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Clustering with feature selection using
alternating minimization.

Application to computational biology
Cyprien Gilet, Marie Deprez, Jean-Baptiste Caillau and Michel Barlaud, Fellow, IEEE

Abstract—This paper deals with unsupervised clustering with
feature selection. The problem is to estimate both labels and a
sparse projection matrix of weights. To address this combina-
torial non-convex problem maintaining a strict control on the
sparsity of the matrix of weights, we propose an alternating
minimization of the Frobenius norm criterion. We provide a new
efficient algorithm named K-sparse which alternates k-means
with projection-gradient minimization. The projection-gradient
step is a method of splitting type, with exact projection on the
`1 ball to promote sparsity. The convergence of the gradient-
projection step is addressed, and a preliminary analysis of the
alternating minimization is made. The Frobenius norm criterion
converges as the number of iterates in Algorithm K-sparse goes
to infinity. Experiments on Single Cell RNA sequencing datasets
show that our method significantly improves the results of
PCA k-means, spectral clustering, SIMLR, and Sparcl
methods. The complexity of K-sparse is linear in the number
of samples (cells), so that the method scales up to large datasets.
Finally, we extend K-sparse to supervised classification.

I. INTRODUCTION

This paper deals with unsupervised clustering with feature
selection in high dimensional space. As an application, we
choose single-cell RNA-seq which is a new technology able
to measure the expression of thousands of genes (20,000
genes) in single cells. Characterization of diverse cell types
and their distinguishing features require robust and accurate
clustering methods. However, clustering in high dimension
suffers from the curse of dimensionality: as dimensions increase,
vectors become indiscernible and the predictive power of the
aforementioned methods is drastically reduced [1], [36]. In
order to overcome this issue, a popular approach for high-
dimensional data is to perform Principal Component Analysis
(PCA) prior to clustering. This approach is however difficult to
justify in general [45]. An alternative approach proposed in [18],
[19] is to combine clustering and dimension reduction by means
of Linear Discriminant Analysis (LDA). The heuristic used
in [19] is based on alternating minimization, which consists
in iteratively computing a projection subspace by LDA, using
the labels y at the current iteration and then running k-means
on the projection of the data onto the subspace. Departing
from this work, the authors of [5] propose a convex relaxation
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in terms of a suitable semi-definite program (SDP). Another
efficient approach is spectral clustering where the main tools
are graph Laplacian matrices [33], [43]. However, methods
such as PCA, LDA or, more recently SIMLR, do not provide
sparsity. A popular approach for selecting sparse features in
supervised classification or regression is the Least Absolute
Shrinkage and Selection Operator (LASSO) formulation [39].
The LASSO formulation uses the `1 norm instead of `0 [11],
[12], [20], [21] as an added penalty term. A hyperparameter,
which unfortunaltely does not have any simple interpretation,
is then used to tune the sparsity. The authors of [46] use a
lasso-type penalty to select the features and propose a sparse
k-means method. A main issue is that optimizing the values
of the Lagrangian parameter λ [24], [46] is computationally
expensive [30]. All these methods [5], [18], [19], [46] require a
k-means heuristic to retrieve the labels. The alternating scheme
we propose combines such a k-means step with dimension
reduction and feature selection using an `1 sparsity constraint.

II. CONSTRAINED UNSUPERVISED CLASSIFICATION

A. General Framework

Let X( 6= 0) be the m × d matrix made of m line samples
x1, . . . , xm belonging to the d-dimensional space of features.
Let Y ∈ {0, 1}m×k be the label matrix where k > 2 is the
number of clusters. Each line of Y has exactly one nonzero
element equal to one, yij = 1 indicating that the sample xi
belongs to the j-th cluster. Let W ∈ Rd×d̄ be the projection
matrix, d̄� d, and let µ be the k × d̄ matrix of centroids in
the projected space XW :

µ(j, :) :=
1∑m

i=1 yij

∑
i s.t. yij=1

(XW )(i, :).

