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Abstract. This paper deals with supervised classification and feature selection with application in the
context of high dimensional features. A classical approach leads to an optimization problem minimizing
the within sum of squares in the clusters (2 norm) with an ¢; penalty in order to promote sparsity. It
has been known for decades that ¢; norm is more robust than ¢2 norm to outliers. In this paper, we deal
with this issue using a new proximal splitting method for the minimization of a criterion using ¢; norm
both for the constraint and the loss function. Since the ¢; criterion is only convex and not gradient
Lipschitz, we advocate the use of a Douglas-Rachford minimization solution. We take advantage of
the particular form of the cost and, using a change of variable, we provide a new efficient tailored
primal Douglas-Rachford splitting algorithm which is very effective on high dimensional dataset. We
also provide an efficient classifier in the projected space based on medoid modeling. Experiments on
two biological datasets and a computer vision dataset show that our method significantly improves the
results compared to those obtained using a quadratic loss function.

Résumé. Ce document traite de la classification supervisée et de la sélection des descripteurs avec
application dans le contexte des descripteurs de haute dimension. Une approche classique conduit & un
probléme d’optimisation minimisant la norme quadratique (norme ¢2) avec une pénalite de norme ¢;
afin de promouvoir la parcimonie. Il est bien connu que la norme ¢; est plus robuste que la norme ¢2 aux
valeurs aberrantes. Dans cet article, nous abordons cette question avec une nouvelle méthode proximale
pour la minimisation d’un critére utilisant la norme ¢; & la fois pour la contrainte et la fonction de
perte. Comme le critére £; n’est que convexe et non gradient de Lipschitz, nous proposons 'utilisation
d’une solution de minimisation de type Douglas-Rachford. Nous tirons parti de la forme du critére
et, en utilisant un changement de variable, nous fournissons un nouvel algorithme de type Douglas-
Rachford dans le primal qui est trés efficace dans le contexte des descripteurs de haute dimension. Nous
fournissons également un classifieur efficace dans ’espace projeté basé sur la modélisation de medoids.
Des expériences sur des données biologiques et de vision par ordinateur montrent que notre méthode
améliore les résultats par rapport & ceux obtenus avec une fonction de perte quadratique.

1. INTRODUCTION

In this paper we consider methods in which feature selection is embedded in a classification process [23, 25].
It is well-known that classification in a high dimension suffers from the curse of dimensionality: As dimensions
increase, vectors become indiscernible and the predictive power of the aforementioned methods is drastically
reduced [1, 36]. In order to overcome this issue, the main idea of the following methods is to project data onto
a low dimensional space. A popular approach for high-dimensional data is to perform Principal Component
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Analysis (PCA) prior to classification. However in general this approach is not relevant [44]. The Partial least
squares (PLS) method closely related to principal component regression is designed to deal with this issue with
high dimensional correlated features [37, 45]. An alternative approach is to perform dimension reduction by
means of Linear Discriminant Analysis (LDA) [14, 17]. The authors of [2] and [21] propose a convex relaxation
of this approach in terms of a suitable semi-definite program (SDP) at the cost of an increased computational
complexity. Nie et al proposed a feature selection based on ¢ ; norm minimization [34]. A popular approach for
selecting sparse features in supervised classification or regression is the Least Absolute Shrinkage and Selection
Operator (LASSO) formulation [22, 28, 33, 42, 46]. The LASSO formulation uses the ¢; norm [8, 15, 18, 19]
as an added penalty term instead of an ¢, term. In this paper, we propose to minimize an ¢; norm both on
the penalty term and the loss function. In this case, the criterion is convex but not gradient Lipschitz. Thus,
we propose to use the Douglas-Rachford splitting method for the minimization of our criterion. This splitting
was successfully used in signal processing [4, 9, 10, 11, 20, 39, 41]. However, for classification, we cannot apply
straightforwardly Douglas-Rachford like in [7] since the proximal operator for the affine transform involved in
the criterion is not available (See equation 1). We take advantage of the particular form of the criterion: The
sum of two ¢; norms is equal to a single ¢; norm after a change of variables, and the linear constraint can be
integrated into the cost. We also provide an efficient classifier in the projected space based on medoid modelling.
The paper is organized as follows. Section 2 deals with criterion and state of the art methods. In section 3 we
develop the proposed solution for supervised classification. In section 4 experimental results are provided on real
biological datasets and finally in section 5 we conclude the paper.

