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Abstract

Background: Supervised classification methods have been used for many years
for feature selection in metabolomics and other omics studies. We developed a
novel primal-dual based classification method (PD-CR) that can perform
classification with rejection and feature selection on high dimensional datasets.
PD-CR projects data onto a low dimension space and performs classification by
minimizing an appropriate quadratic cost. It simultaneously optimizes the selected
features and the prediction accuracy with a new tailored, constrained primal-dual
method. The primal-dual framework is general enough to encompass various robust
losses and to allow for convergence analysis. Here, we compare PD-CR to three
commonly used methods : Partial Least Squares Discriminant Analysis (PLS-DA),
Random Forests and Support Vector Machines (SVM). We analyzed two
metabolomics datasets: one urinary metabolomics dataset concerning lung cancer
patients and healthy controls; and a metabolomics dataset obtained from frozen
glial tumor samples with mutated isocitrate dehydrogenase (IDH) or wild-type IDH.

Results: PD-CR was more accurate than PLS-DA, Random Forests and SVM for
classification using the 2 metabolomics datasets. It also selected biologically
relevant metabolites. PD-CR has the advantage of providing a confidence score for
each prediction, which can be used to perform classification with rejection. This
substantially reduces the False Discovery Rate.

Conclusion: PD-CR is an accurate method for classification of metabolomics
datasets which can outperform PLS-DA, Random Forests and SVM while selecting
biologically relevant features. Furthermore the confidence score provided with
PD-CR can be used to perform classification with rejection and reduce the false
discovery rate.

1 Introduction
Among the different omics fields, metabolomics is the most recent and provides

new insights for a global study of biological systems. Metabolomics is a rapidly

growing and promising field of research in biology and healthcare. Metabolomics

approaches are based on the determination of the levels of different small molecules

or metabolites in biological samples (tissue, cells, serum, urine. . . ). Interestingly, ever
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since the early metabolomics studies, supervised classification methods have been

used for the analysis of the related datasets. One of the initial aims of metabolomic

studies was to establish useful biomarkers, indicative of specific physiological states

or aberrations. The challenge now is to understand the mechanisms by which changes

in the metabolome are implicated in different phenotypic outcomes in a complex

systems biology approach [1, 2].

Most metabolomics studies generate complex multivariate datasets including varying

correlations between features and systematic noise. Therefore, multivariate data

analysis methods are needed to explore these datasets. One of the most frequently

used methods for metabolomics analyses is Partial Least Squares-Discriminant

Analysis (PLS-DA) [3, 4].

PLS-DA is a chemometric technique used to optimize separation between different

classes of samples, which is accomplished by linking two data matrices: X (raw

metabolomic data) and Y (class membership). It has the advantage of handling

highly collinear and noisy data. Yet, it has some drawbacks and needs to be handled

with caution. Indeed it has been reported that PLS-DA can: 1. Lead to over-fitting

when the number of variables significantly exceeds the number of samples. Indeed,

in this setting, the model is likely to lead to accurate classification by chance, based

on irrelevant features [5]; 2. Have difficulties when few variables are responsible for

the separation between two or more classes and, therefore, require a larger number

of variables to achieve a good prediction accuracy [6]; and finally, 3. Lead to an

over-optimistic understanding of the separation between two or more classes [7].

Continuous effort is being made to provide new statistical tools to tackle these

drawbacks [8]. Some authors use Random Forests [9] as an alternative to PLS-DA

for metabolomics studies [10]. Random Forests are based on the bagging algorithm

and use an Ensemble Learning technique. Random Forests create a large number

of decision trees and combine their outputs. Yet, Random Forests have significant

drawbacks. For instance, they tend to over-fit when using noisy datasets. Further-

more, the main disadvantage of Random Forests is their complexity. Indeed, they

are much harder and time-consuming to construct, require more computational

resources and are less intuitive than decision trees. Furthermore this complexity

significantly hampers their interpretability. Support Vector Machines (SVM) are

another option [11, 12] but have similar drawbacks as Random Forests and are

particularly consuming in computational resources.

Mathematics I3S partner has recently introduced a new tailored, constrained primal-

dual method for supervised classification and feature selection [13]. This method

has the significant advantage of providing a trustworthy confidence index with each

prediction, which we use to define a new classifier with rejection. This is particularly

useful in the context of clinical decision making as it diminishes the number of false

positive and false negative results. Moreover, we believe this method out-performs

other methods in terms of accuracy and feature selection.