The j-th centroid is the model for all samples xi belonging
to the j-th cluster (yij = 1). The clustering criterion can be
cast as the within-cluster sum of squares (WCSS, [37], [46])
in the projected space

1

2
‖Y µ−XW‖2F → min (1)

where ‖.‖F is the Frobenius norm induced by the Euclidean
structure on m× d̄ matrices,

(A|B)F := tr(ATB) = tr(ABT ), ‖A‖F :=
√

(A|A)F .

The matrix of labels is constrained according to

yij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , d̄, (2)
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k∑
j=1

yij = 1, i = 1, . . . ,m, (3)

m∑
i=1

yij > 1, j = 1, . . . , k. (4)

Note that (3) implies that each sample belongs to exactly one
cluster while (4) ensures that each cluster is not empty (no
fusion of clusters). This prevents trivial solutions consisting
in k − 1 empty clusters and W = 0. In contrast with the
Lagrangian LASSO formulation, we want to have a direct
control on the value of the `1 bound, so we constrain W
according to

‖W‖1 6 η (η > 0), (5)

where ‖.‖1 is the `1 norm of the vectorized d× d̄ matrix of
weights:

‖W‖1 := ‖W (:)‖1 =

d∑
i=1

d̄∑
j=1

|wij |.

The problem is to estimate labels Y together with the sparse
projection matrix W . As Y and W are bounded, the set of
constraints is compact and existence holds.

Proposition 1 The minimization of the norm (1), jointly in Y
and W under the constraints (2)-(5), has a solution.

To attack this difficult nonconvex problem, we propose an
alternating (or Gauss-Seidel) scheme as in [18], [19], [46].
Another option would be to design a global convex relaxation
to address the joint minimization in Y and W ; see, e.g., [5],
[23]. The first convex subproblem finds the best projection
from dimension d to dimension d̄ for a given clustering.

Problem 1 For a fixed clustering Y (and a given η > 0),

1

2
‖Y µ−XW‖2F → min

under the constraint (5) on W .

Given the matrix of weights W , the second subproblem is the
standard k-means on the projected data.

Problem 2 For a fixed projection matrix W ,

1

2
‖Y µ−XW‖2F → min

under the constraints (2)-(4) on Y .

B. Exact gradient-projection splitting method

To solve Problem 1, we use a gradient-projection method. It
belongs to the class of splitting methods [14], [15], [29], [32],
[38] and is designed to solve minimization problems of the
form

ϕ(W )→ min, W ∈ C, (6)

using separately the convexity properties of the function ϕ on
one hand, and of the convex set C on the other. We use the

following forward-backward scheme to generate a sequence of
iterates:

Vn := Wn + γn∇ϕ(Wn), (7)
Wn+1 := PC(Vn) + εn, (8)

where PC denotes the projection on the convex set C (a subset
of some Euclidean space). Under standard assumptions on
the sequence of gradient steps (γn)n, and on the sequence of
projection errors (εn)n, convergence holds (see, e.g., [6]).

Theorem 1 Assume that (6) has a solution. Assume that ϕ
is convex, differentiable, and that ∇ϕ is β-Lipschitz, β > 0.
Assume finally that C is convex and that∑

n

|εn| <∞, inf
n
γn > 0, sup

n
γn < 2/β.

Then the sequence of iterates of the forward-backward scheme
(7-8) converges, whatever the initialization. If moreover
(εn)n = 0 (exact projections), there exists a rank N and
a positive constant K such that for n > N

ϕ(Wn)− inf
C
ϕ 6 K/n. (9)

In our case, ∇ϕ is Lipschitz since it is affine,

∇ϕ(W ) = XT (XW − Y µ), (10)

and we recall the estimation of its best Lipschitz constant.

Lemma 1 Let A be a d×d real matrix, acting linearly on the
set of d × k real matrices by left multiplication, W 7→ AW .
Then, its norm as a linear operator on this set endowed with the
Frobenius norm is equal to its largest singular value, σmax(A).

