control signal to the receiver in order to start the signal acquisition process.

5.2. Experiments setup

The MIMO testbed described before has been used to test the estimation methods described in Section 3. Figure 6 shows the block diagram of the \((2 \times 1)\) Alamouti coded system with QPSK modulation implemented on the testbed. During the experiments, we generated 1000 QPSK symbols of each source \((s_1 \text{ and } s_2)\). The first subframe of \((2 \times 500)\) symbols is used to test the HOS-based methods. The second subframe, also composed by \((2 \times 500)\) symbols, is employed to test the SOS-based method. The power of the second subframe is unbalanced before the Alamouti encoder according to Equation (6).
As a performance bound, we have also evaluated the system performance when using LS channel estimation [15] considering that all symbols of the first subframe are used for training. Subsequently, LS estimation has been used to decode only this subframe. Therefore, its performance is very close to the case where perfect CSI is available at reception.

After the Alamouti encoder, symbols were IQ modulated using 16 samples per symbol, a square root raised cosine pulse shaping with a roll-off factor of 40 per cent and a discrete-time IF of 0.125. Passing this signal through a D/A converter configured with a clock frequency of 80 MHz yields to a QPSK analogue signal of 5 MBauds symbol rate, 7 MHz bandwidth and 10 MHz carrier frequency. Finally, the replica at 70 MHz is filtered out and up converted to a carrier RF frequency of 2.45 GHz.

With the aim of achieving a correct time synchronisation, a 50 pseudo-random symbol sequence is added at the beginning of the frame obtained after the Alamouti encoder. The preamble sequence is only transmitted by one of the two antennas while the other is idle. The resulting frame is thus composed of a 50 symbol preamble 4000 data symbols (2000 information symbols). Since we are using 16 samples per symbol, the frame contains 65 600 16-bit signal samples which results in a frame size equal to 128 125 Kbytes. At the receiver, the known preamble is correlated with the acquired signal to determine the first frame sample. Also a carrier recovery step must be incorporated after the time synchronisation to correct signal frequency impairments due to reference oscillator misadjustments. After IQ demodulation, a root raised cosine-matched filter is used in each demodulator branch followed by a down sampler to produce the I and the Q components of the baseband signal.

In order to experimentally obtain SER versus SNR curves for each estimation method, every frame is sent several times with different transmitting power. Different channel realisations and distinct signal strength values are obtained in this manner. In a later step, the SNR is estimated for each received frame jointly with the SER obtained by the estimation method. Finally, the pairs formed by the SNR with its corresponding SER are sorted by SNR value and plotted to obtain a performance curve.

5.3. Scenario 1: line of sight (LOS)

Figure 7 shows a schematic diagram of the room layout and the antenna locations where we carried out the experiments. The transmitting antennas were separated about 30 cm from each other, in order to provide a good spatial diversity.

In order to apply the SOS-based approach proposed in Subsection 3.1, the optimum value of the source power unbalance parameter γ^2 must be found. To this end, the SER was evaluated for different values of γ^2. The results are plotted in Figure 8 for the LOS scenario and show that the optimal value is around $\gamma^2 = 0.64$. This value is in accordance with that obtained by simulations over an uncorrelated Rayleigh channel. In the experiments that follow, we set $\gamma^2_{opt} = 0.64$.

Copyright © 2008 John Wiley & Sons, Ltd.
Figure 9. LOS scenario: SER performance versus SNR.

Figure 9 shows the obtained SER versus SNR curves for a block size $K = 500$ and different methods for channel estimation: JADE, Beres et al., the novel SOS approach with $\gamma^2 = 0.64$ and the novel HOS approach with $\lambda = -1$. Notice that, similarly to the results obtained with computer simulations, the JADE algorithm achieves the same performance as with LS estimation while the SOS-based approach differs in just about 0.5 dB. Figure 9 also shows the poorer performance of HOS methods since they present a flooring effect for SNR values greater than 10 dB. Nevertheless, the performance of the HOS-based method proposed by the authors is better than that of the one proposed by Beres and Adve [10].

In order to evaluate the convergence speed of the channel estimation methods, we calculated the SER for different number of symbols employed to estimate the statistics in Equations (4) and (9), at an SNR of 10 dB. The results are plotted in Figure 10. Notice, again, the superior performance of the SOS-based approach with respect to those based on HOS and its proximity to JADE.

5.4. Scenario 2: non-line of sight

We implemented a second scenario without LOS, where the transmitter was placed about 9 m away from the receiver (see Figure 7). The transmitting antennas were still separated about 30 cm from each other.

Figure 11 illustrates the SER in the non-LOS (NLOS) scenario as a function of the received SNR for a block size $K = 500$ and the different channel estimation methods. Contrarily to the LOS scenario, both the novel SOS and HOS methods perform adequately showing a penalty with respect to the LS case lower than 1 dB. Again, JADE is the method that exhibits better performance whereas the HOS-method proposed by Beres and Adve [10] shows the worst.

6. CONCLUSIONS

The experimental performance of several blind channel estimation techniques for Alamouti coded systems with one receiving antenna has been evaluated in this paper. The considered techniques exploit the orthogonality property.
of the effective MIMO channel matrix through the eigendecomposition of matrices made up of SOS or HOS of the received signals. The algorithms were tested via computer simulations and on real data obtained from indoor scenarios using a MIMO hardware platform working at 2.4 GHz. Both simulations and realistic experiments in LOS and NLOS scenarios show that the proposed SOS-based method exhibit a performance penalty of less than 1 dB when compared with the case of perfect CSI. Thus, we can conclude that the SOS approach exhibits an excellent compromise quality between channel estimation and computational complexity.

ACKNOWLEDGEMENTS

This work has been partially supported by Xunta de Galicia, Ministerio de Educación y Ciencia of Spain and FEDER funds of the European Union under grants number PGIDT06TIC10501PR and TEC2007-68020-C04-01.

REFERENCES