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Abstract—Deep neural networks (DNN) have been applied
recently to different domains and perform better than classical
state-of-the-art methods. However the high level of performances
of DNNs is most often obtained with networks containing millions
of parameters and for which training requires substantial com-
putational power. To deal with this computational issue proximal
regularization methods have been proposed in the literature but
they are time consuming.
In this paper, we propose instead a constrained approach. We
provide the general framework for this new projection gradient
method. Our algorithm iterates a gradient step and a projection
on convex constraints. We studied algorithms for different con-
straints: the classical `1 unstructured constraint and structured
constraints such as the `2,1 constraint (Group LASSO). We
propose a new `1,1 structured constraint for which we provide a
new projection algorithm. Finally, we used the recent "Lottery
optimizer" replacing the threshold by our `1,1 projection. We
demonstrate the effectiveness of this method with three popular
datasets (MNIST, Fashion MNIST and CIFAR). Experiments
with these datasets show that our projection method using this
new `1,1 structured constraint provides the best decrease in
memory and computational power.

I. MOTIVATION

Deep neural networks have been applied recently to different
domains and have shown a dramatic improvement in accuracy
of image recognition [1], speech recognition [2] or natural
language processing [3]. These studies relied on deep networks
with millions or even billions of parameters. For instance,
the original training of ResNet-50 [4] (image classification)
contains 25.6M parameters and required 29 hours of processing
using 8 GPUs. Storing the model requires 98MB. The cost
in memory of the inference on a single 224x224 image is
about 103MB and 4 GFLOPs are needed [5]. The recent
development of DNNs, hardware accelerators like GPUs and
the availability of deep learning frameworks for smartphones
[6] suggest seamless transfer of DNN models trained on servers
onto mobile devices. However, it turns out that the memory
[7] and energy consumption [8] are still the main bottlenecks
for running DNNs on such devices.
Thus the computational cost has an impact on the carbon

footprint. It has been argued that this trend is environmentally
unfriendly [9]. Some authors of [10] advocate a practical
solution by providing an efficient evaluation criterion.
In this paper, we propose a new splitting projection-gradient
method with an efficient structured constraint to cope with these
computational and memory issues. In the formulation of our
method, a constraint defines a convex set and the regularization
is replaced by projection onto this convex set. The benefits
of this formulation are twofold. Firstly, the constraint has a
direct geometric interpretation whereas the impact of parameter
values in traditional regularization methods are more difficult
to understand. Secondly, the convergence of this new method
is formally proved.
The paper is organized as follows. We first present related works
in Section II, then in Section III, we develop the theoretical
background of our constrained projection method. In Section IV,
we compare experimentally the methods. The tests involve
several datasets with different neural network architectures.

II. RELATED WORKS

Weights sparsification

It is well known [11] that DNN models are largely over-
parametrized and that in practice, relatively few network
weights are actually necessary to accurately learn data features.
Based on this result, numerous methods have been proposed
in order to remove network weights (weight sparsification)
either on pre-trained models or during the training phase. A
basic idea to sparsify the weights of the neural network is
to use the Least Absolute Shrinkage and Selection Operator
(LASSO) formulation [12], [13]. The `1 penalty added to the
classification cost can be interpreted as a convexification of the
`0 penalty. In [14], weights with the smallest amplitude in pre-
trained networks are removed. Model sensitivity to weights can
also be used [15], [16]. where weights with a weak influence on
the network output are pruned. Constraint optimization is used
in order to learn sparse networks with `0, `1 or `2 constraints
on the weights [17].
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These methods generally produce networks with random
sparse connectivity, i.e. high-dimensional but sparse weight
matrices. They only partially reduce the computational demand
since they result in networks with sparse weight matrices,
requiring the availability of sparse matrix multiplication to
effectively take advantage of the sparsity. Decreasing both
memory and computational requirements can however be
achieved by suppressing neurons instead of weights. This
approach is frequently referred to as structured sparsification
or neuron level sparsification. The two main approaches for
structured sparsity are based on group regularization and low-
rank factorization.
Many regularizing techniques have been proposed to allow
structured sparsification. Pruning methods are sparsifying pre-
trained networks. Filters in CNN are pruned based on the
`1 norm of their kernel weights [18]. Some authors perform
channel pruning using LASSO regression and least squared
reconstruction [19]. Neurons are pruned based on the average
percentage of zeros (APoZ) after the ReLU activation [20].