Proof. The Frobenius norm is equal to the `2 norm of the
vectorized matrix,

‖W‖F = ‖

 W 1

...
Wh

 ‖2, ‖AW‖F = ‖

 AW 1

...
AWh

 ‖2,
(11)

where W 1, . . . ,Wh denote the h column vectors of the d× h
matrix W . Accordingly, the operator norm is equal to the
largest singular value of the kd × kd block-diagonal matrix
whose diagonal is made of k matrix A blocks. Such a matrix
readily has the same largest singular value as A. �

As a byproduct of Theorem 1, we get

Corollary 1 For any fixed step γ ∈ (0, 2/σ2
max(X)), the

forward-backward scheme applied to the Problem 1 with an
exact projection on `1 balls converges with a linear rate towards
a solution, and the estimate (9) holds.

Proof. The `1 ball being compact, existence holds. So
does convergence, provided the condition of the step
lengths is fulfilled. Now, according to the previous
lemma, the best Lipschitz constant of the gradient of ϕ is
σmax(XTX) = σ2

max(X), hence the result. �
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Algorithm 1 Exact gradient-projection algorithm
Input: X,Y, µ,W0, N, γ, η
W ←W0

for n = 0, . . . , N do
V ←W − γXT (XW − Y µ)
W ← P 1

η (V )
end for
Output: W

Exact projection. In Algorithm 1, we denote by P 1
η (W ) the

(reshaped as a d × d̄ matrix) projection of the vectorized
matrix W (:). An important asset of the method is that it takes
advantage of the availability of efficient methods [16], [22]
to compute the `1 projection. For η > 0, denote B1(0, η) the
closed `1 ball of radius η in the space Rdd̄ centered at the
origin, and ∆η the simplex {w ∈ Rdd̄ | w1 + · · · + wdd̄ =
1, w1 > 0, . . . , wdd̄ > 0}. Let w ∈ Rdd̄, and let v denote the
projection on ∆η of (|w1|, . . . , |wdd̄|). It is well known that
the projection of w on B1(0, η) is

(ε1(v1), . . . , εkd(vdd̄)), εj := sign(wj), j = 1, . . . , dd̄,
(12)

and the fast method described in [16] is used to compute v
with complexity O(d× d̄).

Fista implementation. A constant step of suitable size γ is
used in accordance with Corollary 1. In our setting, a useful
normalization of the design matrix X is obtained replacing X
by X/σmax(X). This sets the Lipschitz constant in Theorem 1
to one. The O(1/n) convergence rate of the algorithm can be
speeded up to O(1/n2) using a FISTA step [7]. In practice
we use a modified version [13] which ensures convergence
of the iterates, see Algorithm 2. Note that for any fixed step
γ ∈ (0, 1/σ2

max(X)), the FISTA algorithm applied to Problem 1
with an exact projection on `1 balls converges with a quadratic
rate towards a solution, and the estimate (9) holds.

Algorithm 2 Exact gradient-projection algorithm with FISTA
Input: X,Y, µ,W0, N, γ, η
W ←W0

t← 1
for n = 0, . . . , N do
V ←W − γXT (XW − Y µ)
Wnew ← P 1

η (V )
tnew ← (n+ 5)/4
λ← 1 + (t− 1)/tnew

W ← (1− λ)W + λWnew

t← tnew

end for
Output: W

C. Clustering algorithm

The resulting alternating minimization is described by
Algorithm 3. (One can readily replace the gradient-projection
step by the FISTA version described in Algorithm 2.) Labels
Y are for instance initialized by spectral clustering on X ,

while the k-means computation relies on standard methods
such as k-means++ [2].