2. ROBUST SUPERVISED CLASSIFICATION

2.1. A robust framework

Let X be the nonzero m x d matrix made of m line samples 1, ..., x,, belonging to the d-dimensional space
of features. Let Y € {0,1}™** be the label matrix where k > 2 is the number of clusters. Each line of Y has
exactly one nonzero element equal to one, y;; = 1 indicating that the sample z; belongs to the j-th cluster, see
[2, 21] . Let W € R¥** be the projection matrix, k < d. The classical quadratic loss criterion in the projected
space is: )

min 2 [[Y = XWI[E + AW (1)
where ||.|| stands for the Frobenius norm. Projecting the data in lower dimension is crucial for efficient feature
selection [36]. Besides, it is well known that the quadratic Frobenius loss criterion is not robust to outliers
[27, 29], so we propose to minimize instead the ¢; loss cost, with an ¢; penalty regularization to promote sparsity
and induce feature selection. So, given the matrix of labels Y, we consider the following convex supervised

classification problem:
min [[Y — XWljy + A[W][s. (2)

Here, the £; norm of an m by n matrix A denotes the ¢; norm of its vectorization:
m n
Al = A =D lai].
i=1 j=1

2.2. State of the art methods based on ADMM
Problem (2) falls into the following class:

min f(z) + g(y)

(z,y)

under the affine constraint y = Ax, where z and y are vectors of finite dimensional spaces. Then state of the
art methods based on ADMM (Alternating-direction method of multipliers, see [6, 12, 24, 35]) considers the
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augmented Lagrangian (y > 0 is a scalar parameter),
1 1 9
Ly(@,y,2) = f(x) + 9(y) + ;(ZIAI -y)+ ZIIAI —ylI*.

The Lagrangian is minimized over x, then over y, and a third step of the method updates the Lagrange multiplier
z using a proximal maximization step. Note that ADMM algorithm can be derived from an application of the
Douglas—Rachford algorithm to the dual.

In our case, we take advantage of the fact that the two functions f and g are simple convex functions (¢; norms)
the sum of which is again a known convex function (yet another ¢; norm). This eliminates one function and
allows us to penalize the affine constraint to integrate it into the cost. The resulting proximal operator is a
simple projection operator on a linear subspace, which can be computed (see, e.g., Lemma 7). As explained in
the next paragraph, it is thus possible to use a Douglas-Rachford algorithm to the primal.

3. PROPOSED METHOD

3.1. An equivalent formulation

The cost in Problem (2) is the sum of two ¢; norms, which suggests the use of a splitting algorithm [12]. Such
methods are very efficient to minimize the sum of convex functions and do not require differentiability properties.
Note indeed that, having replaced the squared Frobenius norm by the ¢; norm of Y — XW | it is not possible to
use forward-backward splitting [12] as none of the functions is differentiable. In order to use the more general
Douglas-Rachford scheme (see next subsection) that is able to cope with mere convex functions, one still has to
be able to compute their proximity operators. Now, while the prox of the £; norm is well known and expressed
in terms of soft thresholding, there is no explicit expression for the prox of the ¢; norm of the affine transform
Y — XW. We propose to introduce the auxiliary variable ¢ := (Y — XW)/\ € R™** and to minimize

min [W[s + ¢
with respect to W under the affine constraint
XW+ X =Y.

The sum of the two ¢; norms is equal to the single {1 norm of the augmented variable W= (W,¢) € Rld+m)xk,
Let C be the affine subset of (d + m) x k matrices such that XW =Y where

X := [X A, € Rmx(d+m),

where I, is the identity matrix.
The problem can be recast as

min ||W||1
w
under the affine constraint
XW=Y

Let moreover i be the indicator function of the set C, vanishing on C' and equal to +o00 outside C'. Then
problem (2) is equivalent to

min [|W]ly +ic(W). (3)

This new problem is readily equivalent to the previous one as |[W||; = |[|[W||1 + ||¢||;. (Note that the cost has
been re-scaled by a factor \.) Problem (3) involves two convex functions the proximity operators of which can
be efficiently computed (see, e.g., Lemma 7), which allows a Douglas-Rachford scheme to be used .
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3.2. Douglas-Rachford splitting

The method was initially proposed by [20] to solve matrix equations and used in signal and image processing
7, 10, 11, 39, 41]. Problem (3) amounts to minimizing the sum of two convex functions F (W) + G(W), and the
(constant-step) Douglas-Rachford scheme is the following [12]: Fix € €]0,1[, 7 > 0, v € [¢,2 — ¢], V € Rd+m)xk,
and define

W, = proz,rp(Vy), (4)
Vier = Vot ’y(prong(2Wn —Vn) — Wn) (5)

Theorem
For £ €]0,1[, 7 > 0 and v € [¢,2 — €], every sequence generated according to (4-5) converges to a solution to
Problem 3, (see [12]).