Although there are many machine learning methods for feature selection such as

LASSO [14, 15], Discriminant analysis [16], Proximal methods [17, 18] and Boosting

[19, 20], here we compare our novel Primal-Dual method for Classification with
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Rejection (PD-CR) to the state of the art PLS-DA and Random Forests and SVM

classification methods frequently used in metabolomics studies.

2 Methods
2.1 Mathematical background

2.1.1 Robust classification and regression using `1 centers

Mathematically, classification problems can be described as follows :

Let X be the m× d data matrix made of m line samples x1, . . . , xm that belong to

the d-dimensional space of features.

Let Y ∈ {0, 1}m×k be the matrix of labels where k ≥ 2 is the number of clusters.

Each line of Y has exactly one nonzero element equal to one, yij = 1 indicating that

the sample xi belongs to the j-th cluster. Projecting the data in lower dimension is

crucial to be able to separate them accurately.

Let W be the d× k projection matrix, where k � d. (Note that the dimension of

the projection space is equal to the number of clusters.)

The goal of the supervised classification method is to find the best possible values

for the projection matrix W .

Sparse learning based methods have received a lot of attention in the last decade

because of their high level of performance. The basic idea is to use a sparse regularizer

that forces some coefficients to be zero. To achieve feature selection, the Least Absolute

Shrinkage and Selection Operator (LASSO) formulation [14, 21, 22, 23, 24, 25] adds

an `1 penalty term to the classification cost. An accurate criterion is based on the

sum of the square difference (used in k-means [26]) and can be cast as follows:

‖Y µ−XW‖2F =

k∑
j=1

∑
l∈Cj

‖(XW )(l, :)− µj‖22, (1)

where Cj ⊂ {1, . . . ,m} denotes the j-th class, and where the row vector µj is the

centroid of this class. Therefore, the matrix of centers µ is a square matrix of order

k. It is well known that the Frobenius norm is sensitive to outliers. To address this,

we have improved the approach by replacing the Frobenius norm by the `1 norm of

the loss term as follows :

‖Y µ−XW‖1 =

k∑
j=1

∑
l∈Cj

‖(XW )(l, :)− µj‖1. (2)

where Cj ⊂ {1, . . . ,m} denotes the j-th cluster, and where µj := µ(j, :) is the j-th

line of µ. In our method, we simultaneously optimize (W,µ), adding some ad hoc

penalty to break homogeneity and avoid the trivial solution (W,µ) = (0, 0).

Using both the projection W and the centers µ learnt during the training step, a
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new query x in the test set (a dimension d row vector) is classified according to the

following rule: it belongs to the cluster number j∗ if and only if

j∗ ∈ arg min
j=1,...,k

‖µj − xW‖1. (3)

2.1.2 Primal-dual scheme, constrained formulation

To handle features with a high correlation, we consider a convex constrained su-

pervised classification problem. However the drawback of the term ‖Y µ−XW‖1
is that it enforces equality of the two matrices out of a sparse set: hence it tunes

the parameters to enforce a perfect matching of the training data. We replace the

1-norm with the robust “Huber function” [13]. If hδ(t) = t2/(2δ) for |t| ≤ δ and

|t| − δ/2 for |t| ≥ δ.

We obtain the following criterion

min
(W,µ)

hδ(Y µ−XW ) +
ρ

2
‖Ik − µ‖2F s.t. ‖W‖1 ≤ η. (4)

We can tune a primal-dual method to solve this problem with Algorithm 1 (See [13]

and [27] for details)

Algorithm 1 Primal-dual algorithm, constrained case—proj(V, η) is the projection on

the `1 ball of radius η
1: Input: X,Y,N, σ, τ, τµ, η, δ, ρ, µ0,W0, Z0

2: for n = 1, . . . , N do
3: Wold :=W
4: µold := µ
5: W :=W + τ · (XTZ)
6: W := proj(W,η)

7: µ := 1
1+τµ·ρ

(µold + ρ · τµIk − τµ · (Y TZ))
8: Z := 1

1+σ·δ (Z + σ · (Y (2µ− µold)−X(2W −Wold))))

9: Z := max(−1,min(1, Z)))
10: end for
11: Output: W,µ

2.1.3 Classification with rejection using a confidence Score for the Prediction (CSP)

False positive (FP) and false negative (FN) results are an important issue for

diagnostic tools in medicine. One way to diminish the number of FP and FN results

is to use classification with rejection [19, 28] for which classifiers are allowed to

report “I don’t know”. This type of classification enables the incorporation of doubt

in the results if the observation x is too hard to classify. Here, we propose to use a

confidence score for the prediction (CSP) to devise a classifier with rejection.