Learning structured sparse DNNs using regularization methods

In contrast to the case of weight sparsification, neuron level
sparsification introduces a new challenge forcing adoption of
other types of regularization.
The most common approaches are based on group LASSO `2,1
[21] or on sparse group LASSO `2,1 + `1 [12] regularization.

Numerous other methods include regularization during the
training of the DNN. It is customary in DNN learning to
train networks with Stochastic Gradient Descent (SGD) with
momentum, even in the case where non-smooth penalization
is used [22]. Group LASSO regularization in a number of
studies in [22], [23]. Group LASSO and filter decorrelation
regularization are used in order to discard CNN filters [24].
Group LASSO and group variance regularization have been
used in [25].

To deal with non-smooth `1 regularization, subgradient
descent is used in [26]. Here, structured sparsification is
performed without group regularization.
The idea is to scale the neurons output with a given factor
λi and apply `1 regularization to push the various factors λi
towards 0.

Fully connected layers can be represented by their
weights matrix (i.e. 2d tensor) whereas convolutional layers
correspond to 4d tensors. One of the popular compression
methods for DNN is nuclear regularization (Nuclear norm
penalty) [27]. Nuclear norm penalty was successfully used
in matrix low rank approximation [27], matrix completion
[28], matrix factorization [29] and DNN dropout modeling [30].

Learning structured sparse DNNs using proximal regularization
methods

A different approach is however based on optimization under
convex constraint where proximal methods are the most natural

tools. We recall the proximal operator of a function f(x) [31]:

proxτf (x̄) := arg min
x
f(x) +

‖x− x̄‖2

2τ
, (1)

Let W be the weight matrix of a neural network, L(W ) be
a gradient Lipschitz loss and R(w) be a convex penalty. We
define the penalty criterion by minW L(W ) + λR(W ). This
criterion can be minimized using a classical forward-backward
method belonging to the class of splitting methods [32], [33],
[34], [35]. Using SGD with penalization is limited and time
consuming due to the tuning of the corresponding penalization
hyper-parameters [36], [37].

Proximal gradient descent with group LASSO constraints
was used in [38] and in [39]. In [40], the output neurons are
scaled using a factor λi and an accelerated proximal gradient
is used with a `1 constraint to push as many coefficients λi
towards 0 without significantly decreasing the performance. In
[41], neuron sparsification is performed with proximal gradient
descent with group LASSO constraint and an additional
`1,2 constraint (Exclusive Sparsity) enforces neurons to fit
disjoint sets of features. Similarly, in [42] proximal gradient
descent with group OWL constraint (grOWL [43]) is used to
simultaneously sparsify neurons and enforce parameter sharing.
Proximal gradient descent is also used in [44] where Ordered
Weighted `1 regularization (OWL [45]) allowing simultaneous
sparsify weights and optimized weight sharing. In [46], filters
in CNN layers are pruned by solving an optimization problem
using a dedicated optimizer with either group LASSO or `2,0
regularization.

Goal of the work

Classical Learning structured sparse DNNs are based on
proximal regularization methods. In this paper, we propose
an alternative constrained approach that takes advantage of
available efficient projections on the `1-ball [47], [48], [49]
and on the `2,1 ball [50], [51]. We further propose a new `1,1
projection.

III. LEARNING SPARSE DNN

A Projection gradient algorithm for constrained learning

In this work, we propose a constrained approach in which
the constraint is directly related to the number of zero-weights.
Moreover it takes advantage of an available efficient projection
on the `1-ball [47], [49].
Let L(W ) be a gradient Lipschitz loss, R(w) be a convex
constraint, and C its convex set. Lets us define the following
criterion

min
W

L(W ) s.t. R(W ) 6 η (2)

where the scalar η > 0 is the constraint parameter. We use a
splitting gradient-projection method to minimize this criterion



based on the following forward-backward scheme to generate
a sequence of iterates [52]:

Vn := Wn − γ∇L(Wn), (3)
Wn+1 := proj(Vn) + εn, (4)

where proj denotes the projection on the convex constraint.
We can therefore apply the algorithm to any constraint for
which an exact or approximate projection can be computed.
We derive the following algorithm

Algorithm 1 Splitting gradient-projection algorithm where
∇L(W ) is provided by the net and proj(ηV ) is the projection
on the constraint

Input: X,Y,W0, N, γ, η
for n = 1, . . . , N do
V ←W − γ · ∇L(W )
W ← proj(ηV )

end for
Output: W

Optimizer with structured constraints

In the case of the constraint R(w) = ‖W‖1, efficient
algorithms have been proposed [47], [49]. Unfortunately this
`1 constraint does not induce a sparse structure.

