
LEARNING SPARSE AUTO-ENCODERS FOR GREEN AI IMAGE CODING

Cyprien Gille ∗, Frédéric Guyard †, Marc Antonini ∗, member IEEE, and Michel Barlaud ∗, Fellow IEEE

∗ Université Côte d’Azur, I3S, CNRS, Sophia Antipolis, France
†Orange Labs, Sophia Antipolis, France

ABSTRACT
Recently, convolutional auto-encoders (CAE) were introduced
for image coding. They achieved performance improvements
over the state-of-the-art JPEG2000 method. However, these
performances were obtained using massive CAEs featuring
a large number of parameters and whose training required
heavy computational power.
In this paper, we address the problem of lossy image
compression using a CAE with a small memory footprint
and low computational power usage.
In this work, we propose a constrained approach and a new
structured sparse learning method. We design an algorithm
and test it on three constraints: the classical `1 constraint,
the `1,∞ and the new `1,1 constraint. Experimental results
show that the `1,1 constraint provides the best structured
sparsity, resulting in a high reduction of memory (82 %)
and computational cost reduction (25 %), with similar rate-
distortion performance as with dense networks.

I. INTRODUCTION
Since Balle’s [1] and Theis’ works [2] in 2017, most

new lossy image coding methods use convolutional neural
networks, such as convolutional autoencoders (CAE) [3], [4],
[5].
CAEs are discriminating models that map feature points
from a high dimensional space to points in a low dimensional
latent space. They were introduced in the field of neural
networks several years ago, their most efficient application
at the time being dimensionality reduction and denoising
[6]. One of the main advantages of an autoencoder is the
projection of the data in the low dimensional latent space:
when a model properly learns to construct a latent space, it
naturally identifies general, high-level relevant features. In a
lossy image coding scheme, the latent variable is losslessly
compressed using entropy coding solutions, such as the
well-known arithmetic coding algorithm. End-to-end training
of a CAE coding scheme reaches image coding performances
competitive with JPEG 2000 (wavelet transform and bit
plane coding) [7]. These are compelling results, as JPEG
2000 represents the state-of-the-art for standardized image
compression algorithms1. Autoencoder-based methods
specifically are becoming more and more effective : In a

1https://jpeg.org/jpeg2000/index.html

span of a few years, their performances have gone from JPEG
to JPEG 2000. Considering the performances of these new
CAEs for image coding, the JPEG standardization group has
introduced the study of a new machine learning-based image
coding standard, JPEG AI2. Note that the performances of
these CAEs are achieved at the cost of a high complexity and
large memory usage. In fact, energy consumption is the main
bottleneck for running CAEs while respecting an energy
footprint or carbon impact constraint [8], [9]. Fortunately, it
is known that CAEs are largely over-parameterized, and that
in practice relatively few network weights are necessary to
accurately learn image features.

Since 2016, numerous methods have been proposed in
order to remove network weights (weight sparsification)
during the training phase [10], [11]. These methods generally
do produce sparse weight matrices, unfortunately with random
sparse connectivity. To address this issue, many methods
based on LASSO, group LASSO and exclusive LASSO were
proposed [12], [13], [14] in order to simultaneously sparsify
neurons and enforce parameter sharing. However, all proximal
regularization methods quoted above require the computation
of the LASSO path, which is time consuming [15]. In order
to deal with this issue, we proposed instead a constrained
approach in [16], where the constraint is directly related to
the number of zero-weights.
In this work, we extend the aforementioned approach to
a CAE in the context of image coding in order to reduce
its memory requirement and computational footprint while
keeping the best rate-distortion trade-off as possible. We
designed an algorithm for the sparsification of the CAE in
section II with three constraints in mind: the classical `1
constraint, the `1,∞ constraint [17] and the structured `1,1
constraint [18],[19].
In section III, we present experimental results with sparsifica-
tion of the encoder. Finally, section IV concludes the paper
and provides a discussion and some perspectives.

