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Abstract—The estimation of the atrial activity (AA) signal in
electrocardiogram (ECG) recordings is an important step in the
noninvasive analysis of atrial fibrillation (AF), the most common
sustained cardiac arrhythmia in clinical practice. Recently, this
blind source separation (BSS) problem has been formulated as
a tensor factorization, based on the block term decomposition
(BTD) of a data tensor built from Hankel matrices of the observed
ECG. However, this tensor factorization technique was precisely
assessed only in segments with long R-R intervals and with the
AA well defined in the TQ segment, where ventricular activity
(VA) is absent. Due to the chaotic nature of AA in AF, segments
with disorganized or weak AA and with short R-R intervals are
quite more common in persistent AF, posing some difficulties to
the BSS methods to extract the AA signal, regarding performance
and computational cost. In this paper, the BTD built from Löwner
matrices is proposed as a method to separate VA from AA in
these challenging scenarios. Experimental results obtained in
a population of 10 patients show that the Löwner-based BTD
outperforms the Hankel-based BTD and two well-known matrix-
based methods in terms of atrial signal estimation quality and
computational cost.

Index Terms—Block Term Decomposition, Blind Source Sepa-
ration, Löwner Matrices, Atrial Fibrillation, Electrocardiogram

I. INTRODUCTION

Decreasing life quality and increasing healthcare costs, atrial
fibrillation (AF) is a supraventricular tachyarrhythmia charac-
terized by an uncordinated and irregular atrial activation [1].
Persistent AF represents a particularly complex case of this
arrhythmia, where extensive atrial remodelling has taken place
due to sustained AF, significantly affecting atrial activity
(AA) and AF perpetuation itself. This challenging cardiac
condition represents an economical burden, as a patient with
AF spends, anually, approximately $8 700 more in healthcare
than a patient without AF. Also a major health and social
concern, AF has about 467 000 hospitalizations as the primary
diagnosis every year in USA, and the number of deaths are
estimated to be more than 99 000 [1]. With similar numbers
present in Europe, this heart rhythm disorder can become
a new epidemic by 2050 [2]. Considering this scenario and
the fact that the mechanisms of AF are complex and not
completely understood, intensive clinical research into this
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cardiac rhythm disturbance has increased in the past few years
and is expected to increase further.

In the electrocardiogram (ECG), the P wave corresponds to
a normal atrial depolarization during normal sinus rhythm. AF
is characterized by irregular R-R intervals and the replacement
of the P wave by f waves (fibrillatory waves), which are present
throughout the whole ECG recording. However, they are
masked by the QRS-T complex of ventricular depolarization
and repolarization, i.e., the ventricular activity (VA), in each
heartbeat.

Signal processing techniques are important and necessary
tools to noninvasively separate the AA from the standard 12-
lead ECG for a precise analysis and characterization of the
f waves, in order to better understand the complex mechanisms
behind AF. The extraction of AA from multi-lead ECGs ac-
cepts a blind source separation (BSS) formulation [3]. Methods
based on matrix decompositions to solve BSS problems, such
as principal component analysis (PCA) [4] and independent
component analysis (ICA) [5] are reported in the literature as
useful tools in noninvasive AA extraction [3], [6]. Nonetheless,
the uniqueness of matrix decompositions are just guaran-
teed up to some constraints and, although mathematically
convenient, such constraints may lack physiological grounds,
making difficult the results interpretation.

Overcoming this limitation of matrix decompositions, tensor
decompositions present some remarkable features over matrix-
based techniques, for example, their essential uniqueness with
minimal or no constraints. The block term decomposition
(BTD) built from Hankel matrices was recently proposed
to noninvasively extract the AA signal from AF ECGs [7].
This tensor factorization technique has been evaluated in
experiments using synthetic and real data, showing that it can
outperform the matrix-based techniques for noninvasive AA
extraction in short and long segments of AF ECGs [7]-[10].

However, some issues and open challenges can compromise
or limit the performance of Hankel-based BTD in this parti-
cular application:

1) There is still no optimal automated method for atrial
source selection.