‖W‖1 :=
∑
i,j

|wi,j |.

Classical optimizer with `2,1 norm constraint (Group
LASSO): The Group LASSO was first introduced in [53]. The
main idea of Group LASSO is to enforce model parameters
for different classes to share features. Group sparsity reduces
complexity by eliminating entire features. Group LASSO
consists in using the `2,1 norm for the constraint on W . The
row-wise `2,1 norm of a n× d matrix W (whose columns are
denoted wi, i = 1, . . . , d) is defined as follows:

‖W‖2,1 :=

d∑
i=1

‖wi‖.

We use the approach proposed in [51] to compute the projection
W on the `2,1-ball of radius η of a n × d matrix V (whose
columns are denoted vi, i = 1, · · · , d) : compute ti which is
the projection of the vector (‖vi‖i)di=1 on the `1 ball of radius
η in Rn . Each column of the projection is then obtained
according to

wi =
tivi

max{ti, ‖vi‖}
, i = 1, . . . , d.

This last operation is denoted as Wi := proj`2(Vi, ti) in
Algorithm 2.
This algorithm requires the projection of the vector (‖vi‖i)di=1

on the `1 ball of Rn of radius η whose complexity is only
O(d×log(d)). We can note that another approach was proposed
in [50]. The main drawback of their method is to compute the
roots of an equation using bisection, which is quite slow.

Algorithm 2 Projection on the `2,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η

Input: V, η
t := proj`1((‖vi‖i)di=1, η)
for i = 1, . . . , d do
wi := proj`2(vi, ti)

end for
Output: W

A new optimizer with an adaptive weighted `1,1 norm con-
straint: Unfortunately, algorithm 2 does not provide efficient
sparsity. Thus we propose the algorithm 3.

Algorithm 3 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η

Input: V, η
t := proj`1((‖vi‖1)di=1, η)
for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W

This "projection" can be seen in the following way: Given
a matrix V = (vi,j), 1 ≤ i ≤ d, 1 ≤ j ≤ n, the algorithm
computes t̄ as the solution of:

min∑d
i=1 |ti|≤η

d∑
i=1

 n∑
j=1

|vi,j | − ti

2

(5)

and then for all i = 1, . . . , d, the solution w̄ of:

min∑n
j=1 |wi,j |≤t̄i

n∑
j=1

(vi,j − wi,j)2. (6)

Clearly both t̄ and w̄ are bounded by η in their respective `1
norm.

Let us consider, for ε > 0, the problem (Pε)

min∑
i ti≤η∑

j |wi,j |−ti≤0

d∑
i=1

 n∑
j=1

|vi,j | − ti

2

+ε

d∑
i=1

n∑
j=1

(vi,j − wi,j)2

It turns out that this is a (strongly) convex problem, with
solution (tε, wε). It is easy to show that (tε, wε) → (t̄, w̄)
as ε → 0. Indeed , since (t̄, w̄) is admissible

∑
i t̄i ≤ η and



∑
j |w̄i,j | ≤ t̄i, and then, using the strong convexity of the

objective with respect to ti,

d∑
i=1

(tεi − t̄i)
2

+

d∑
i=1

 n∑
j=1

|vi,j | − tεi

2

+

ε

d∑
i=1

n∑
j=1

(vi,j − wεi,j)2

≤
d∑
i=1

 n∑
j=1

|vi,j | − t̄i

2

+ ε

d∑
i=1

n∑
j=1

(vi,j − w̄i,j)2.

