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Classification and Regression Using an Outer
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Abstract—This paper deals with sparse feature selection and
grouping for classification and regression. The classification or re-
gression problems under consideration consists of minimizing a
convex empirical risk function subject to an �1 constraint, a pair-
wise �∞ constraint, or a pairwise �1 constraint. Existing work,
such as the Lasso formulation, has focused mainly on Lagrangian
penalty approximations, which often require ad hoc or computa-
tionally expensive procedures to determine the penalization param-
eter. We depart from this approach and address the constrained
problem directly via a splitting method. The structure of the
method is that of the classical gradient-projection algorithm, which
alternates a gradient step on the objective and a projection step
onto the lower level set modeling the constraint. The novelty of our
approach is that the projection step is implemented via an outer ap-
proximation scheme in which the constraint set is approximated by
a sequence of simple convex sets consisting of the intersection of two
half-spaces. Convergence of the iterates generated by the algorithm
is established for a general smooth convex minimization problem
with inequality constraints. Experiments on both synthetic and bi-
ological data show that our method outperforms penalty methods.

Index Terms—Convex optimization, outer approximation,
projection-gradient algorithm.

I. INTRODUCTION

IN MANY classification and regression problems, the ob-
jective is to select a sparse vector of relevant features. For

example in biological applications, DNA microarray and new
RNA-seq devices provide high dimensional gene expression
(typically 20,000 genes). The challenge is to select the smallest
number of genes (the so-called biomarkers) which are neces-
sary to achieve accurate biological classification and prediction.
A popular approach to recover sparse feature vectors (under a
condition of mutual incoherence) is to solve a convex optimiza-
tion problem involving a data fidelity term Φ and the �1 norm
[6], [17], [19], [34]. Recent Lasso penalty regularization meth-
ods take into account correlated data using either the pairwise
�1 penalty [24], [27], [35] or the pairwise �∞ penalty [5] (see
also [20] for further developments). The sparsity or grouping
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constrained classification problem can be cast as the minimiza-
tion of a smooth convex loss Φ subject a constraint ϕ(w) � η,
where ϕ is the �1 norm or a pairwise �∞ constraint function.
The resulting optimization problem is to

minimize
ϕ(w )�η

Φ(w). (1)

Most of the existing work has focused on Lagrangian penalty
methods, which aim at solving the unconstrained problem of
minimizing Φ + λϕ, where ϕ now acts as the penalty func-
tion. Although, under proper qualification conditions, there is
a formal equivalence between constrained and unconstrained
Lagrangian formulations [3, Chapter 19], the exact Lagrange
multiplier λ can seldom be computed easily, which leaves the
properties of the resulting solutions loosely defined. The main
contribution of the present paper is to propose an efficient split-
ting algorithm to solve the constrained formulation (1) directly.
As discussed in [11], the bound η defining the constraint can
often be determined from prior information on the type of prob-
lem at hand. Our splitting algorithm proceeds by alternating a
gradient step on the smooth classification risk function Φ and a
projection onto the lower level set

{
w ∈ Rd

∣
∣ ϕ(w) � η

}
. The

main focus is when ϕ models the �1 , pairwise �1 constraint, or
pairwise �∞ constraint. The projection onto the lower level set is
implemented via an outer projection procedure which consists
of successive projections onto the intersection of two simple
half-spaces. The remainder of the paper is organized as fol-
lows. Section II introduces the constrained optimization model.
Section III presents our new splitting algorithm, which applies
to any constrained smooth convex optimization problem. In par-
ticular we also discuss the application to regression problems.
Section IV presents experiments on both synthetic and real clas-
sical biological and genomics data base.

II. PROBLEM MODELING

In this section we discuss our model. In Section II-A we
describe the loss function. Sections II-B and II-C describe the
sparsity constraint model and the grouping sparsity constraint
model, respectively. Finally the optimization problem is set up
in Section II-D.

A. Risk Minimization

We assume that m samples (xi)1�i�m in Rd are available.
Typically m < d, where d is the dimension of the feature vector.
Each sample xi is annotated with a label yi taking its value
in {−1,+1}. The classification risk associated with a linear
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classifier parameterized by a vector w ∈ Rd is given by

Φ : Rd → R : w �→ 1
m

m∑

i=1

φ
(
yi〈xi | w〉). (2)

We restrict our investigation to convex losses φ which satisfy
the following assumption.