2) The Hankel-based BTD was only assessed in segments
with long R-R intervals and with well defined AA,
visible in most part of the segment. However, short R-
R intervals (< 0.75 s) and weak AA (amplitude of the
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f waves lower than 0.1 mV) are quite more common
during persistent AF episodes.

Aiming to provide a way to alliviate these issues and make
the tensor approach applicable in a wider range of situations,
this paper proposes another approach to estimate the AA in
challenging cases of AF, where the matrix-based techniques
and even the Hankel-based BTD cannot provide a satisfactory
performance. The BTD built from Löwner matrices proposed
as a solution for BSS of rational functions in [11] is applied in
this work, for the first time, to separate the VA from AA in AF
ECGs. This method suits the characteristics of VA in an ECG
recording, since the QRS complex can be well approximated
by rational functions [12], [13], and when mapped onto
Löwner matrices, the degree of the rational function matches
with the rank of the Löwner matrix [11]. The VA estimated
by the Löwner-based BTD is then subtracted from the ECG
signal, resulting in a signal that mainly contains AA. Through
this approach, no method for atrial source selection is needed,
since the resulting signal is already the desired signal. Since
the VA is a less complex signal than AA in AF, the multilinear
rank of this component is lower and varies in a shorter range,
which makes its estimation simpler.

Furthermore, the present work assesses BTD for the first
time in segments with short R-R intervals and with disorga-
nized (f waves with no sawtooth pattern) and/or weak AA of a
population of patients with persistent AF, comparing it to two
popular matrix-based methods for AA extraction: RobustICA-
f [14] and PCA, as well as the Hankel-based BTD. Also, the
estimation of the number of blocks based on the singular value
decomposition (SVD) and the use of only 8 independent ECG
leads are presented for the first time in a tensor approach for
AA analysis in AF episodes.

II. BLOCK TERM DECOMPOSITION AND ECG DATA

The BTD of an arbitrary third-order tensor T ∈ RI1×I2×I3

is written as:

T =
R∑

r=1

Er ◦ cr , (1)

where ◦ represents the outer product, cr ∈ RI3 is nonzero
and Er ∈ RI1×I2 has rank Lr, admitting the factorization
Er = ArBT

r , where Ar ∈ RI1×Lr and Br ∈ RI2×Lr have
rank Lr. We may then rewrite (1) as:

T =
R∑

r=1

(
ArBT

r

)
◦ cr . (2)

One can see that the BTD is a decomposition of T in
multilinear rank-(Lr,Lr,1) terms, represented by a sum of the
outer product of its matrix and vector factors, as shown in
Figure 1. Several conditions guarantee the essential uniqueness
of this tensor decomposition. For example, in [15, Theorem
2.2], it is shown that the BTD is essentially unique if the
following conditions are satisfied:

1) The matrix factors A =
[
A1 A2 . . . AR

]
∈

RI1×
∑R

r=1 Lr and B =
[
B1 B2 . . . BR

]
∈

Fig. 1: Visual representation of BTD of an arbitrary third-order
tensor.

RI2×
∑R

r=1 Lr are full-column rank, which requires in
particular that,

∑R
r=1 Lr ≤ I1, I2.

2) Matrix C =
[
c1 c2 . . . cR

]
∈ RI3×R does not

contain proportional columns.
Essentially unique means that the rth1 and rth2 terms can only

be permuted when they have equal ranks and when Er can
only be scaled if cr is counterscaled [11]. Milder uniqueness
conditions can be found in [15].

Now, ECG recordings from K leads composed by N time
samples can be viewed as a matrix:

Y = MS ∈ RK×N , (3)

where M ∈ RK×R is the mixing matrix, modeling the
propagation of the cardiac electrical sources from the heart to
the body surface, S ∈ RR×N is the source matrix that contains
mainly the atrial and ventricular sources, and R is the number
of sources.