II. LEARNING A SPARSE AUTOENCODER USING
A STRUCTURED CONSTRAINT

Figure 1 shows the architecture of a CAE network where X
is the input data, Z the latent variable and X̂ the reconstructed

2https://jpeg.org/jpegai/index.html

https://jpeg.org/jpeg2000/index.html
https://jpeg.org/jpegai/index.html

Fig. 1: Entropy-Distortion scheme with a CAE

data. In the following, let us call W the weights of the CAE.
The goal is to compute the set of weights of the CAE W

minimizing the total loss for a given training set. The total
loss corresponds to the classical trade-off between entropy
and distortion, and is thus a function of the entropy of the
latent space Z and of the reconstruction error between X and
X̂ . It can then be modified to achieve weight sparsification
with a regularization term. However, the main issue is that
the computation of the regularization parameter using the
Lasso path is computationally expensive [15]. In order to
deal with this issue, we propose to minimize the following
constrained approach instead:

Loss(W) = λ · H(Z) + ψ(X̂ −X) s.t. ‖W‖11 6 η. (1)

where H(Z) is the entropy of the latent variable distribution
and ψ is the reconstruction loss, for which we use the robust
Smooth `1 (Huber) loss and with η being the projection
radius.
The main difference with the criterion proposed in [2] is the
introduction of the constraint on the weights W to sparsify
the neural network. Low values of η imply high sparsity of
the network. The classical Group LASSO consists of using
the `2,1 norm for the constraint on W . However, the `2,1
norm does not induce a structured sparsity of the network
[20], which leads to negative effects on performance when
attempting to reduce the computational cost.

Thus we propose the new `1,1 projection as follows. We
first compute the radius ti and then project the rows using
the `1 adaptive constraint ti . Note that the proposed new
`1,1 projection algorithm 1 corresponds to minimizing the
following convex criterion 2 (see [18] for more details) :

min∑
i ti≤η∑

j |wi,j |−ti≤0

d∑
i=1

 k∑
j=1

|vi,j | − ti

2

+ε

d∑
i=1

k∑
j=1

(vi,j−wi,j)2.

(2)
Note that in the case of a CAE, contrarily to fully connected

networks, W originally corresponds to a tensor instead of a

Algorithm 1 Projection of the l × d matrix V onto the `1,1-
ball of radius η. proj`1(v, η) is the projection of v on the
`1-ball of radius η

Input: V, η
for i = 1, . . . , d do
ti := proj`1((‖vj‖1)

l
j=1, η)i

wi := proj`1(vi, ti)
end for
Output: W

matrix. We thus need to flatten the inside dimensions of the
weight tensors to turn them into two-dimensional arrays. We
then run the double descent Algorithm 2 [21], [22] where
instead of the weight thresholding done by state-of-the-art
algorithms, we use our `1,1 projection from Algorithm 1.

Algorithm 2 Double descent algorithm. φ is the total loss
as defined in (1), ∇φ(W,M0) is the gradient masked by the
binary mask M0, A is the Adam optimizer, N is the total
number of epochs and γ is the learning rate.

First descent
Input: Winit, γ, η
for n = 1, . . . , N do
W ← A(W,γ,∇φ(W))

end for
Projection
for i = 1, . . . , d do
ti := proj`1((‖vj‖1)lj=1, η)i
wi := proj`1(vi, ti)

end for
(M0)ij := 1x 6=0(wij)
Output: M0

Second descent
Input: Winit,M0, γ
for n = 1, . . . , N do
W ← A(W,γ,∇φ(W,M0))

end for
Output: W

Our implementation of algorithm 2 as well as all training
code is available at 3.

III. EXPERIMENTAL RESULTS
The proposed method was implemented in PyTorch using

the python code implementation of a convolutionnal auto-
encoder proposed in [2]4. Note that the classical com-
putational cost measure evaluates FLOPS (floating point
operations per second), in which additions and multiplications
are counted separately. However, a lot of modern hardware
can compute the multiply-add operation in a single instruction.
Therefore, we instead use MACCs (multiply-accumulate

3https://github.com/CyprienGille/Sparse-Convolutional-AutoEncoder
4https://github.com/alexandru-dinu/cae

https://github.com/CyprienGille/Sparse-Convolutional-AutoEncoder
https://github.com/alexandru-dinu/cae

operations) as our computational cost measure (multiplication
and addition are counted as a single instruction5).