Assumption 1: Let f : R → [0, 1] be an increasing
Lipschitz-continuous function which is antisymmetric with
respect to the point (0, f(0)) = (0, 1/2), integrable, and
differentiable at 0 with f ′(0) = max f ′. The loss φ : R → R is
defined by

(∀t ∈ R) φ(t) = −t +
∫ t

−∞
f(s)ds. (3)

Examples of functions which satisfy Assumption 1 in-
clude that induced by the function f : t �→ 1/(1 + exp(−t)),
which leads to the logistic loss φ : t �→ ln(1 + exp(−t)), for
which φ′′(0) = 1/4.

Another example is the Matsusita loss [29]

φ : t �→ 1
2

(
− t +

√
1 + t2

)
, (4)

which is induced by f : t �→ (
t/
√

1 + t2 + 1
)
/2.

The first advantage of this class of smooth losses is that
it allows us to compute the posterior estimation [4] without
computing Platt approximation cite(plat et dnbn). The function
f relates a prediction 〈xi | w〉 of a sample xi to the posteriori
probability for the class +1 via

P̂
[
Yi = +1 | xi

]
= f(〈xi | w〉). (5)

This property will be used in Section IV to compute without
any approximation the area under the ROC curve (AUC). The
secod advantage is that the loss φ in Assumption 1 is convex,
everywhere differentiable with a Lipschitz-continuous deriva-
tive, and it is twice differentiable at 0 with φ′′(0) = max φ′′. In
turn, the function Φ of (2) is convex and differentiable, and its
gradient

∇Φ : w �→ 1
m

m∑

i=1

f
(〈xi | w〉)xi (6)

has Lipschitz constant

β =
f ′(0)

∑m
i=1 ‖xi‖2

m
=

φ′′(0)
∑m

i=1 ‖xi‖2

m
. (7)

Applications to classification often involve normalized features.
In this case, (7) reduces to β = f ′(0) = φ′′(0).

B. Sparsity Model

In many applications, collecting a sufficient amount of fea-
tures to perform prediction is a costly process. The challenge
is therefore to select the smallest number of features (genes or
biomarkers) necessary for an efficient classification and pre-
diction. The problem can be cast as a constrained optimization
problem, namely,

minimize
w∈Rd

‖w‖0 �δ

Φ(w), (8)

where ‖w‖0 is the number of nonzero entries of w. Since ‖ · ‖0 is
not convex, (8) is usually intractable and an alternative approach
is to use the norm ‖ · ‖1 as a surrogate, which yields the Lasso
formulation [34]

minimize
w∈Rd

‖w‖1 �η

Φ(w). (9)

It has been shown in the context of compressed sensing that
under a so-called restricted isometry property, minimizing with
the ‖ · ‖1 norm is tantamount to minimizing with the ‖ · ‖0
penalty in a sense made precise in [6].

C. Grouping Sparsity Model

Let us consider the graph S of connected features (i, j). The
basic idea is to introduce constraints on the coefficients for
features ωi and ωj connected by an edge in the graph. In this
paper we consider two approaches: directed acyclic graph and
undirected graph. Fused Lasso [35] encourages the coefficients
ωi and ωj of features i and j connected by an edge in the graph
to be similar. We define the problem of minimizing under the
directed acyclic graph constraint as

minimize
w∈Rd∑

( i , j )∈S |ωi −ωj |�η

Φ(w), (10)

for some suitable parameters η � 0. In the second, undirected
graph, approach [5] one constrains the coefficients of features
ωi and ωj connected by an edge using a pairwise �∞ constraint.
The problem is to

minimize
w∈Rd∑

( i , j )∈S max(|ωi |,|ωj |)�η

Φ(w). (11)

To approach the constrained problems (9) and (10), state of the
art methods employ a penalized variant [18], [19], [21], [34].
In these Lagrangian approaches the objective is to minimize
Φ + λϕ, where λ > 0 aims at controlling sparsity and grouping,
and where the constraints are defined by one of the following
(see (9), (10), and (11))

⎧
⎨

⎩

ϕ1 = ‖ · ‖1
ϕ2 : w �→ ∑

(i,j )∈S max(|ωi |, |ωj |)
ϕ3 : w �→ ∑

(i,j )∈S |ωi − ωj |.
(12)

The main drawback of current penalty formulations resides in
the cost associated with the reliable computation of the La-
grange multiplier λ using homotopy algorithms [18], [21], [22],
[28]. The worst complexity case is O(3d) [28], which is usually
intractable on real data. Although experiments using homotopy
algorithms suggest that the actual complexity is O(d) [28], the
underlying path algorithm remains computationally expensive
for high-dimensional data sets such as the genomic data set. To
circumvent this computational issue, we propose a new general
algorithm to solve either the sparse (9) or the grouping (10)
constrained convex optimization problems directly.