BTD is proposed as a technique to solve BSS problems
like (3) in [15] and its Löwner construction was detailed and
exploited in [11]. The idea to tensorize the data Y is to map
each of its rows onto a Löwner matrix L(k) ∈ RI×J , k =
1, 2, ...,K, whose (i, j)-entry is given by:

L
(k)
i,j =

y(k)(xi)− y(k)(zj)
xi − zj

, (4)

where I + J = N and y(k) is the kth lead of the ECG data
matrix sampled in a point set T = {t1, t2, ..., tN}, which is
partitioned in two different point sets: X = {x1, x2, ..., xI}
and Z = {z1, z2, ..., zJ}. In this work, we consider signals
with even samples and an interleaved partitioning, i.e., I =
J = N/2, X = {t1, t3, ..., tN−1}, and Z = {t2, t4, ..., tN},
already used with success in ECG processing [11], although
in a different problem.

Next, the tensor is built by stacking each Löwner matrix
along the third dimension (as frontal slices) of a third-order
tensor Y ∈ RI×J×K , that is:

Y..k = L(k) =
R∑

r=1

mk,rL(r)
S , (5)

where L(r)
S ∈ RI×J is a Löwner matrix built from the rth

row of S. One can see that for each r, the outer product
between matrix L(r)

S and the rth column of M, i.e., m.r, is
being performed to build a third-order tensor containing the
contribution of the rth source to the observed ECG. Putting
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together the contribution of all sources, the third-order tensor
Y can be written as:

Y =
R∑

r=1

L(r)
S ◦m.r . (6)

Comparing Equations (1) and (6), it can be seen that
the ECG data tensor follows a BTD tensor model with the
following correspondence:

(T ,Er, cr, I1, I2, I3, R)⇐⇒ (Y,L(r)
S ,m.r, I, J,K,R) . (7)

In the ECG, QRS complexes can be approximated by
rational functions of low degree [11]-[13]:

s(t) = a(t) +
F∑

f=1

Df∑
d=1

cf,d
(t− pf )d

, (8)

where a(t) is a polynomial of degree A, pf are the complex
poles, t is the discrete time, and cf,d = 1/(uf − vd) are the
scalar entries of a Cauchy matrix based on the vectors u ∈ CI

and v ∈ CJ , with ui 6= vj ,∀i, j. This way, their associated
Löwner matrices accept the general decomposition [11]:

L = ZGZ̃
T
, (9)

where Z ∈ CI×L and Z̃ ∈ CJ×L have rank L = A +∑F
f=1Df , and G ∈ CL×L is a block-diagonal matrix with

Hankel and upper antitriangular matrices GW and Gf,Df
for

1 ≤ f ≤ F along its diagonal.
The cases where s(t) has coinciding and non-coinciding

poles, and is a polynomial of degree W are detailed in [11],
as well as general uniqueness conditions of (6).

III. MEASURING ATRIAL ACTIVITY CONTENT

The measurement of the estimation quality (or the AA
content) of real signals is a difficult task. Since there is no
ground truth for comparison, one needs to take advantage
of some features present in AA during AF episodes. For
example, in the frequency domain, the AA during AF has a
peak between 3 and 9 Hz. The position of this peak is called
dominant frequency (DF). In this section, two parameters used
to measure AA extraction quality are presented. The first one is
the spectral concentration (SC), defined as the relative amount
of energy around the DF. The SC is computed as in [6]:

SC =

∑1.17fp
fi=0.82fp

PS(fi)∑Fs/2
fi=0 PS(fi)

(10)

where fp is the value of the DF, Fs is the sampling frequency,
fi is the discrete frequency and PS is the power spectrum of
the source signal computed using Welch’s method as in [6].
The second parameter, used to discard sources with irrelevant
AA content, is the power contribution to lead V1, denoted
P (r), which is given by [9]:

P (r) =
1

N
||mV 1,rsr.||2 (11)
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Fig. 2: Top: a 1.5-second segment of an AF ECG recording
(in mV) with 4 QRS complexes from one patient (P2). The
R-R intervals are short and represented by the time difference
between the peaks. Bottom: a single heartbeat segment of an
AF ECG recording (in mV) with a weak AA signal, from
another observed patient (P6). Only bipolar limb lead II is
shown for clarity, although the 8 independent leads (I, II, V1-
V6) are processed in the experiments reported here.

in mV2, where symbol || · || represents the l2-norm, mV 1,r is
the contribution of the rth source to lead V1 and sr. is the rth

source in time domain. The P (r) of an AA source is expected
to be relatively strong (> 10−4 mV2), since this lead is the
one that typically best reflects AA in AF ECGs.