We trained the compressive autoencoder on 473 2048×
2048 images obtained from Flickr6, divided into 128× 128
patches. We use the 24-image Kodak PhotoCD dataset for
testing 7. All models were trained using 8 cores of an AMD
EPYC 7313 CPU, 128GB of RAM and an NVIDIA A100
GPU (40GiB of HMB2e memory, 1.5TB/s of bandwidth,
432 Tensor Cores). Performing 100 Epochs of training takes
about 5 hours.
We choose as our baseline a CAE network trained using
the classical Adam optimizer in PyTorch, and compared
its performance (relative MACCs and loss as a function
of sparsity, PSNR and Mean SSIM as a function of the
bitrate) to our masked gradient optimizer with `1, `1,1 and
`1,∞ constraints. For the `1,∞ projection, we implemented
the "Active Set" method from [17]. For the PSNR function,
we used its implementation in CompressAI [23]8. Note that
MSSIM refers to the Mean Structural SIMilarity, as introduced
in [24]. Considering that the high image quality and low
distortions are difficult to assess within an article, we provide
here a link to our website (https://www.i3s.unice.fr/~barlaud/
Demo-CAE.html) so that the reader can download the images
and evaluate their quality on a high definition screen. From
now on, we use S to denote the encoder sparsity proportion,
i.e. the ratio of zero-weights over the total number of weights
in the encoder.
In this experiment, we only sparsify the encoder layers of the
CAE. This is a practical case, where the power and memory
limitations apply mostly to the sender as is the case for
satellites [25], [26], drones, or cameras used to report from
an isolated country.

Figure 2 displays the relative number of MACCs with
respect to the aforementioned baseline of a non-sparsified
network, as a function of the density 1−S. The `1 constraint
does not provide any computational cost improvement while
the `1,1 constraint significantly reduces MACCs. This is
due to the fact that the `1,1 constraint (contrarily to `1)
creates a structured sparsity [20], setting to zero groups
of neighbouring weights, inhibiting filters and thus pruning
operations off the CAE. The `1,∞ constraint reduces MACCs
even more, but comes with a reduction of the performance
of the network.

Let us now define the relative PSNR loss with respect to
the reference without projection as:

10× (log10(MSEref)− log10(MSEL)) in dB

for a constraint L = `1, L = `1,1, or L = `1,∞.
Table I shows the relative loss of the different models for a
value of the sparsity S around 83%. The table shows that

5https://machinethink.net/blog/how-fast-is-my-model/
6https://github.com/CyprienGille/flickr-compression-dataset
7http://www.r0k.us/graphics/kodak/
8https://github.com/InterDigitalInc/CompressAI

the `1,1 constraint leads to a slightly higher loss than `1.
However, this slight decrease in performance comes with a
significant decrease in computational cost (30% less MACCs
for a sparsity of 86%), as shown in Figure 2.

Fig. 2: Projection on encoder layers : Relative MACCs
computational cost as a function of the density.

Table I: Projection on encoder layers : Sparsity, MACCs,
Memory reduction and relative loss

Constraint `1 `1,1 `1,∞
S (%) 82.12 83.05 84.77

MACCs reduction % 0 27 40
Memory reduction % 81 82 84

Relative Loss (dB) -1.15 -1.2 -1.7

We then display the bitrate-distortion curves for the CAEs
from Table I.

Fig. 3: Projection on encoder layers : PSNR as a function
of the bitrate for decoded Kodak test images

The figures 3 and 4 show a slight PSNR loss of less than
1dB, and similarly close MSSIM scores. This loss translates
perceptually into a slight reinforcement of the image grain,
which is more noticeable for projection `1,∞.

