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ABSTRACT
This paper concerns the supervised generative non paramet-
ric autoencoder. Classical methods are based on variational
non supervised autoencoders (VAE). Variational autoencoders
encourage the latent space to fit a prior distribution, like a
Gaussian. However, they tend to draw stronger assumptions
for the data, often leading to higher asymptotic bias when the
model is wrong.
In this paper, we relax the parametric distribution assumption
in the latent space and we propose to learn a non-parametric
data distribution of the clusters in the latent space. The network
encourages the latent space to fit a distribution learned with the
labels instead of the parametric prior assumptions. We have
built a network architecture that uses the labels to compute
the latent space. Thus we define a global criterion combining
classification and reconstruction loss. In addition, we have
proposed a `1,1 regularization which has the advantage of spar-
sifying the network and improving the clustering. Finally we
propose a tailored algorithm to minimize the criterion with
constraint. We demonstrate the effectiveness of our method
using the popular image dataset MNIST and two biological
datasets.

1. RELATED WORKS

In many applications (Image analysis and biomedical research),
the objective is to design algorithms to classify, generate data
and select features to decrypt high-dimensional data. Autoen-
coders were introduced in the field of neural networks decades
ago and their most efficient application was dimensionality re-
duction [1, 2]. A discriminative model maps feature points of a
high dimensional space in Rd to labels in a low dimensional la-
tent space in Rl. Generative models map feature points of a low
dimensional space ∈ Rl to a high dimensional latent space in
Rd. Recently, deep generative models have been used to learn
generator functions that map points from a low-dimensional
latent space, to a high-dimensional data space. These genera-
tive models, which include variational autoencoders (VAEs)
[3] and generative adversarial networks (GANs) [4, 5], can
generate high-fidelity output samples that look like real-world
data.
Generative modeling is attractive for many reasons: i) Mod-
elization of the latent space: Generative models express causal

relations. ii) Generative models were used in semi-supervised
learning settings, to improve classification [3, 6, 7, 8, 9].

Let’s recall that VAE networks encourage the latent space
to fit a prior distribution, like a Gaussian. These classical priors
in the latent space are chosen for their computational simplicity
rather than their compatibility with the latent structure and thus
can lead to inaccurate latent low-dimensional representations
of data. The classical VAE mixes the points of the clusters
because the Gaussian prior encourages all the points to be
centered at the origin. In order to cope with this issue some
recent papers have proposed latent spaces with more complex
distributions (e.g., hyperspheres [10], and mixtures of Gaus-
sians [11]) on the latent vectors, but they are non-adaptive and
unfortunately may not match the specific data distribution.
Contractive autoencoders add an explicit regularizer in their
objective loss function that forces the model to learn a function
that is robust to noisy variations of input values. A popular
regularization method which sparsifies the weights of the neu-
ral network is the Absolute Shrinkage and Selection Operator
(LASSO) formulation [12]. This classical `1 penalization en-
sures regularization and sparsity. Various structured constraints
such as “group LASSO” and “exclusive LASSO” have been
proposed in the framework of LASSO for inducing structured
sparsity.
In this work, we relax the parametric distribution assumption
in the latent space to learn a non-parametric data distribution
of clusters. Our network encourages the latent space to fit a
distribution learned with the clustering labels rather than a
parametric prior distribution.
Moreover, we propose a constrained regularization approach
that takes advantage of a available efficient projection algo-
rithms for the `1 constraint [13], convex constraints [14] and
structured constraints `2,1 [15, 16] and `1,2 [16].
We point out the following specific contributions:

• We create a network architecture that incorporates the
labels into an autoencoder latent space. This enables us
to compute a latent space structured distribution instead
of a prior Gaussian distribution.

• We define a global criterion combining classification
and reconstruction loss. In addition, we propose a `1,1
regularization for which advantages are sparsity induc-
tion and an improvement in clustering.
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• We propose a tailored algorithm to minimize the crite-
rion with constraint.