Using first that t̄ is a minimizer of the first term in the right-
hand side, we find:

d∑
i=1

(tεi − t̄i)
2
+ε

d∑
i=1

n∑
j=1

(vi,j−wεi,j)2 ≤ ε
d∑
i=1

n∑
j=1

(vi,j−w̄i,j)2

Sending ε → 0, we obtain that tε → t̄. Then, dividing the
expression by ε, and considering ε → 0 again along a sub-
sequence for which wε converges to some limit w, we obtain:

d∑
i=1

n∑
j=1

(vi,j − wi,j)2 ≤
d∑
i=1

n∑
j=1

(vi,j − w̄i,j)2.

Now, since in the limit, tε → t̄, we have
∑n
j=1 |wi,j | ≤ t̄i for

all i = 1, . . . , d, so that w is admissible in the minimization
problem (6) whose solution is w̄. Hence w = w̄, and in fact
we get that limε→0 w

ε = w̄. Observe also that this shows
also ‖tε − t̄‖ = o(

√
ε). Similarly, one can show that ‖wε −

w̄‖ = o(ε1/4). Actually a more precise analysis shows that
‖tε − t̄‖ = O(ε2/3) and ‖wε − w̄‖ = O(ε1/3).

A further remark is that one can show the problem (Pε) to
be equivalent to (P+

ε ) defined with

min∑
i ti≤η∑

j |wi,j |−ti≤0

d∑
i=1

( n∑
j=1

|vi,j | − ti
)+
2

+ε

d∑
i=1

n∑
j=1

(vi,j − wi,j)2.

whose value is now convex with respect to V . Indeed, if∑
i,j |vi,j | ≤ η, it is easy to see that the value of both problems

is zero, with w̄ = v (while the value of t̄ is no longer unique
in this case in (Pε)). On the other hand, when

∑
i,j |vi,j | > η,

then at least for one i one must have
∑
j |vi,j | > ti so that, if

for some other i′,
∑
j |vi′,j | < ti′ , it is clear that decreasing

slightly ti′ and increasing ti of the same amount, one can
reduce the objective. Hence, in that case, the unique solution
of (P+

ε ) is given by the solution of (Pε) and the value is the
same. This shows that in fact, the values of both problems are
equal, and hence, also, convex with respect to V (since the
objective in the (P+

ε ) is globally convex in (V, t, w)).

Lottery optimizer

Following the work of Frankle and Carbin [54], [55]
proposed a simple algorithm to find sparse sub-networks within
larger networks that are trainable from scratch. Their approach
to finding these sparse networks is as follows: after training a
network, set all weights smaller than some threshold to zero,
rewind the rest of the weights to their initial configuration, and
then retrain the network from this starting configuration but
with the zero weights frozen (not trained).
We replaced the thresholding by our `1,1 projection and devised
the following algorithm:

Algorithm 4 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η,∇L(W,M0) is the masked
gradient with binary mask M0, and f is the ADAM optimizer,
γ is the learning rate

Input: W∗, γ, η
for n = 1, . . . , N(epochs) do
V ← f(W,γ,∇L(W ))

end for
t := proj`1((‖vi‖1)di=1, η)
for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W,M0

Input: W∗
for n = 1, . . . , N(epoch) do
W ← f(W,γ,∇L(W,M0))

end for
Output: W

IV. EXPERIMENTAL RESULTS

We used the pytorch framework to implement our sparse
learning method using a constrained approach. We chose
the Adam optimizer [56], a standard optimizer in PyTorch
as baseline comparison to our optimizer with `1 and `2,1
constraints.
We denoted as "PGL1", the algorithm with `1 constraint,
"PGL21", the algorithm with `2,1 constraint and "PGL11"
the algorithm with `1,1 constraint.
We used the entropy (bit/weight) of the weights distributions
to compute estimations of the model storage memory cost.
To this end, the weights can for instance be coded using
JPEG20001 an image coding system that uses state-of-the-art
compression techniques based on wavelet theory. The classical
computational cost evaluates FLOPs (floating point operations)
as a measure. When using FLOPs, additions (accumulates)
and multiplications are counted separately. However, a lot of
hardware can compute multiply-add operations in a single
instruction. We therefore use MACCs (multiply-accumulate
operations) as computational cost for which one multiplication
and one addition are counted as a single instruction. We
provide the results in normalized bytes and MACCs: we divided

1https://jpeg.org/jpeg2000/index.html



the number of bytes or MACCs by the number of bytes or
MACCs obtained with Adam (i.e. without constraint). For all
experiments we used Algorithm 4. Computation was performed
on a Cocolink Klimax 210 HPC with 10 GPUs (Nvidia Quadro
P6000, P100 and GeForce GTX 1080).