IV. DISCUSSION AND CONCLUSION
The aim of this study was not to present a new compres-

sive network with better performance than state-of-the-art
networks, but rather to prove that, for any given network,

https://www.i3s.unice.fr/~barlaud/Demo-CAE.html
https://www.i3s.unice.fr/~barlaud/Demo-CAE.html
https://machinethink.net/blog/how-fast-is-my-model/
https://github.com/CyprienGille/flickr-compression-dataset
http://www.r0k.us/graphics/kodak/
https://github.com/InterDigitalInc/CompressAI

Fig. 4: Projection on encoder layers : Mean SSIM as a
function of the bitrate for decoded Kodak test images

(a) Original (b) No Projection

(c) `1,1, S = 87.87, RM = 34 (d) `1,∞, S = 86.35, RM = 42

Fig. 5: Projection of the encoder layers : Comparison of
reconstructed test images for different models. S is the
sparsity, RM refers to the percentage of MACCS reduced
by the projections. Bitrates around 2.25bpp.

the `1,1 constraint and the double descent algorithm can
be used as a way to efficiently and effectively reduce both
storage and power consumption costs, with minimal impact
on the network’s performance. We focus in this paper on high-
quality image compression. In satellite imagery, the available
energy is a crucial resource, making the image sender a
prime benefactor of energy-sparing compression solutions.
Our sparcification method using the the `1,1 constraint on the
encoder layers, i.e. the on-board segment of the network led
to almost the same loss while reducing MACCs and energy

consumption by 25% and memory requirements by 82.03%
respectively.

Fig. 6: Comparison of the CAE with JPEG and JPEG2K
at high bit-rates on Kodak. Data for JPEG and JPEG2K
comes from the CompressAI benchmarks : https://github.
com/InterDigitalInc/CompressAI/tree/master/results/kodak.

Figure 6 shows that the CAE with low energy consumption
outperforms JPEG and JPEG2K by at least 4dB at high
bit-rates (4bpp). Note that our CAE was optimized for high
bit-rates: we can see the translation of the 47 dB of PSNR
to unperceivable differences on test images in figure 7. In
this case (bitrate around 4bpp), we can say that we have a
near lossless compression even while reducing the energy
and memory costs of the network.

Fig. 7: Kodak test images (detail). Left: Original, Right: CAE
with `1,1 and 4.28bpp.

Other examples include drone imagery, media transmission
from a remote or hazardous country. This result is also very
encouraging in a time where the ecological impact of neural
networks is considerable [8], [27].

Both projection `1 and `1,1 decrease the memory footprint
of the network, but only the `1,1 constraint decreases its
computational cost without degrading the performance.
We have shown the interest of our method of sparsification
to reduce the energy and memory costs of a CAE network.
Further works will include application of our sparsification
technique to state-of-the-art compression models [4]. Sparsi-
fication of all layers of the network is reported in [28].

https://github.com/InterDigitalInc/CompressAI/tree/master/results/kodak
https://github.com/InterDigitalInc/CompressAI/tree/master/results/kodak

V. REFERENCES
[1] J. Ballé, V. Laparra, and E. Simoncelli, “End-to-end op-

timized image compression,” ICLR Conference Toulon
France, 2017.

[2] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy
image compression with compressive autoencoders,”
ICLR Conference Toulon, 2017.

[3] J. Ballé, D. Minnen, S. Singh, J. Hwang, and N. John-
ston, “End-to-end optimized image compression,” ICLR
Conference Vancouver Canada, 2018.

[4] D. Minnen, J. Ballé, and G. Toderici, “Joint autore-
gressive and hierarchical priors for learned image
compression,” NEURIPS, Montreal Canada, 2018.

[5] F. Mentzer, G. Toderici, M. Tschannen, and E. Agusts-
son, “High-fidelity generative image compression,”
NEURIPS, 2020.

[6] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol, “Stacked denoising autoencoders: Learning
useful representations in a deep network with a local
denoising criterion.” J. Mach. Learn. Res., vol. 11, pp.
3371–3408, 2010.

[7] C. Zhengxue, S. Heming, T. Masaru, and K. Jiro,
“Deep convolutional autoencoder-based lossy image
compression,” arXiv:1804.09535v1 [cs.CV] April, 2018.