• We propose a generative model using the real distribu-
tion of the data in the latent space.

2. PROPOSED APPROACH: NON-PARAMETRIC
SUPERVISED AUTOENCODER FRAMEWORK

2.1. Criterion

Let X be the dataset in Rd, as a m × d data matrix made of
m line samples and d features x1, . . . , xm. Let yi = j, j ∈
{1, · · · , k} be the label, indicating that the sample xi belongs
to the j-th cluster. Projecting the data in the lower dimension
latent space in Rl is crucial to be able to separate them accu-
rately. In this paper we propose to use a deep neural network
autoencoder framework.
Let’s recall that the encoder (or discriminative part) of the
autoencoder map features points of a high dimensional space
in Rd to a low dimensional latent space in Rl and that the
decoder maps feature points of a low dimensional space ∈ Rl

to a high dimensional latent space in Rd.
Figure 1 depicts the main constituent blocks of our proposed
approach. We have added to our autoencoder block a "soft
max" block to calculate the classification loss.
Let Z ∈ Rl, the latent space, X̂ ∈ Rd the reconstructed data
(Fig 1) and W the weights of the neural network.
The goal is to compute the weights W minimizing the total
loss which depends on both the classification loss and the re-
construction loss. Hence our strategy for training the various
encoders and decoders is based on following requirements.

1. First, we want to classify data in the latent space

Loss(W ) = φ(Z, Y ) (1)

2. Second, we also want to minimize the difference be-
tween the reconstructed and the original data

Loss(W ) = ψ(X̂ −X) (2)

3. Third, we want a sparse autoencoder network. To this
end we also introduce a `1,1 constrained regularization
loss.

‖W‖11 ≤ η (3)

Thus we propose to minimize the following criterion to
design the auto-encoder:

Loss(W ) = φ(Z, Y ) + λψ(X̂ −X) s.t. ‖W‖1 ≤ η. (4)

Where the classification loss φ is a function of the latent vari-
able and labels. We use the Cross Entropy Loss for the clas-
sification loss function. We use the robust Smooth `1 (Huber)

Fig. 1. Autoencoder framework

Loss [17] as reconstruction loss function ψ. Note that the di-
mension of the latent space is the number of clusters.

We use Markov chain Monte Carlo (MCMC) methods
for obtaining a sequence of random samples from a probability
distribution in the latent space. Among the MCMC methods
we refer to the classical Metropolis–Hastings algorithms or
the Gibbs sampling method [18, 19]. The density of points
is estimated using a kernel method. A step is rejected if the
density of the candidate location falls under a threshold. Then
we use the decoder as a generative model. Thus we fit the real
distribution in the latent space instead of making a random
draw with a classical Gaussian assumption as in VAE.

2.2. Algorithms

We propose the following algorithm: we first compute the
radius ti and then project the rows using the `1 adaptive con-
straint ti (See [20] for more details):
Following the work by Frankle and Carbin [21] further de-

Algorithm 1 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η

Input: V, η
t := proj`1((‖vi‖1)

d
i=1, η)

for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W

veloped by [22] which proposed a double descent algorithm
as follows: after training a network, set all weights smaller
than some threshold to zero, rewind the rest of the weights to
their initial configuration, and then retrain the network from
this starting configuration but keeping the zero weights frozen
(untrained). We replace the thresholding by our `1,1 projection
and devise the following algorithm:



Algorithm 2 Projection on the `1,1 norm—proj`1(V, η) is
the projection on the `1-ball of radius η, ∇φ(W,M0) is the
masked gradient with binary mask M0, and f is the ADAM
optimizer, γ is the learning rate