In our analysis we only had two clusters with centers µ1 and µ2 Lets recall that the

predicted label j∗ of a sample x is given by

j∗ ∈ arg min
j=1,...,2

‖µj − xW‖1. (5)
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We can compute the distances of sample x to the two centroids, respectively. d1 =

‖µ1−xW‖1 and d2 = ‖µ2−xW‖1 and we propose a confidence indicator for sample

x as follows :

ρ(x) =
d1 − d2
d1 + d2

(6)

Thus, the CSP ρ(x) is a value ranging from -1 to 1. The closer the CSP ρ(x) is to +1

or -1 depending on the predicted class, the higher the confidence for the prediction

will be.

Thus if ε is a given threshold parameter, we can perform classification with rejection

by rejecting binary classification for samples with an absolute value of CSP ρ(x)

under this threshold. The labels will then be predicted as follows :

Label =


−1 if ρ(x) < −ε
0 if − ε < ρ(x) < ε

1 if ρ(x) > ε

(7)

We can then study the False Discovery Rate (FDR) FDR = FP +FN as a function

of parameter ε.

2.2 Availability of the method

We implemented PD-CR in python. Functions and scripts are freely available at

https://github.com/tirolab/PD-CR.

3 Comparison to PLS-DA, Random Forests and SVM using 2
datasets

To compare PD-CR to the standard PLS-DA, Random Forests and SVM classification

methods in terms of accuracy and feature selection, we tested the four methods on

two metabolomic datasets named ”BRAIN” and ”LUNG”. Accuracies and feature

selection for each method were obtained using 4 fold-cross validation with varying

random seeds. We also provide the results with a a new version of PD-CR minimizing

the `2 norm PD-CR `2 (See Algorithm 6 https : //arxiv.org/pdf/1902.01600.pdf).

3.1 LUNG dataset

The LUNG dataset was provided by Mathe et al. This dataset includes metabolomics

data concerning urine samples from 469 Non-Small Cell Lung Cancer (NSCLC)

patients prior to treatment and 536 controls collected from 1998 to 2007 in seven

hospitals and in the Department of Motor Vehicles (DMV) from the greater Baltimore,

Maryland area. Urine samples were analyzed using an unbiased metabolomics LC-

MS/MS approach. This dataset is available from the MetaboLights database (study

identifier MTBLS28)
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Mathe et al. used Random Forests to classify patients as lung cancer patients or

controls[10]. The aim was to create a new screening test for lung cancer, based on

metabolomics data from urine. Lung cancer is one of the most common cancers

and it is well established that early diagnosis is essential for treatment. An efficient

screening method based on urinary metabolomics would be of great benefit.

3.2 BRAIN dataset

The BRAIN dataset was obtained from a metabolomic study performed by our

biological team (TIRO) on frozen samples of glial tumors. The samples were provided

by the university hospitals of Nice and Montpellier (France). Metabolite extracts were

prepared and analyzed in the TIRO laboratory (Nice, France). With this dataset,

the goal was to create a model that accurately discriminated between mutated

isocitrate dehydrogenase (IDH) and IDH wild-type glial tumors. This mutation is

a key component of the World Health Organization classification of glial tumors

[29]. The mutational status is usually assessed by IDH1 (R132H)-specific (H09)

immunohistochemistry. Yet this technique can lead to False-Negative results [30],

which can only be identified by sequencing. An accurate metabolomic based test,

able to assess the IDH mutational status, could be a promising solution to this

problem.

These samples were retrospectively collected from two declared biobanks from the

Central Pathology Laboratory of the Hospital of Nice and from the Center of Biolog-

ical Resources of Montpellier (Plateforme CRB-CHUM). Consent or non-opposition

was verified for every participant. For every participant, the IDH mutational status

was assessed using immunohistochemistry and pyrosequencing for immunonegative

cases.

Samples of brain tumors were analyzed using Liquid Chromatography coupled to

tandem Mass Spectrometry (LC-MS/MS) in an unbiased metabolomics approach,

as performed in a previous metabolomics study [?].

The details of the analysis are available in supplementary material.