[8] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni,
“Green ai,” 2019.

[9] D. Patterson, J. Gonzalez, U. Hölzle, Q. H. Le, C. Liang,
L.-M. Munguia, D. Rothchild, D. So, M. Texier, and
J. Dean, “The carbon footprint of machine learning
training will plateau, then shrink,” 2022.

[10] E. Tartaglione, S. Lepsøy, A. Fiandrotti, and G. Francini,
“Learning sparse neural networks via sensitivity-driven
regularization,” in Advances in Neural Information
Processing Systems, 2018, pp. 3878–3888.

[11] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more:
Towards compact cnns,” in European Conference on
Computer Vision. Springer, 2016, pp. 662–677.

[12] J. M. Alvarez and M. Salzmann, “Learning the number
of neurons in deep networks,” in Advances in Neural
Information Processing Systems, 2016, pp. 2270–2278.

[13] Z. Huang and N. Wang, “Data-driven sparse structure
selection for deep neural networks,” in Proceedings of
the European Conference on Computer Vision (ECCV),
2018, pp. 304–320.

[14] U. Oswal, C. Cox, M. Lambon-Ralph, T. Rogers,
and R. Nowak, “Representational similarity learning
with application to brain networks,” in International
Conference on Machine Learning, 2016, pp. 1041–1049.

[15] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The
entire regularization path for the support vector machine,”
Journal of Machine Learning Research, vol. 5, pp. 1391–
1415, 2004.

[16] M. Barlaud, W. Belhajali, P. Combettes, and L. Fillatre,
“Classification and regression using an outer approxima-

tion projection-gradient method,” vol. 65, no. 17, 2017,
pp. 4635–4643.

[17] B. Haro, I. Dokmanic, and R. Vidal, “The fastest `1, ∞
prox in the west,” arXiv 1910.03749, 2019.

[18] M. Barlaud and F. Guyard, “Learning sparse deep neural
networks using efficient structured projections on convex
constraints for green ai,” International Conference on
Pattern Recognition, Milan, 2020.

[19] ——, “Learning a sparse generative non-parametric su-
pervised autoencoder,” Proceedings of the International
Conference on Acoustics, Speech and Signal Processing,
TORONTO , Canada, June 2021.

[20] M. Barlaud, A. Chambolle, and J.-B. Caillau, “Classifi-
cation and feature selection using a primal-dual method
and projection on structured constraints,” International
Conference on Pattern Recognition, Milan, 2020.

[21] H. Zhou, J. Lan, R. Liu, and J. Yosinski, “Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask,” in
Advances in Neural Information Processing Systems 32,
2019, pp. 3597–3607.

[22] J. Frankle and M. Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” in Interna-
tional Conference on Learning Representations, 2019.

[23] J. Bégaint, F. Racapé, S. Feltman, and A. Push-
paraja, “Compressai: a pytorch library and evalua-
tion platform for end-to-end compression research,”
arXiv:2011.03029, 2020.

[24] Z. Wang, A. C. Bovik, S. H. Rahim, and E. P. Simoncelli,
“Image quality assessment: from error visibility to
structural similarity.” IEEE Trans Image Process., vol.
13(April), pp. 600–612, 2004.

[25] V. Alves de Oliveira et al, “Satellite image compression
and denoising with neural networks,” IEEE Geoscience
and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[26] C. Parisot, M. Antonini, M. Barlaud, C. Lambert-
Nebout, C. Latry, and G. Moury, “On board strip-based
wavelet image coding for future space remote sensing
missions,” in IGARSS 2000., vol. 6, 2000, pp. 2651–
2653.

[27] E. Strubell, A. Ganesh, and A. McCallum, “Energy and
policy considerations for deep learning in nlp,” in ACL,
2019.

[28] C. Gille, F. Guyard, M. Antonini, and M. Barlaud,
“Learning sparse auto-encoders for green ai image
coding,” arXiv: 2209.04448v 9 september, 2022.

	 Introduction
	 Learning a sparse autoencoder using a structured constraint
	 Experimental results
	 Discussion and conclusion
	 References