Results on MNIST with a convolutionnal Network

We selected the popular MNIST dataset [57] containing
28× 28 grey-scale images of handwritten digits of 10 classes
(from 0 to 9). This dataset consists of a training set of 60,000
instances and a test set of 10,000 instances.
We consider a neural network with two convolutional layers
and two linear layers denoted as Net4. The size of its weight
matrices are (1× 10× 5× 5), (10× 20× 5× 5), (320× 50)
and (50× 10) respectively. Thus the total number of elements
of these weight matrices are 250, 5000, 16000 and 500
respectively.
To apply the `1,1 constraint to the tensor, we unfolded the
tensor in a matrix form. The first layer, which interacts directly
with the input image and the last one interacting directly with
the output are most sensitive to sparsity and thus we did not
apply sparsity constraint.

The sizes of matrix weights was very unbalanced. Thus
our strategy was to sparsify the 2 most numerous layers, i.e.
the 2nd convolutional and the 1st linear layer with the same
optimizer.

We studied the layer-wise influence of the constraint param-
eter η on the accuracy and the weight sparsity, defined as the
percentage of weights set to zero. For comparison purposes,
the weights using Adam for the two linear layers are depicted
in figure 2 (top shows unstructured sparsity, bottom shows
structured sparsity using PGL11).

Figure 1 represents the weight distributions using a Parzen
kernel method. The top part shows that weights distributions
follow a Gaussian shape for Adagrad and the Adam optimizer.
The bottom part shows that weights distributions follow a
Laplacian shape (thus lower entropy) for PGL1 and PGL11.

TABLE I: MNIST Net 4 total memory, MACCs, and accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

Adam 33.64 480 99.
PGL1 η = 80 10.9 477 99.01
PGL11 η = 40 3.7 336 98.03
PGL11 η = 25 2.1 122 97.4

Results on MNIST with a Linear fully connected Network

We used a linear fully connected network (LFC4) with an
input layer of d neurons, 4 hidden layers followed by a RELU
activation function and a latent layer of dimension k.

Fig. 1: MNIST, Net4, Top: Distribution of convolutional
layer Conv2 with Adam and Adagrad optimizers, Bottom :
Distribution of the convolutional layer Conv2 with PGL1 and
PGL11 optimizers

Fig. 2: Visualization for weight matrices: Top of the two linear
layers of Net4 with Adam and weights thresholding shows
unstructured sparsity. Bottom with structured optimizer: Layer
Linear1 exhibits a high structured sparsity.

TABLE II: MNIST wth LFC4, total memory, MACCs, and accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 3989 2379 98.3
PGL1(η = 200) 438 1960 98.29

PGL11(η = 200) 72 150 97.7
PGL11(η = 400) 215 480 98.07
PGL21(η = 50) 1810 1408 98.05

Figure 3, figure 4 and tables I and II2 show that the main
2The projections PGL1, PGL11 and PGL21 being different, the impact of

the projection parameter η is different on each of them. When comparing the
projections (tables II and III), we provide parameter η such that the models
PGL1, PGL11 and PGL21 have a similar accuracy.



Fig. 3: MNIST with Net4: Top: Accuracy, Bottom: MACCS

Fig. 4: MNIST with LFC4: Top: Accuracy, Bottom: MACCS

advantage of our method using the `1,1 constraint over `1 is
the reduction of the calculation cost (MACCs) by a factor 14
when using a LFC4 network which is crucial for low capacity
devices such as smartphones. Note that performance in MACCs
using the `2,1 constraint is intermediate between the use of `1
and `1,1.

Comparison with public results on MNIST using Le Net 300/100

Le Net 300/100 is a popular Linear Fully connected Network.
Table III shows that our method outperforms the state-of-the-art
[15] in terms of bytes accuracy compromise. Note that, to the

TABLE III: MNIST Le Net 300/100 total memory, MACCs, and
accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 477 266.2 98.21
PGL1(η = 200) 61 189 98.03

PGL11(η = 200) 32 62 96.4
PGL11(η = 400) 83 150 97.8
PGL21 (η = 50) 164 257 98.1
Tartaglione [15] 33.7 - 96.6

best of our knowledge no results have been published in terms
of FLOP reduction on this basis.