IV. DATABASE AND EXPERIMENTAL SETUP

A. Real AF ECG Data and Preprocessing

All the recordings belong to a database provided by the
Cardiology Department of Princess Grace Hospital Center,
Monaco. The recordings are acquired at a 977 Hz sampling
rate and are preprocessed by a zero-phase forward-backward
type-II Chebyshev bandpass filter with cutoff frequencies of
0.5 and 40 Hz, in order to suppress high-frequency noise and
baseline wandering.

Experiments are performed in 10 different segments of ECG
recordings from 10 different patients suffering from persistent
AF, where 5 of these segments have a disorganized and/or
weak AA, and the other 5 have very short R-R intervals.
In order to exploit all spatial diversity, while reducing the
computational cost, only 8 independent leads are processed
(I, II, V1-V6). The two type of segments used in the reported
experiments are shown in lead II in Figure 2.

The 5 segments with short R-R intervals from 5 different
patients (P1-P5) have 1.5 seconds of duration with at least
2 QRS complexes. The other 5 segments with disorganized
and/or weak AA, from other 5 different patients (P6-P10), are
composed by one heartbeat, i.e., the QRS complex followed
by the T wave and the visible f waves, and have between
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1.3-1.7 seconds. All the 10 segments are downsampled by
a factor of 2, since the originally built third-order tensors
pose some difficulties to be processed by Tensorlab MATLAB
toolbox [17].

B. BTD Setup

The BTD is implemented using the non-linear least squares
(NLS) method available in Tensorlab MATLAB toolbox. For
the Hankel-based BTD, the choice R = 6 and Lr = 48, for
r = 1, 2, ..., R, is made. The choice of R is based on the
SVD of the observed data matrix, taking into account the most
significant singular values. The choice of Lr is based on the
work of [8], that showed that this value provided good results
for the heartbeat with the largest TQ segment of one of the
patients considered in the present work. Also, the work of
[10] showed that this value provides satisfactory results for
consecutive segments of the whole ECG recording of the same
patient.

For the Löwner-based BTD, the choice R = {2, 3} and
Lr = L, for r = 1, 2, ..., R, with L taking values in
the set {3, 4, 5, 6} is made. This choice is made based on
previous experiments that aimed at estimating only the VA
from the original recording, and then subtract it from the
ECG, providing the signal with mainly AA content. Previous
experiments show that the VA subspace is mainly present in
the first 2 or 3 principal singular values of the ECG matrix,
with low rank values.

For both techniques, the maximum number of iterations
is set to 1000. Monte Carlo runs with Gaussian random
initialization for the spatial and temporal factors at each run
are used to analyze the performance of BTD in each segment
regarding the separation of VA from AA. Monte Carlo runs
are needed since the performance of BTD depends strongly
on the initialization of its factors and a suitable initialization
is still an open challenge.

V. EXPERIMENTAL RESULTS

A. Segments With Short R-R Intervals

Table I shows the values of SC in % of the estimated AA
and the number of iterations until convergence of the NLS
method for the Löwner and Hankel-based BTDs. The best
performance of the ten independent runs is shown. Patients
P1-P5 correspond to the patients whose segments have short
R-R intervals. We can see in Table I that the SC of the AA,
resulting from the subtraction of VA from the ECG, for the
Löwner-based BTD is always higher than the one estimated
by the Hankel-based BTD. Moreover, the mean of the number
of iterations of the NLS method until convergence is always
shorter, meaning that the proposed approach provides a better
performance with less computational cost. In addition, the
Löwner-based BTD could separate the VA from AA in all
the population of patients whose segments have a short R-R
intervals, while the Hankel-based BTD could not successfully
separate them for the patient P5. The DF of both tensor
approaches lies in the interval 5.48 − 7.15 Hz, while the
P (r) values of the Löwner-based BTD lie in the interval

TABLE I: SC values (%) of the AA and the mean of the
number of iterations of the NLS method (µ) with the standard
deviation (σ) for the Löwner-based BTD (BTD-L) and the
Hankel-based BTD (BTD-H) of ten Monte Carlo runs.