3.3 Data Filtering and Pre-processing

Our laboratory performed the LC-MS/MS analysis for the BRAIN dataset. Therefore,

we could apply different levels of filtering on this dataset. After processing of the

raw data using MZmine 2.39 software, two types of filtering were applied to the

BRAIN dataset, minimal and maximal filtering. The minimal filtering only removed

metabolites for which a spike was detected in less than 10 percent of the samples. The

maximal filtering removed all unidentified metabolites as well as metabolites that did

not have an isotopic pattern. This filtering method is frequently used for metabolomic

studies and diminishes the number of noisy features in the dataset. Furthermore, it

diminishes the time necessary for data processing because it diminishes the data

volume. Unfortunately, any filtering will necessarily come with a high risk of removing

some relevant features which is also the case with this filtering method. Using the

two BRAIN datasets, we aimed to assess how the filtering affected the results of the

different classification methods. The LUNG dataset was used as it was published,

without additional normalization or filtering.
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3.4 Availability of the data

The datasets are freely available at https://github.com/tirolab/PD-CR.

3.5 Comparison to other methods :

Before comparison, the data were pre-processed as follows:

i) Log-transformation for the following benefits: Reducing heteroscedasticity and

thus the bias on regression and transforming multiplicative noise into additive noise,

ii) Mean centering and scaling [31].

PD-CR [13] was compared to PLS-DA[32], Random Forests (with 100 and 400

trees)[9] and SVM using the sklearn python package.

Additionally, we evaluated the impact of the use of the Huber loss in PD-CR

compared to the use of the `2 loss.

Parameters σ, τ, δ and ρ were set according to results obtained using various datasets

in an initial step [13] and were not further tuned. Parameter η, which affects the

feature selection step was manually tuned to fit the number of features in the

datasets and to maximize accuracy after cross validation.

We computed the accuracy of the 4 classification methods for the two metabolomics

datasets using 4-fold cross-validation (Script “PD-CR vs PLS-DA, RF and SVM”

on https://github.com/tirolab/PD-CR). The selected metabolites were analyzed

and compared between methods for the metabolomics datasets.

For PD-CR, we plotted the histograms of the CSP ρ(x) and the probabil-

ity distribution function (PDF) as well as the False Discovery Rate (FDR

=(FP+FN)/total) and the rate of rejected samples (RRS = rejected samples/total

samples) depending on epsilon (the CSP threshold) (Script ”rhoComputing” on

https://github.com/tirolab/PD-CR).

4 Results
The characteristics of the two metabolomics datasets are presented in Table 1 .

The LUNG dataset included a large number of patients (a little over 1,000) with an

equivalent number of features (a little under 3,000) and the BRAIN dataset included

a smaller number of patients (88) with a much higher number of features. While

obtaining metabolomics data concerning as many patients as there are in the LUNG

dataset is remarkable, the number of patients in the BRAIN dataset is closer to the

number of patients in most metabolomics studies.
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Dataset No. of Samples No. of features Sample type
LUNG 1005 2944 Urine
BRAIN 88 25,286 Glial tumor tissue

Table 1 Overview of the datasets.

LUNG PD-CR PD-CR `2 PLS-DA RF (100 trees) RF (400 trees) SVM
Accuracy % 79.44 78.3 76.56 71.31 72.44 76.25

AUC 79.97 - 74.05 73.38 74.50 76.64
Time (s) 0.11 0.11 0.09 0.89 3.47 85.6

Table 2 LUNG dataset: Mean accuracy using 3 seeds and 4-fold cross validation: comparison with
PLS-DA , Random forest and Best SVM

4.1 LUNG:

As shown in Table 2, PD-CR outperformed PD-CR `2, PLS-DA, Random Forests

(400 trees) and SVM by 1.1%, 2.8%, 7% and 3.1% respectively.

Even though an accuracy of 79.44% may be high enough to consider using our

PD-CR method and urinary metabolomics for the screening of lung cancer, Figure 1

shows that the accuracy may be even higher if the CSP is taken into account and if

it is used to perform classification with rejection. Indeed, in Figure 1 the top left

shows the histogram of the CSP and the top right the kernel probability distribution

function (PDF). We can see that healthy controls and cancer patients are predicted

with an equally high confidence. On the bottom left the False Discovery Rate

(FDR = (FP + FN)/total samples) decreases as the confidence score threshold

increases, but as shown in the bottom right, the rate of rejected samples (RRS =

rejected samples/total samples) increases.