Results on Fashion MNIST using a Linear Fully connected
Network.

Fashion-MNIST [58] is a dataset from the publication by
Zalando of article images consisting of a training set of 60,000
examples and a test set of 10,000 examples. Each example is a
28x28 grayscale image, associated with a label from 10 classes.
Fashion-MNIST is to serve as a direct drop-in replacement for
the original MNIST dataset for benchmarking machine learning
algorithms. Fashion-MNIST and MNIST share the same image
size and structure of training and testing splits.

TABLE IV: Fashion MNIST LFC4 : Memory, MACCs, and accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 3989 2379 89.9
PGL1(η = 400) 567 2114 89.2

PGL11(η = 400) 131 267 87.5

We observe a similar behavior to that of the previous
experiment with the MNIST dataset. Table (IV) shows a large
decrease in the global memory by a factor 9. On the other
hand, we observed a decrease in the calculation cost by a factor
of 9 for the `1,1 constraint and a very small decrease for the
`1 constraint.

Results on CIFAR10

The CIFAR-10 data set is composed of 60,000 32x32 color
images, 6,000 images per class, for a classification in 10
classes. The training set is made up of 50,000 images, while
the remaining 10,000 are used for the testing set.
We use Simplenet3, the highly optimized architecture [59].
This network is composed of 13 blocks Bi =
(convolutional2D/BatchNormalization/ReLU) for
i = 1, .., 13 with sequences MaxPool2d/Dropout after the
blocks B4, B7, B9, B10, B12 and B13 followed by a classifier
layer. Results are reported in Figures 5 and in the Table V.

Table (V) shows a large global decrease in memory by a
factor of 10. On the other hand the decrease in the calculation
cost was about 30% for the `1,1 constraint and almost null for
`1 constraint (Figure 5).

3https://github.com/Coderx7/SimpleNet_Pytorch

https://github.com/Coderx7/SimpleNet_Pytorch


Fig. 5: CIFAR 10 SimpleNet, MACCs as a function of η, PGL1
(red) and PGL11 (green)

TABLE V: CIFAR10 total memory, and accuracy using Simplenet

Methods MACCs Memory Accuracy
(M-MACCs) (M-Bytes) %

Adam 631.51 9.44 93.8
PGL1 (η = 13000) 626.08 1.45 91.12
PGL11(η = 14000) 441 0.86 91

V. DISCUSSION

To the best of our knowledge, entropy of the weights
(bit/weight) as a measure of memory has never been reported
in the DNN literature. Thus comparison of memory with that
of previous reports is not straightforward. A more in-depth
study will be performed as well as the JPEG2000 compression
of the model for storage and reported in a forthcoming paper.
Energy consumption is directly related to the number of
instructions (Flops or MACCs) [60]. Thus we report MACCs
rather than Flops. The experimental results with MNIST and
Fashion MNIST using Lenet 300/100 showed an improvement
in memory by a factor 12.9 and 8 and by a factor 3 and
2 for computational power. We obtain on CIFAR10 a good
trade-off between a 0.98% drop in accuracy and a substantial
improvement in memory by a factor of 8.5 in comparison with
the Adam optimizer.
Note that, in this paper, the different projections are not layer-
wise optimized. The same constraint was applied to each layer
of the network. There is a priori no reason to believe that the
same constraint value is adapted to the sparsification of all the
layers of a network.

VI. CONCLUSION

To deal with the computational issue associated to DNNs,
a lot of studies into proximal regularization methods which
are time consuming have been published. In this paper, we

propose an alternative constrained approach. We provide a
general framework with a new projection gradient method.
We designed algorithms for the classical `1 constraint and
the new `1,1 constraint. Our experiments show the benefit of
the Lottery optimizer that uses only one projection for deep
neural network sparsification. Experiments using three popular
datasets (MNIST, FASHION MNIST and CIFAR) show that
our new projection method on the `1,1 constraint provides
better structured sparsity resulting in a substantial decrease in
the cost of memory and of computation.
Furthermore, we are currently applying our method to other
large Neural Networks.
Acknowledgement The authors would like to thank Antonin
Chambolle for his contribution to the theoretical background
of the `1,1 "projection".
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