D. Optimization Model

Our classification minimization problem is formally cast as
follows.
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Problem 1: Suppose that φ satisfies Assumption 1 and let
ϕ : Rd → R be convex. Set

Φ : Rd → R : w �→ 1
m

m∑

i=1

φ
(
yi〈xi | w〉) (13)

and

C =
{

w ∈ Rd
∣
∣
∣ ϕ(w) � η

}
, (14)

and let β be the Lipschitz constant of ∇Φ, as defined in (7). The
problem is to

minimize
w∈C

Φ(w). (15)

In Section IV, we shall focus on the three instances of the
function ϕ defined in (12). We assume throughout that there ex-
ists some ρ ∈ R such that

{
x ∈ C

∣
∣Φ(x) � ρ

}
is nonempty and

bounded, which guarantees that (13) has at least one solution.
In particular, this is true if Φ or ϕ is coercive.

III. SPLITTING ALGORITHM

In this section, we propose an algorithm for solving con-
strained classification problem (15). This algorithm fits in the
general category of forward-backward splitting methods, which
have been popular since their introduction in data processing
problem in [14]; see also [12], [13], [30], [32], [33]. These
methods offer flexible implementations with guaranteed conver-
gence of the sequence of iterates they generate, a key property
to ensure the reliability of our variational classification scheme.

A. General Framework

As noted in Section II, Φ is a differentiable convex function
and its gradient has Lipschitz constant β, where β is given by
(7). Likewise, since ϕ is convex and continuous, C is a closed
convex set as a lower level set of ϕ. The principle of a splitting
method is to use the constituents of the problems, here Φ and
C, separately. In the problem at hand, it is natural to use the
projection-gradient method to solve (15). This method, which is
an instance of the proximal forward-backward algorithm [14],
alternates a gradient step on the objective Φ and a projection
step onto the constraint set C. It is applicable in the following
setting, which captures Problem 1.

Problem 2: Let Φ : Rd → R be a differentiable convex func-
tion such that ∇Φ is Lipschitz-continuous with constant β ∈
]0,+∞[, let ϕ : Rd → R be a convex function, let η ∈ R, and
set C =

{
w ∈ Rd

∣
∣ ϕ(w) � η

}
. The problem is to

minimize
w∈C

Φ(w). (16)

Let PC denote the projection operator onto the closed convex
set C. Given w0 ∈ Rd , a sequence (γn )n∈N of strictly positive
parameters, and a sequence (an )n∈N in Rd modeling compu-
tational errors in the implementation of the projection operator
PC , the projection-gradient algorithm for solving Problem 2

assumes the form

for n = 0, 1, . . .⌊
vn = wn − γn∇Φ(wn )
wn+1 = PC (vn ) + an .

(17)

We derive at once from [14, Theorem 3.4(i)] the following con-
vergence result, which guarantees the convergence of the iter-
ates.

Theorem 1: Suppose that Problem 2 has at least one solution,
let w0 ∈ Rd , let (γn )n∈N be a sequence in ]0,+∞[, and let
(an )n∈N be a sequence in Rd such that
∑

n∈N

‖an‖ < +∞, inf
n∈N

γn > 0, and sup
n∈N

γn <
2
β

. (18)

Then the sequence (wn )n∈N generated by (17) converges to a
solution to Problem 2.

Theorem 1 states that the whole sequence of iterates con-
verges to a solution. Using classical results on the asymptotic be-
havior of the projection-gradient method [25, Theorem 5.1(2)],
we can complement this result with the following upper bound
on the rate of convergence of the objective value.

Proposition 1: In Theorem 1 suppose that (∀n ∈ N)an = 0.
Then there exists ϑ > 0 such that, for n large enough, Φ(wn ) −
inf Φ(C) � ϑ/n.

The implementation of (17) is straightforward except for the
computation of PC (vn ). Indeed, C is defined in (14) as the
lower level set of a convex function, and no explicit formula
exists for computing the projection onto such a set in general
[3, Section 29.5]. Fortunately, Theorem 1 asserts that PC (vn )
need not be computed exactly. Next, we provide an efficient
algorithm to compute an approximate projection onto C.

B. Projection onto a Lower Level Set

Let p0 ∈ Rd , let ϕ : Rd → R be a convex function, and let
η ∈ R be such that

C =
{
p ∈ Rd

∣
∣ ϕ(p) � η

} 
= ∅. (19)

The objective is to compute iteratively the projection PC (p0)
of p0 onto C. The principle of the algorithm is to replace this
(usually intractable) projection by a sequence of projections onto
simple outer approximations to C consisting of the intersection
of two affine half-spaces [10].