Algorithm 3 Alternating minimization clustering.
Input: X,Y0, µ0,W0, L,N, k, γ, η
Y ← Y0

µ← µ0

W ←W0

for l = 0, . . . , L do
for n = 0, . . . , N do
V ←W − γXT (XW − Y µ)
W ← P 1

η (V )
end for
Y ← kmeans(XW, k)
µ← centroids(Y,XW )

end for
Output: Y,W

Convergence of the algorithm. Similarly to the approaches
advocated in [5], [18], [19], [46], our method involves non-
convex k-means optimization for which convergence towards
local minimizers only can be proved [9], [37]. In practice,
we use k-means++ with several replicates to improve each
clustering step. We assume that the initial guess for labels Y
and matrix of weights W is such that the associated k centroids
are all different. We note for further research that there have
been recent attempts to convexify k-means (see, e.g., [10],
[17], [31], [35]). As each step of the alternating minimization
scheme decreases the norm in (1), which is nonnegative, the
following readily holds.

Proposition 2 The Frobenius norm ‖Y µ−XW‖F converges
as the number of iterates L in Algorithm 3 goes to infinity.

This property is illustrated in the next section on biological
data. Further analysis of the convergence may build on
recent results on proximal regularizations of the Gauss-Seidel
alternating scheme for non convex problems [3], [8].

Gene selection. The issue of feature selection thanks to the
sparsity inducing `1 constraint (5) is also addressed in this
specific context. The projection P 1

η (W ) aims to sparsify the
W matrix so that the gene j will be selected if ‖W (j, :)‖ > 0.
For a given constraint η, the practical stopping criterion of the
alternating minimization algorithm involves the evolution of
the number of the selected genes (see Fig. 4 in Section III).
In the higher level loop on the bound η itself, the evolution of
criterion such as accuracy versus η is analyzed. We also note
that the extension to multi-label is obvious, as it suffices to
allow several ones on each line of the matrix Y by relaxing
constraint (3).

D. Supervised learning

As a final remark, we note that a straightforward modification
of Algorithm 3 allows to address supervised classification. If
the labels Y are available, the simpler goal is to compute the
matrix of weights W as well as the resulting centroids in the



4

projected space. For the sake of completeness we include below
the corresponding update of the algorithm 3. Experimentations
in the supervised case are out of the scope of this paper and
will be reported somewhere else.

Algorithm 4 Supervised learning.
Input: X,Y, µ0,W0, L,N, k, γ, η
µ← µ0

W ←W0

for l = 0, . . . , L do
for n = 0, . . . , N do
V ←W − γXT (XW − Y µ)
W ← P 1

η (V )
end for
µ← centroids(Y,XW )

end for
Output: µ,W

III. APPLICATION TO SINGLE CELL RNA-SEQ CLUSTERING

A. Experimental settings

We normalize the features and use the FISTA implementation
with constant step γ = 1 in accordance with Corollary 1. The
problem of estimating the number of clusters is out of the
scope of this paper, and we refer to the popular Gap method
[40]. We compare the labels obtained from our clustering
with the true labels to compute the clustering accuracy. We
also report the popular Adjusted Rank Index (ARI) [28] and
Normalized Mutual Information (NMI) criteria. Processing
times are obtained on a 2.5 GHz Macbook Pro with an i7
processor. We give tsne results for visual evaluation [42] for
five different methods: PCA k-means, spectral clustering [43],
SIMLR [44], Sparcl (we have used the R software provided
by [46]), and our method.

B. Single cell datasets

Single-cell sequencing is a new technology elected "method
of the year" in 2013 by Nature Methods. The widespread
use of such methods has enabled the publication of many
datasets with ground truth cell type (label) annotations [26].
We compare algorithms on four of those public single-cell
RNA-seq datasets: Patel dataset [34], Klein dataset [27], Zeisel
dataset [47] and Usoskin dataset [41].