Patients BTD-L BTD-H
SC (%) µ± σ SC (%) µ± σ

P1 51.2 60±18.1 44.1 185.7±47.2
P2 54.6 60.3±22.4 33.8 181±68.1
P3 46.1 46.7±15.4 30.9 164.9±58.1
P4 63.5 125.3±36.5 61.9 143.5±37.1
P5 33.7 44±16.9 none none
P6 60.1 28.2±6.7 none none
P7 60.0 29.9±11.5 none none
P8 52.9 33.3±18.2 none none
P9 40.7 35±12.8 none none

P10 56.9 36.8±12.1 none none

0 0.5 1 1.5

Time (s)

P(r) = 1.00x10
-4

 mV
2

P(r) = 4.97x10
-4

 mV
2

P(r) = 2.50x10
-3

 mV
2

P(r) = 4.90x10
-3

 mV
2

PCA

ECG Lead V1

Löwner-Based BTD
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Fig. 3: Estimated atrial sources contribution to lead V1 in
a segment of short R-R intervals of Patient P4 by Hankel
and Löwner-based BTDs, RobustICA-f and PCA in the time
domain. AA signal estimates are vertically shifted for clarity
with their respectives power contributions to lead V1.

7.2× 10−4 − 9.1× 10−3 mV2, which are consistently higher
than the P (r) values of the Hankel-based one, that lie in the
interval 5.7× 10−4 − 2.5× 10−3 mV2.

Regarding the performance of the matrix-based techniques,
PCA could only successfully separate VA from AA in patient
P4, with a SC of 55.4% and DF = 5.72 Hz, while RobustICA-
f could only separate them in patients P1 and P4, with SCs and
DFs equal to 40.7%/6.91 Hz and 60.8%/5.72 Hz, respectively.

In Figure 3 we can see the observed segment of Patient P4,
the only patient where the 4 signal processing techniques could
successfully separate the sources. The proposed technique
provides a signal with clearer AA content and a higher P (r)
value than the other methods.
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Fig. 4: Original recording, VA and AA estimates in lead II
by the Löwner-based BTD of Patient P7. The AA signal was
vertically shifted for clarity.

B. Segments With Disorganized and/or Weak AA

For the patients whose segments are characterized by a very
weak and/or disorganized AA contribution, the matrix-based
methods and the Hankel-based BTD could not clearly separate
the sources. The AA signal was not identified due to its very
weak content or, in some cases, significant VA residuals in the
signal. For the Löwner-based BTD, the AA signal was suc-
cessfully separated from the VA with a relatively satisfactory
performance, considering the nature of the recording.

In Table I, patients P6-P10 correspond to the patients whose
segments have disorganized and/or weak AA contribution. We
can see that a relatively low number of iterations provide a
satisfactory performance regarding the quality of AA content.
The values of P (r) lie in the range of 4.6×10−4−1.7×10−3

mV2, showing that each source have significant AA content.
In Figure 4 we can see the observed recording, as well as the

estimated VA and AA of the processed segment of one of the
patients in the observed population, for the best performance
of ten Monte Carlo runs. The segments are shown in lead II for
a better clarity of the estimated VA. It can be seen that even
the T wave was estimated by the proposed method, that is, not
only the ventricular depolarization, but also its repolarization
were estimated.

VI. CONCLUSION

The present work has proposed a new tensor approach to
separate VA and AA in persistent AF ECG recordings. This
tensor method is the BTD built from Löwner matrices, used
to model and estimate only the VA and then subtract it from
the original recording, resulting in the desired AA. The BTD
approach was applied for the first time in AF segments with
short R-R intervals, which are quite common in persistent
AF, and with a disorganized and/or weak AA contribution,

also common in this stage of the arrhythmia. Experiments
based on Monte Carlo simulations have shown the improved
performance of the Löwner-based BTD over the one built from
Hankel matrices and the well-known matrix-based techniques
RobustICA-f and PCA, regarding AA extraction quality in this
challenging clinical setting.

A more detailed theoretical and experimental analysis of
this new tensor approach in AF ECGs should be presented
in following works. In particular, experiments should be per-
formed in a larger population of patients in order to provide
more relevant clinical results.
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