We first recall that s ∈ Rd is called a subgradient of ϕ at
p ∈ Rd if [3, Chapter 16]

(∀y ∈ Rd) 〈y − p | s〉 + ϕ(p) � ϕ(y). (20)

The set of all subgradients of ϕ at p is denoted by ∂ϕ(p). If ϕ
is differentiable at p, this set reduces to a single vector, namely
the gradient ∇ϕ(p). The projection PC (p0) of p0 onto C is
characterized by

{
PC (p0) ∈ C
(∀p ∈ C) 〈p − PC (p0) | p0 − PC (p0)〉 � 0.

(21)

Given x and y in Rd , define a closed affine half-space H(x, y)
by

H(x, y) =
{
p ∈ Rd

∣
∣ 〈p − y | x − y〉 � 0

}
. (22)
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Fig. 1. A generic iteration for computing the projection of p0 onto C .

Note that H(x, x) = Rd and, if x 
= y, H(x, y) is the closed
affine half-space onto which the projection of x is y. According
to (21), C ⊂ H(p0 , PC (p0)).

The principle of the algorithm at iteration k is as follows
(see Fig. 1). The current iterate is pk , and C is contained in
the half-space H(p0 , pk ) onto which pk is the projection of p0
(see (22)). If ϕ(pk ) > η, any subgradient sk ∈ ∂ϕ(pk ) is in the
normal cone to the lower level set

{
p ∈ Rd

∣
∣ ϕ(p) � ϕ(pk )

}
at

pk , and the associated subgradient projection of pk onto C is
[3], [7], [9]

pk+1/2 =

⎧
⎨

⎩
pk +

η − ϕ(pk )
‖sk‖2 sk if ϕ(pk ) > η

pk if ϕ(pk ) � η.

(23)

As noted in [9], it follows from (20) that the closed half-space
H(pk , pk+1/2) serves as an outer approximation to C at iteration
k, i.e., C ⊂ H(pk , pk+1/2). Altogether, since we have also seen
that C ⊂ H(p0 , pk ),

C ⊂ Ck , where Ck = H(p0 , pk ) ∩ H(pk , pk+1/2). (24)

Finally, the update pk+1 is the projection of p0 onto the outer
approximation Ck to C. As the following lemma from [23] (see
also [3, Corollary 29.25]) shows, this computation is straight-
forward.

Lemma 1: Let x, y, and z be points in Rd such that

H(x, y) ∩ H(y, z) 
= ∅. (25)

Moreover, set a = x − y, b = y − z, χ = 〈a | b〉, μ = ‖a‖2 ,
ν = ‖b‖2 , and ρ = μν − χ2 . Then the projection of x onto
H(x, y) ∩ H(y, z) is

Q(x, y, z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z if ρ = 0 and χ� 0

x −
(

1 +
χ

ν

)
b if ρ>0 and χν � ρ

y +
ν

ρ

(
χa − μb

)
if ρ>0 and χν <ρ.

(26)

Note that, if ϕ(pk ) � η, then pk ∈ C and the algorithm ter-
minates with pk = PC (p0). Indeed, since C ⊂ H(p0 , pk ) [10,
Section 5.2] and pk is the projection of p0 onto H(p0 , pk ),

we have ‖p0 − pk‖ � ‖p0 − PC (p0)‖. Hence pk ∈ C⇔ pk =
PC (p0), i.e., ϕ(pk ) � η⇔ pk = PC (p0).

To sum up, the projection of p0 onto the set C of (19) will be
performed by executing the following routine.

for k = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

if ϕ(pk ) � η
�terminate.
ζk = η − ϕ(pk )
sk ∈ ∂ϕ(pk )
pk+1/2 = pk + ζksk/‖sk‖2

pk+1 = Q(p0 , pk , pk+1/2).

(27)

The next result from [10, Section 6.5] guarantees the conver-
gence of the sequence (pk )k∈N generated by (27) to the desired
point.

Proposition 2: Let p0 ∈ Rd , let ϕ : Rd → R be a
convex function, and let η ∈ R be such that C ={
p ∈ Rd

∣
∣ ϕ(p) � η

} 
= ∅. Then either (27) terminates in a
finite number of iterations at PC (p0) or it generates an infinite
sequence (pk )k∈N such that pk → PC (p0).