Patel scRNA-seq dataset. To characterize intra-tumoral
heterogeneity and redundant transcriptional pattern in
glioblastoma tumors, Patel et al. [34] efficiently profiled
5,948 expressed genes of 430 cells from five dissociated
human glioblastomas using the SMART-Seq protocol.
The filtered and centered-normalized data along with
the corresponding cell labels were downloaded from
https://hemberg-lab.github.io/scRNA.seq.datasets/.
As described in this study, we report clustering into five
clusters corresponding to the five different dissociated tumors
from which cells were extracted. We did not perform any
other normalization or gene selection on this dataset.

Klein scRNA-seq dataset. Klein et al. [27] characterized
the transcriptome of 2,717 cells (Mouse Embryonic
Stem Cells, mESCs), across four culture conditions
(control and with 2, 4 or 7 days after leukemia inhibitory
factor, LIF, withdrawal) using InDrop sequencing. Gene
expression was quantified with Unique Molecular Identifier
(UMI) counts (essentially tags that identify individual
molecules allowing removal of amplification bias). The
raw UMI counts and cells label were downloaded from
https://hemberg-lab.github.io/scRNA.seq.datasets/.
After filtering out lowly expressed genes (10,322 genes
remaining after removing genes that have less than 2 counts
in 130 cells) and Count Per Million normalization (CPM) to
reduce cell-to-cell variation in sequencing, we report clustering
into four cell sub-populations, corresponding to the four
culture conditions.

Zeisel scRNA-seq dataset. Zeisel et al. [26], [47] collected
3,005 mouse cells from the primary somatosensory cortex
(S1) and the hippocampal CA1 region, using the Fluidigm C1
microfluidics cell capture platform followed. Gene expression
was quantified with UMI counts. The raw UMI counts
and metadata (batch, sex, labels) were downloaded from
http://linnarssonlab.org/cortex. We applied
low expressed gene filtering (7,364 remaining genes after
removing genes that have less than 2 counts in 30 cells) and
CPM normalization. We report clustering into the nine major
classes identified in the study.

Usoskin scRNA-seq dataset. Uzoskin et al. [41] collected
622 cells from the mouse dorsal root ganglion, using a
robotic cell-picking setup and sequenced with a 5’ single-
cell tagged reverse transcription (STRT) method. Filtered
(9,195 genes) and normalized data (expressed as Reads Per
Million) were downloaded with full sample annotations from
http://linnarssonlab.org/drg. We report cluster-
ing into four neuronal cell types.

Fig. 1: The decay of the Frobenius norm for the four data sets
versus the number of loops of the alternating minimization scheme
emphasizes the fast and smooth convergence of our algorithm.

C. Experimental conclusions and comparison with advanced
clustering methods (SIMLR and Sparcl).

Accuracy, ARI and NMI. K-sparse significantly improves
the results of Sparcl and SIMLR in terms of accuracy, ARI
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Fig. 2: We report the detailed evolution of the Frobenius norm after the
splitting loop (l = 0.5, 1.5, ...) and after k-means++ (l = 1, 2, ...)
versus the number loops. It shows how both projection-gradient and
k-means++ steps contribute to minimize iteratively the Frobenius
norm.

Fig. 3: Evolution of ‖W‖0 on Usoskin database versus the number
of iterations. The number of nonzero entries of the sparse matrix W
depends on the sharpness of the `1 constraint (5) defined by η, and
on the iteration n. (As n ranges from 0 to N , sparsity is increased
rapidly in the first loop).

TABLE I: Comparison between methods (Patel dataset): 5 clusters,
430 cells, 5,948 genes, d̄opt = k+8, ηopt = 700. K-sparse selects
217 genes, and outperforms PCA K-means by 21%, spectral by
17% respectively. K-sparse has similar accuracy but better ARI
than SIMLR. K-sparse is 100 times faster than Sparcl.