Input: W∗, γ, η
for n = 1, . . . , N(epochs) do
V ← f(W,γ,∇φ(W ))

end for
t := proj`1((‖vi‖1)

d
i=1, η)

for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W,M0

Input: W∗
for n = 1, . . . , N(epoch) do
W ← f(W,γ,∇φ(W,M0))

end for
Output: W

3. EXPERIMENTAL RESULTS

We have modified the PyTorch framework to implement our
sparse learning method using a constraint approach. The losses
are averaged across observations for each mini-batch. We
chose the ADAM optimizer [23], as the standard optimizer in
PyTorch. We used the Cross Entropy Loss for the classification
loss and the Smooth `1 Loss (Huber Loss) for the reconstruc-
tion loss. We evaluated clustering in the latent space using the
silhouette criterion [24].
We used a linear fully connected network (LFC) with an input
layer of d neurons, 4 hidden layers followed by a ReLU acti-
vation function and a latent layer of dimension k.
We evaluated our method on the popular MNIST dataset and
two biological datasets.

3.1. MNIST dataset

MNIST dataset [25] contains 28 × 28 grey-scale images of
handwritten digits of 10 classes (from 0 to 9). This dataset
consists on a training set of 60,000 instances and a test set of
10,000 instances. We provide a visual evaluation of the data in
the latent space for MNIST. The latent dimension is k > 2 so
we project the data on a 2D plot using PCA.

Figure 2 illustrates that the distribution in the latent space
is not gaussian for MNIST. Figure 3 shows the images decoded
(output of the autoencoder). We computed 10 random samples
in the latent space using Metropolis-Hastings algorithm and
generated the corresponding virtual images using the decoder
as shown in Figure 4.

Fig. 2. MNIST dataset Clustering in the latent space.

Fig. 3. MNIST dataset: Output of the autoencoder

Fig. 4. MNIST dataset : Reconstructed datas using the
Metropolis-Hastings algorithm in the latent space



Fig. 5. Ohlson dataset d=532, k=9. Our new autoencoder. Top :
without regularisation, Bottom : with regularization η = 1000.

3.2. Biomedical dataset

The Ohlson dataset is a single cell RNA seq dataset used by
[26] for clustering evaluation with m=382 samples, d=532 fea-
tures and k=9 clusters. The lung dataset [27] is a metabolomic
dataset with 1005 samples, 2944 features and 2 clusters. These
are urine samples obtained from two groups of patients, one
group has a lung cancer, the other is a control group.

η 200 400 1000 2000 10000
`1 0.67 0.718 0.738 0.718 0.619
`1,1 0.608 0.705 0.741 0.723 0.618

Table 1. Ohlson dataset: Clustering evaluation using silhouette
criterion.

η 20 100 200 300 400 10000
`1 0.75 0.761 0.744 0.696 0.674 0.588
`1,1 0.593 0.723 0.735 0.713 0.554

Table 2. Lung dataset Clustering evaluation using silhouette
criterion.

Figures 5 and 6 show that the distribution in the latent space
for the Ohlson dataset and Lung dataset are not Gaussian. The
Figures 5 and 6 and Tables 1 and 2 show that clustering us-
ing regularization `1 or `1,1 outperforms clustering without
regularization on both dataset Ohlson and Lung Dataset. Sil-
houette with `1,1 regularization is slightly better than `1 on
Ohlson data set while `1 is slightly better than `1,1 on Lung.

Fig. 6. Lung dataset m=1005, d=2900, k=2. Our new autoen-
coder. Top : without regularisation, Bottom : with regulariza-
tion η = 300.

However the main benefit of `1,1 is to reduce significantly the
computational task [20].

4. CONCLUSION

In this paper, we propose a network architecture that use the
labels to compute the latent space. This enables us to compute
a latent space structured distribution instead of a prior gaus-
sian distribution and devise a generative model using the real
distribution of the data in the latent space. We define a global
loss criterion combining classification and reconstruction loss
and propose a tailored algorithm to minimize this global loss
criterion with constraint. In addition, we propose an `1,1 regu-
larization who has two main advantages : a structured sparsity
induction and an improvement of the clustering. We have
illustrated our generative model using Metropolis–Hastings
algorithm in the latent space. Experiments demonstrate the
effectiveness of our method on MNIST dataset and two bio-
logical datasets.
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