Figure 1 Distribution of the Confidence Score for the Prediction (CSP) on the Lung dataset and
impact of using CSP for classification with rejection on the false discovery rate (FDR). From Left to
right and top to bottom : Histogram of the CSP, Kernel density estimation; FDR as a function of
CSP after classification with rejection, rate of rejected samples as a function of CSP after
classification with rejection. As expected for a pertinent confidence score, the FDR diminishes when
using a higher CSP threshold for classification with rejection.

As shown in Table 3, PD-CR selected ”MZ 264.1215224” for a molecular ion at m/z

264.1215224 and ”MZ 308.0984878” for a molecular ion at m/z 308.0984878 as the

top two features.
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RF PLS-DA PD-CR SVM
MZ 264.1215224 MZ 264.1215224 MZ 264.1215224 MZ 264.1215224
MZ 656.2017529 MZ 126.9069343 MZ 308.0984878 MZ 308.0984878
MZ 441.1613664 MZ 170.0605916 MZ 126.9069343 MZ 247.0970455
MZ 584.2670695 MZ 613.3595637 MZ 613.3595637 MZ 613.3595637
MZ 247.0970455 MZ 243.1004849 MZ 243.1004849 MZ 615.0353192
MZ 486.2571336 MZ 486.2571336 MZ 247.0970455 MZ 372.9232556
MZ 308.0984878 MZ 308.0984878 MZ 332.0963401 MZ 441.1613664
MZ 204.1345526 MZ 561.3432022 MZ 441.1613664 MZ 370.0525988
MZ 247.1384435 MZ 94.06574518 MZ 94.06574518 MZ 423.0084949

MZ 447.10803 MZ 269.1280232 MZ 561.3432022 MZ 332.0963401
Table 3 Top 10 features selected by Random Forests, PLS-DA, PD-CR and SVM in the LUNG dataset

These features ”MZ 264.1215224” and ”MZ 308.0984878” most likely correspond to

creatine riboside (expected m/z value in the positive mode: 264.1190; mass error:

10 ppm) and N-acetylneuraminic acid (expected m/z value in the negative mode :

308.0987; mass error: 1 ppm), respectively. These two metabolites were described by

Mathé et al. [10] as the two most important metabolites to discriminate between

lung cancer patients and healthy individuals using Random Forests on metabolomic

data from urine samples. Indeed, these two metabolites were significantly higher in

the urines of lung cancer patients, as shown in Figure 2.

Figure 2 Boxplots concerning relative abundances of features MZ 264.1215224 and MZ
308.0984878 of the LUNG dataset, most likely corresponding to creatine riboside and
N-acetylneuraminic acid respectively. Fold changes : 2.57 and 1.43 respectively. Label 1 indicates
urine samples of patients without lung cancer. Label 2 indicates urine samples of patients with lung
cancer.

4.2 BRAIN:

4.2.1 Minimally filtered dataset :

BRAIN PD-CR PD-CR `2 PLS-DA RF (100 trees) RF (400 trees) SVM
Accuracy % 92.04 90.9 84.09 88.63 89.39 87.78

AUC 92.08 - 84.33 88.70 89.02 88.53
Table 4 BRAIN dataset Accuracy using 3 seeds and 4-fold cross validation: comparison with PLS-DA,
Random Forest and best SVM.

As shown in Table 4, PD-CR outperformed PD-CR `2, PLS-DA, Random Forests (400

trees) and SVM by 1.1%, 7.7%, 2.7% and 4.3%, respectively for the BRAIN dataset.

For this high dimensional dataset, the number of features (25,286) significantly

exceeded the number of samples (88) giving a significant drop in the PLS-DA

accuracy.

Furthermore, as shown in Figure 3 the accuracy obtained with PD-CR could be

further improved by using the CSP to perform classification with rejection. Indeed,

most of the samples were classified with a high CSP and if we apply a CSP threshold
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ε of 0.45, the FDR drops to 0 while only rejecting 10% of the samples. This shows

that all the miss-classified samples had a low CSP.

Figure 3 Distribution of the Confidence Score for the Prediction (CSP) on the BRAIN dataset and
impact of using CSP for classification with rejection on the false discovery rate (FDR). From left to
right and top to bottom : Histogram of the CSP, Kernel density estimation; FDR as a function of
CSP after classification with rejection, rate of rejected samples as a function of CSP after
classification with rejection.As expected for a pertinent confidence score, the FDR diminishes when
using a higher CSP threshold for classification with rejection.