Patel dataset PCA Spectral SIMLR Sparcl K-sparse
Accuracy (%) 76.04 80.46 97.21 94.18 98.37

ARI (%) 84.21 86.93 93.89 93.8 96.3
NMI 0.59 0.65 0.91 0.85 0.95

Time (s) 0.81 0.46 8.0 1,027 10.0

TABLE II: Comparison between methods (Usoskin dataset): 4
clusters, 622 cells, 9,195 genes, d̄opt = k + 4, ηopt = 3000.
K-sparse selected 788 genes. K-sparse outperforms others
methods by 20%.

Usoskin dataset PCA Spectral SIMLR Sparcl K-sparse
Accuracy (%) 54.82 60.13 76.37 57.24 95.98

ARI (%) 22.33 26.46 67.19 31.30 92.75
NMI 0.29 0.33 0.75 0.39 0.88

Time (s) 1.06 0.91 15.67 1,830 53.61

and NMI.

Feature selection. K-sparse and Sparcl have built-in
feature selection, while SIMLR requires supplementary and

Fig. 4: The evolution of the number of selected genes versus the
number of loops shows the fast and smooth convergence of our
algorithm.

Fig. 5: Evolution of accuracy as a function of the dimension of
projection d̄. In order to allow comparisons for several databases,
accuracy is plotted against d̄ minus the number of clusters, k. For the
Usoskin database, e.g., the optimal d̄ is k + 2.

Fig. 6: The evolution of the number of selected genes versus the
constraint is a smooth monotonous function. The bound η for the `1

constraint is thus easily tuned.

noise sensitive processing such as Laplacian score [25].

Convergence and scalability. K-sparse converges within
around L = 10 loops. The complexity of the inner iteration
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Fig. 7: Selection of the optimal `1 bound, ηopt. A typical behaviour
on biological applications is the existence of a plateau-like zone: if η
too big, too many genes are selected (including irrelevant ones for
the clustering) by the presence of technical and biological noise in
their expression, which reduces accuracy. Conversely, for η too small,
not enough information is available and the accuracy of clustering is
also reduced.

Fig. 8: Accuracy versus number of genes. These results show that
a minimum number of genes is required to get the best possible
clustering accuracy. Such genes are involved in the most relevant
biological processes necessary to distinguish cell types. On the one
hand, on Patel and Klein datasets, an increasing number of genes
used for clustering between conditions will only add repetitive signal
to the minimum number of genes necessary, and will neither increase
nor decrease the clustering accuracy. On the other hand, on Zeisel and
Usoskin datasets, adding too many genes would result in a decrease
in clustering accuracy. Implying that the additional genes are noisy
due to technical and biological variations with little relevance to
distinguish between cell types.

Fig. 9: Ranked weight ‖W (j, :)‖ of selected genes.

of K-sparse is O(d × d̄ × dn(η)) for the gradient part
(sparse matrix multiplication XTXW ), plus O(d × d̄) for
the projection part, where dn(η) is the average number of
nonzero entries of the sparse matrix W . This number depends
on the sharpness of the `1 constraint (5) defined by η, and
on the iteration n. (As n ranges from 0 to N , sparsity is

TABLE III: Comparison between methods (Klein dataset): 4 clusters,
2,717 cells, 10,322 genes after preprocessing, d̄opt = k + 8, ηopt =
14000. K-sparse selects 3, 636 genes. K-sparse and SIMLR
have similar Accuracy, ARI and NMI performances. K-sparse
is 5 times faster than SIMLR and 100 times faster than Sparcl.
A main issue of Sparcl is that optimizing the values of the
Lagrangian parameter using permutations is computationally expensive.
Computing kernel for SIMLR is also computationally expensive.
Complexity of K-sparse is linear with the number of samples,
thus it scales up to large databases. However the main advantage
of K-sparse over Spectral and SIMLR is that it provides selected
genes.