We recall [12, 31] that the proximity operator “prox” & at point Z of a lower semi-continuous convex function
x +— f(x), with parameter 7, is the unique minimizer of:

lz — ||

2r (6)

& = prox,¢(z) := argmin f(z) +

In our case, F' is the ¢; norm, so prox,p is given by soft thresholding (parameterized by 7). Indeed, one can
separate the variables and use the prox of the scaled absolute value dimension one:

soft(x,7) = z+7ifx<—7,
0if z € [-7,7],

= x — 7 otherwise.

Since G is an indicator function, whatever 7 the associated prox simply is the projection operator on the affine sub-
space C of (d+m) x k matrices. For the sake of completeness, we recall the associated expression of this projection.

Lemma
Let A be an m x n matrix of rank m < n, and let b be a vector in R™. The orthogonal projection of z € R" on
the affine subspace {z € R" | Az = b} is
proj(z, A,b) = z — AT(AAT) "1 (Az — b). (7)

This Lemma can readily be applied in R(@+™)*F o obtain the prox of G, independently of 7, and (4-5) can be
translated into Algorithm 1.

Algorithm 1 Supervised classification Douglas-Rachford algorithm. 7 > 0 and 7 € [¢,2 — €]. The operators
soft and proj denote the soft thresholding and projection operators, respectively.
1: Input: X, \, Y, ~, 7, V, N
D X < [X A
: forn=0,...,N do
W« soft(V,7)
V V4 ~(proj(eW —V, X, Y) — W)
end for
7 (W,Q) « W
8: Output: W

STk wy
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3.3. Feature selection and scalability.

In applications, particularly in biological ones, the issue of feature selection may be even more important than
classification itself. This selection is achieved by means of the ¢; sparsity inducing penalty in Problem 2 cost. A
feature i € {1,...,m} is selected if the corresponding line in the matrix of weights W is not zero (||[W(i,:)|| # 0).
We precompute X7 (X X7)~! only once. Note that the matrix (X X7) is a small (m x m) matrix, so we can use
fast adapted algorithm to compute the inverse. The complexity of the resulting iterations is O(d x k x d) for the
proximal part, plus O(d x k) for the projection.

3.4. Classification using medoid

In order to build a robust classifier, we compute a medoid for each cluster. In contrast to the k-means
algorithm, k-medoids chooses actual data points as centers. For the j-th cluster, a medoid p; is any member of
the class minimizing the average dissimilarity inside the class in the projected space. In general, the k-medoids
problem is NP-hard to solve exactly. Heuristic solutions such as PAM ( Partitioning Around Medoids) or
Voronoi iteration methods have been proposed [38]. Let us define p € R™** the medoid matrix of the clusters.
Computing medoids minimization can be reformulated as minimizing the following ¢; norm:

min Yo — X W]l (8)

Then, a new query = (a dimension d row vector) is classified according to the following rule: It belongs to the
(supposedly unique) class j such that

j= min [[aW —pl1. )
j=1--k
The cost of medoid computation is expected to be O(m x k) in average [3].

3.5. Alternating Minimization

Let now define the following global problem

min |V — XW|1 + A||[W]|1. (10)
W,p

We propose an alternating (or Gauss-Seidel) scheme to solve problem (10). Given the medoid matrix p, the first
subproblem in W is solved by using our primal Douglas-Rachford algorithm. Conversely, given the matrix of
weights W, the second subproblem in y is solved by medoid computation on the projected data as explained in
the previous section. Algorithm 2 summarizes the resulting alternating minimization.

Algorithm 2 Alternating Douglas-Rachford splitting (ADRS) algorithm. 7 > 0 and v € [¢,2 —¢]. The operators
soft and proj denote the soft thresholding and projection operators, respectively.

: Imput: X, \,Y,~, 7, V, N,L
D X < [X A
: for [ =0,...,L do
forn=0,...,N do
W« soft(V,r)
V V4 ~(proj(2W -V, X, Y) — W)
end for
(W,¢) « W
u < medoids(Y, XW)
end for
: Output: W, p

[a—y

© X XP TN
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Proposition As each step of the alternating minimization scheme decreases the norm ||Y — XW/||;, which
is nonnegative, the following readily holds. The norm ||Y — XW||; converges as the number of iterates L in
Algorithm 2 goes to infinity.

Note that the criterion 8 is convex in (u,W), so a primal dual method with convergence guarantees was proposed
recently [5, 9.