Random Forests PLS-DA PD-CR SVM
NEG MZ147.0867 POS MZ131.0342 POS MZ131.0342 POSMZ131.0342
POS MZ133.0384 POS MZ132.0375 POS MZ132.0375 POSMZ132.0375
POS MZ166.0713 POS MZ166.0713 POS MZ243.9903 POSMZ166.0713
POS MZ228.0182 NEG MZ147.0288 POS MZ166.0712 NEGMZ147.0288
POS MZ132.5234 NEG MZ148.0321 NEG MZ147.0288 NEGMZ148.0321
POS MZ173.0306 NEG MZ149.0329 NEG MZ148.0321 POSMZ171.0265
POS MZ219.0082 POS MZ171.0265 POS MZ123.5181 OSMZ132.0375
NEG MZ215.0168 POS MZ132.0375 POS MZ171.0265 POSMZ247.9616
POS MZ171.0265 POS MZ243.9903 NEG MZ149.0329 POSMZ243.9903
POS MZ319.0510 POS MZ123.5181 POS MZ133.0384 NEGMZ149.0329

Table 5 Top 10 features selected by Random Forests, PLS-DA, PD-CR and SVM on the BRAIN
dataset with 25286 features

As shown in Table 5, most of the top features selected with the 3 methods correspond

to different isotopes and adducts of 2-hydroxyglutarate. Indeed, POS MZ131.0342,

POS MZ132.0375 and POS MZ133.0384 all correspond to the [M+H-H2O adduct]+

of 2-hydroxyglutarate with C12, and two C13 isotopes respectively. NEG MZ147.0288,

NEG MZ148.0321 and NEG MZ149.0329 correspond to the [M-H]- adduct with C12,

and two C13 isotopes respectively. POS MZ166.0713 corresponds to a [M+NH4]+

adduct. POS MZ171.02645 corresponds to the [M+Na]+ adduct. POS MZ243.9903

had the same retention time and chromatographic profile as POS MZ131.0342,

suggesting that it was an unknown fragment or adduct of 2-hydroxyglutarate.

2-Hydroxyglutarate is a well-known oncometabolite produced in high quantities by

mutated IDH1/2 in gliomas [33]. It is therefore expected that this compound will

have a high weight when classifying mutated vs wild-type gliomas as it should be

significantly increased in IDH mutated gliomas (as shown in figure 4).

Here all four methods selected this important feature among a high dimensional

dataset (25,287 features in this case). Adducts and isotopes of 2-hydroxyglutarate
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with low levels are top selected features using PD-CR indicating that our method is

a very sensitive way to identify significant molecules. This result on the minimally

filtered dataset also suggest that PC-CR avoids overfiting as no unexpected feature

was selected.

Figure 4 Boxplots concerning relative abundances of features POS 131.0342, POS 132.0375
POS 243.9903 and POS 166.0712 of the BRAIN dataset, most likely corresponding to different
adducts of 2-Hydroxyglutarate. Fold changes : 32.9, 35.6, 14.6 and 33.7 respectively. Label 1 :
samples of tumors with wild type IDH, Label 2 : samples of tumors with mutated IDH.

4.2.2 Comparison to the highly filtered dataset

PD-CR PD-CR `2 PLS-DA Random Forests SVM
Accuracy % 94.31 92.8 93.18 92.04 89.20

Table 6 Mean accuracy using 4-fold cross validation with 3 different seeds: comparison of methods on
the BRAIN highly filtered data set

As shown in Table 6 the accuracies of the different methods were equivalent and

very high when using the highly filtered version of the BRAIN dataset (accuracy

being a little lower with SVM).

When PD-CR was used on the highly filtered BRAIN dataset, it lead to similar

results as with PD-CR using an `2 loss, PLS-DA, Random Forests and SVM. In

contrast, it outperformed these methods when using the minimally filtered dataset.

In this case, as shown in Table 7 more features were selected. When using the BRAIN

dataset for the IDH-mutated vs wild-type classes, most of these additional features

were adducts of 2-hydroxyglutarate and are therefore known to be biologically

relevant. The additional features that are not adducts of 2-hydroxyglutarate will be

investigated in a future study.