Klein dataset PCA Spectral SIMLR Sparcl K-sparse
Accuracy (%) 68.50 63.31 99.12 65.11 99.26

ARI (%) 44.82 38.91 98.34 45.11 98.64
NMI 0.55 0.54 0.96 0.56 0.97

Time (s) 10.91 20.81 511.49 30,384 101.40

TABLE IV: Comparison between methods (Zeisel dataset): 9
clusters, 3,005 cells, 7,364 genes after preprocessing, d̄opt = k + 8,
ηopt = 16000. K-sparse selected 2, 572 genes. PCA k-means has
poor clustering performances. Spectral and Sparcl have similar
performances. K-sparse outperforms other methods. K-sparse
is 7 times faster than SIMLR and 100 times faster than Sparcl.
Note that all algorithms fail to discover small clusters (less than
30 cells) and over-segment large cluster which reflect one of the
main challenge in biology to identify rare events / cell types with
few discriminative characteristics (cell type specific gene expression
patterns lost to technical and non-relevant biological noise).

Zeisel dataset PCA Spectral SIMLR Sparcl K-sparse
Accuracy (%) 39.60 59.30 71.85 65.23 83.42

ARI (%) 34.67 50.55 64.64 59.06 75.66
NMI 0.54 0.68 0.75 0.69 0.76

Time (s) 11 23 464 28,980 74

TABLE V: Comparison between methods: accuracy (%). K-sparse
significantly improves the results of Sparcl and SIMLR in terms
of accuracy

Methods PCA SIMLR Sparcl K-sparse
Patel (430 cells, k = 5) 76.04 97.21 94.18 98.37

Klein (2,717 cells, k = 4) 68.50 99.12 65.11 99.26
Zeisel (3,005 cells, k = 9) 39.60 71.85 65.23 83.42
Usoskin (622 cells, k = 4) 54.82 76.37 57.24 95.98

TABLE VI: Comparison between methods: time (s). K-sparse
outperforms SIMLR on large databases.

Methods PCA SIMLR K-sparse
Patel (430 cells, k = 5) 0.81 8 10

Usoskin (622 cells, k = 4) 1.06 15 53
Klein (2,717 cells, k = 4) 11 511 101
Zeisel (3,005 cells, k = 9) 11 464 74

increased as illustrated by the numerical simulations.) One
must then add the cost of k-means, that is expected to be
O(m× d̄) in average. This allows K-sparse to scale up to
large or very large databases. In contrast, optimizing the values
of the Lagrangian parameter using permutations Sparcl is
computationally expensive, with complexity O(m2×d). Naive
implementation of Kernel methods SIMLR results in O(m2)
complexity. Although the computational cost can be reduced
to O(p2 ×m) [4], where p is the low rank of approximation
the computational cost is expensive for large data sets, whence
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limitations for large databases.

Fig. 10: Usoskin dataset: The heatmap of XW shows the efficiency
of the projection

Fig. 11: Usoskin dataset: The heatmap of W using dendogram shows
that K-sparse selects linear combinations of genes.

IV. CONCLUSION

In this paper we focus on unsupervised clustering. We provide
a new efficient algorithm based on alternating minimization
that achieves feature selection by introducing a `1 constraint in
the gradient-projection step. This step, of splitting type, uses
an exact projection on the `1 ball to promote sparsity, and
is alternated with k-means. Convergence of the projection-
gradient method is established. Each iterative step of our
algorithm necessarily lowers the cost which is so monotonically
decreasing. The experiments on single-cell RNA-seq dataset in
Section III demonstrate that our method is very promising
compared to other algorithms in the field. Note that our
algorithm can be straightforwardly applied for clustering

any high dimensional database (in imaging, social networks,
customer relationship management...). Ongoing developments
concern the application to very large datasets.
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Fig. 12: Comparison of 2D visualization using tsne [42]. Each point represents a cell. Misclassified cells in black are reported for 3
datasets : Patel, Klein and Usoskin. K-sparse significantly improves visually the results of Sparcl and SIMLR (note that SIMLR fails to
discover a class on Usoskin). This figure shows nice small ball-shaped clusters for K-sparse and SIMLR methods.
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