4. APPLICATION TO REAL DATASETS

Experimental settings. We compare the labels obtained from our classification with the true labels to compute
the MCE (misclassification error, i.e. the number of misclassified observations divided by the number of observa-
tions) on the test set. We compare our ADRS method with four state of the art methods: the filter method using
the Ttest (we rank the features according to their p-values using a PLS classifier (partial least squares) [45]), PLS
with a sequential selection of features [25], and the Frobenius norm criterion using the classical forward-backward
algorithm [12]. The different algorithms are evaluated and compared using three public datasets (Ovarian,
FaceDrive and Cancer RNA-Seq) which are available at https://archive.ics.uci.edu/ml/datasets. In our
experiments, we set v = 1 and NV = 40. Results are reported after a 4-fold cross-validation.

Dataset: Ovarian [26]. .

The data available on UCI data base were obtained from two sources: The National Cancer Institute (NCI) and
the Eastern Virginia Medical School (EVMS). The samples include patients with cancer (ovarian or prostate
cancer). Healthy or control patients form a set of 216 samples with 15,000 features.

' ' L ' ' L ' ' ' L
80 100 120 140 160 180 200 220 240 260 280 300
Features selected

FIGURE 1. Ovarian dataset. The MCE versus the number of selected features selected from Ovarian
shows that MCE decreases with the number of genes for our method, Frobenius and PLS. For 100
selected features, ADRS outperforms Ttest by 11.1% , Frobenius by 7% and PLS by 7.9%)

Dataset: FaceDrive [16]. .

The FaceDrive dataset contains image sequences of subjects while driving in real scenarios. It is composed of
606 samples with 4800 features each, acquired over different days from 4 drivers with several facial features like
glasses and beards. A set of labels assigned each image into 3 possible clusters are given. Note that this dataset
is highly unbalanced.
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FIGURE 2. Left: The t-SNE [43] of the data in the projected space Xw shows that the distance
between centroids and medoids depends on the clusters. Right: Features selected as a function of 7 and

A
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Features selected

FIGURE 3. Facedrive dataset. The MCE and the number of selected features selected from Facedrive
shows that 1500 features are necessary to obtain the best MCE. For 1500 selected features, Our method
outperform Frobenius by 2.3%, and PLS by 3.6%)

Dataset: Gene expression cancer RNA-Seq Data Set. . This data is a subset of the RNA-Seq (HiSeq) PAN-
CAN dataset, of patients with different types of tumor. This dataset is available at https://archive.ics.uci.edu/.
It is composed of 801 cells with 20531 genes and k = 5 clusters.

—— ADRS
Frobenius
—PLS
Ttest-SVM

MCE %

0 =2NRAMOONDO
/
|

o 2‘0 3.0 4‘0 5.0 6‘0 7.0 80
Features selected

FIGURE 4. Cancer dataset. The MCE versus the number of selected features selected from the Cancer

dataset shows that only 20 features are necessary to our method to obtain an accurate MCE. For 20

genes, our method outperforms the Frobenius minimization method by 0.8% , and PLS by 6.4%.
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4.1. Computational time
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FIGURE 5. Time (using an intel Core i7 processor ) Left: function of the number of features Right
function of the number of sample

The only reasonable contender would be the popular ADMM algorithm first proposed by and Gabay &
Mercier in 1976 [24] and extensively developed in [6, 12, 35]. Fig 5 shows computational as function of features
d (left) and samples m (right). Computational times seem linear as a function of the features d and quadratic as
a function of samples for both algorithms. Better performance is observed for ADRS.

5. CONCLUSION

In this paper, we propose to minimize the ¢; norm related to the data term with an ¢; regularization. Our
contribution is twofold. First, we provide a new primal Douglas-Rachford splitting algorithm adapted to
a high dimensional dataset. Second, we propose a new efficient classification algorithm using medoid and
alternating minimization. Experiments on biological datasets and a computer vision dataset show that our
method significantly improves the results of methods using a quadratic loss function.

The authors thank internship Yuxiang Zhou for processing simulations and Professor Jean-Baptiste Caillau for
fruitful discussion.

6. APPENDIX: MINIMIZE FROBENIUS NORM USING A GRADIENT-PROJECTION SPLITTING
METHOD

The criterion is given by:
1
S IY = XWIE + AWl — min

To solve this problem, we use a gradient-projection method. It belongs to the class of splitting methods
([12, 13, 30, 32, 40]). We use the following forward-backward scheme to generate a sequence of iterates. For any
fixed step v € (0,2/02,.(X)), the forward-backward scheme applied to the above criterion converges towards a
solution.
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