Identified (495 features) Large (25287 features)
POS M131.0342 POS MZ131.0342
NEG M147.02882 POS MZ132.0375

POS M85.0291 POS MZ243.9903
POS M149.0450 POS MZ166.0713
NEG M112.0220 NEG MZ147.0288
POS M154.0864 NEG MZ148.0320
NEG M171.0847 POS MZ123.518
NEG M320.0627 POS MZ171.0265
POS M113.0350 NEG MZ149.0329
POS M147.1170 POS MZ133.0384

Table 7 Top 10 features selected by PD-CR in the highly and minimally filtered versions of the
BRAIN dataset
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5 Discussion
Machine learning methods are of particular interest for metabolomics studies and are

being used increasingly for other omics studies. Herein we introduce a new primal-

dual method for supervised classification and feature selection. To our knowledge, a

primal-dual method had never been used in this way. We compare this method to

three of the most frequently used methods: PLS-DA, Random Forests and SVM,

on two metabolomics datasets. Metabolomics datasets tend to be sparse datasets

including highly correlated features. PD-CR is particularly suited for this data

structure. Hence, for metabolomics, PD-CR appears to be more accurate than the

three other methods while selecting biologically relevant features and providing a con-

fidence score for each prediction. An important upside associated with the inclusion

of a confidence score for each prediction is that it enables classification with rejection.

We believe that this confidence score is of great value, particularly for applications

in medicine. Metabolomics approaches are of particular interest for medical applica-

tions. Indeed, they could be used in routine clinical practice as they are relatively

inexpensive and can be performed rapidly compared to proteomics, transcriptomics

or genomics analyses. More and more studies suggest that metabolomics associ-

ated to classification methods are very promising tools for individual personalized

medicine[34, 10]. To use metabolomics in routine clinical practice it is paramount

to obtain robust, rapid and trustworthy predictions. The confidence score provided

with PD-CR adds considerable value to the prediction as it includes a metric that is

implicitly used by every physician when they make a medical decision: the probability

to make the wrong choice. So far, one of the main obstacles to the use of machine

learning in medicine resides in the fact that it is harder to trust the decision of a

machine learning method than that of a physician when it comes to health issues.

We believe that providing a confidence score associated to the decision would make

these new tools more convincing if used in routine clinical practice. Furthermore,

this confidence score can be used to perform classification with rejection and reduce

the false discovery rate.

Furthermore, this confidence score could be extended to more than 2 classes as

follows : We can compute the distances of sample x to all the centroids, respectively.

d1 = ‖µi − xW‖1 and we propose a confidence indicator for sample x as follows :

ρ(x) = 1− kMin(d1, d2..., dk)

d1 + d2 + ...dk
(8)

Thus, the CSP ρ(x) is a value ranging from 0 to 1. The closer the CSP ρ(x) is to +1

for a predicted class, the higher the confidence will be.

We have shown that PD-CR outperformed the common PLS-DA, Random Forests

and SVM methods on both LUNG and BRAIN datasets. We believe that this is

partly due to the fact that PD-CR uses a Huber loss. Indeed, the use of the Huber

loss with PD-CR leads to a better accuracy than the use of a common `1 or `2 loss

[13]. Note that the l1 loss is not derivable in zero. Moreover the drawback of the
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term ‖Y µ − XW‖1 of the l1 loss is that it enforces equality of the two matrices

out of a sparse set. Moreover the use of the Huber loss reduces the impact of the

presence of outliers in the training set, and therefore leads to a better accuracy than

the `2 loss, as shown in table 2 and table 4.

Furthermore we show in table 2 and table 4 that using PD-CR with an `2 loss

provides better results than PLSDA which uses the same `2 loss. This is probably

due to the fact that PLS-DA does not perform feature selection and is known to be

prone to overfitting [5].

Moreover, when comparing methods with the minimally filtered and the more filtered

versions of the BRAIN dataset, all methods suffered a decrease in accuracy with

the minimally filtered dataset (PD-CR keeping the higher accuracy). However the

results obtained using the PLS-DA method appeared to be more impacted than

those of the Random Forests, SVM and PD-CR. Indeed, the accuracy of PLS-DA

significantly decreased when the less filtered dataset was used dropping from 93.18%

to 84.09%, compared to a mild decrease in accuracy for the other methods. This

can also be explained by the fact that PLS-DA does not perform feature selection

and is known to be prone to overfitting [5]. For this reason, several strategies are

commonly used to reduce the number of features in metabolomics datasets. Features

can be filtered according to the number of detected peaks in all samples, the correct

identification of the compound (using the most common adduct) or the presence

of isotopes. Working with filtered data has some advantages, including the fact

that it appears more biologically relevant to work on less noisy and more reliable

data. However, filtering also has some important drawbacks, the most important

being the high risk of removing interesting metabolites from the dataset. In the case

of the BRAIN dataset, 2-Hydroxyglutarate is a well known metabolite associated

to IDH mutation. However, in many metabolomic studies, the goal is to discover

potentially unidentified metabolites associated to particular conditions which can

only be achieved by including unidentified metabolites. As shown in this work,

PD-CR can be applied to both minimally filtered and highly filtered metabolomics

datasets.

As it has been previously reported, when designing prediction models, some methods

may lead to a more accurate model for a specific dataset while others may be more

adapted with other datasets [35]. Indeed, even though we can discuss which machine

learning method is the best, most often, researchers try out several machine learning

methods on their metabolomics datasets and report the results of the most accurate

one. This process has even been automated by some authors [36]. PD-CR is an

advanced method, based on recent development in convex optimization and we

believe it should be considered by researchers when designing prediction models for

metabolomics studies.

Much like the commonly used methods PLS-DA, Random Forests and SVMs, avail-

able with [37], our python implementation of PD-CR only requires the tuning of one
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parameter : η. This makes the use of PD-CR quite simple, even for non machine

learning experts, much like PLS-DA. Note that the tuning of the η parameter must

be done carefully since it modifies feature selection.

When comparing misclassified patients between methods in an additional analysis,

it appeared that in the minimally filtered BRAIN dataset 16/88 tumors were mis-

classified with at least one method. 2 tumors were misclassified with all methods, 6

with two or three methods and 8 with only one method (3 were misclassfified only

with PLS-DA, 4 with Random Forests, 1 with SVM and none with PD-CR). In the

LUNG dataset 702/1005 patients were misclassified with at least one method. 68

patients were misclassified with all methods, 240 with two or three methods and 394

with only one method (15 were misclassfified only with PLS-DA, 63 with Random

Forests, 305 with SVM and 11 with PD-CR). It therefore appears that PD-CR is

the method with the smallest number of false discoveries.

While prior metabolomic studies did not necessarily focus on validating which

features the prediction models relied on, it is now admitted that to be trustwor-

thy a model must be based on biologically relevant features and must therefore

be interpretable [38]. Indeed, interpretability of machine learning methods [39] is

crucial to assess if selected features are biologically relevant. PD-CR offers a straight-

forward, reliable metric based on the weights of each feature in the model (matrix W).

Conversely, non-linear methods such as Random Forests or non-linear SVM and the

linear methods PLS-DA and linear SVM are usually associated to method-specific

metrics which makes it difficult to compare features between methods. For Random

Forests, the Mean Decrease Impurity (MDI) is usually the default metric for variable

importance [40]. It is computed as a mean of the individual trees’ improvement

in the splitting criterion produced by each variable. For PLS-DA, the Variable

Importance for the Projection (VIP) score is often used. The VIP score is computed

by summing the contributions VIN (variable influence) over all model dimensions.

For a given PLS dimension a, (V IN)2ak is a function of the squared PLS weight w2
ak

[41].

While these metrics offer some insight into the importance of each metabolite in

the model these are indirect metrics whereas the weights provided with PD-CR

represent the direct quantitative measure of the importance of each feature in the

model, very close to regression parameters and can thus directly be used to classify

a new sample.

Furthermore, relevant feature selection is necessary for a correct understanding of

the biological mechanisms underlying classification. It is well established that when

expressed, mutant IDH 1/2 reduces 2-oxo-glutarate to 2-hydroxyglutarate [42]. It

was therefore expected for 2-hydroxyglutarate to be a feature of importance as

was the case when using PD-CR on the BRAIN dataset for the classification of

IDH-mutated vs wild-type gliomas. As the biologically relevant features are known in
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advance, the BRAIN dataset is a good testing set for this new method. Furthermore,

as we described, the features selected with PD-CR in the LUNG dataset are identical

to the ones described by Mathé et al. in their original study, which also validates

the accurate feature selection performed by PD-CR.

6 Conclusion
Herein we propose a recently introduced primal-dual method (PD-CR) for feature

selection and classification with rejection . To our knowledge, the primal-dual

method has never been used in such fashion. PD-CR includes a sparse regularization

factor which is particularly appropriate for high dimensional sparse datasets such as

metabolomics datasets.

We highlight the two main results. First, PD-CR is more accurate than PLS-DA,

Random Forests and SVM and leads to the selection of biologically relevant features.

Second, our method provides a confidence score for each prediction and allows

classification with rejection, which can help reduce false discovery rates.
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