To obtain an implemen version of the conceptual algorithm
(17), consider its nth iteration and the computation of the ap-
proximate projection wn+1 of vn onto C using (27). We first
initialize (27) with p0 = vn , and then execute only Kn iter-
ations of it. In doing so, we approximate the exact projection
onto C by the projection pKn

onto CKn −1 . The resulting error is
an = PC (p0) − pKn

. According to Theorem 1, this error must
be controlled so as to yield overall a summable process. First,
since PC is nonexpansive [3, Proposition 4.16], we have

‖PC (p0) − PC (pKn
)‖ � ‖p0 − pKn

‖ → 0. (28)

Now suppose that ϕ(pKn
) > η (otherwise we are done).

By convexity, ϕ is Lipschitz-continuous relative to com-
pact sets [3, Corollary 8.41]. Therefore there exists
ζ > 0 such that 0 < ϕ(pKn

) − η = ϕ(pKn
) − ϕ(PC (p0)) �

ζ‖pKn
− PC (p0)‖ → 0. In addition, assuming that int(C) 
= ∅,

using standard error bounds on convex inequalities [26], there
exists a constant ξ > 0 such that

‖pKn
− PC (pKn

)‖ � ξ
(
ϕ(pKn

) − η
) → 0. (29)

Thus,

‖an‖ = ‖PC (p0) − pKn
‖

� ‖PC (p0) − PC (pKn
)‖ + ‖PC (pKn

) − pKn
‖

� ‖p0 − pKn
‖ + ξ

(
ϕ(pKn

) − η
)
. (30)

Thus, is suffices to take Kn large enough so that, for instance,
we have ‖p0 − pKn

‖ � ξ1/n1+ε and ϕ(pKn
) − η � ξ2/n1+ε

for some ξ1 > 0, ξ2 > 0, and ε > 0. This will guarantee that∑
n∈N ‖an‖ < +∞ and therefore, by Theorem 1, the conver-

gence of the sequence (wn )n∈N generated by the following
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Fig. 2. Convergence of the projection loop (7 iterations).

algorithm to a solution to Problem 2.

for n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn = wn − γn∇Φ(wn )
p0 = vn

for k = 0, 1, . . . ,Kn − 1⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζk = η − ϕ(pk )
if ζk � 0
�terminate.

sk ∈ ∂ϕ(pk )
pk+1/2 = pk + ζksk/‖sk‖2

pk+1 = Q(p0 , pk , pk+1/2)
wn+1 = pKn

.

(31)

Let us observe that, from a practical standpoint, we have found
the above error analysis not to be required in our experi-
ments since an almost exact projection is actually obtainable
with a few iterations of (27). For instance, numerical sim-
ulations (see Fig. 2) on the synthetic data set described in
Section IV-A show that (27) yields in about Kn ≈ 7 iterations
a point very close to the exact projection of p0 onto C. Note
that the number of iterations of (27) does not depend on the
dimension d.

Remark 1 (multiple constraints): We have presented above
the case of a single constraint, since it is the setting employed
in subsequent sections. However, the results of [10, Section 6.5]
enable us to extend this approach to problems with p constraints,
see Appendix A.

C. Application to Problem 1

It follows from (6), (26), and (27), that (31) for the classi-
fication problem can be written explicitly as follows, where ε
is an arbitrarily small number in ]0, 1[ and where β is given

by (7).

for n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γn ∈ [ε, (2 − ε)/β]

vn = wn − γn

m

m∑

i=1

yiφ
′(yi〈xi | wn 〉

)
xi

p0 = vn

for k = 0, 1, . . . ,Kn − 1⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζk = η − ϕ(pk )
if ζk � 0
�terminate.
sk ∈ ∂ϕ(pk )
pk+1/2 = pk + ζksk/‖sk‖2

χk =
〈
p0 − pk | pk − pk+1/2

〉

μk = ‖p0 − pk‖2

νk = ‖pk − pk+1/2‖2

ρk = μkνk − χ2
k

if ρk = 0 and χk � 0⌊
pk+1 = pk+1/2

if ρk > 0 and χkνk � ρk⌊
pk+1 = p0 +

(
1 +

χk

νk

)
(
pk+1/2 − pk

)

if ρk > 0 and χkνk < ρk⌊
pk+1 =pk +

νk

ρk

(
χk

(
p0−pk

)
+μk

(
pk+1/2−pk

))

wn+1 = pKn
.

(32)
A subgradient of ϕ1 at (ξi)1�i�d ∈ Rd is s = (sign(ξi))1�i�d ,
where

sign : ξ �→
⎧
⎨

⎩

1 if ξ > 0
0 if ξ = 0
−1 if ξ < 0.

(33)

The ith component of a subgradient of ϕ2 at (ξi)1�i�d ∈ Rd is
given by

∑

(i,j )∈S

{
sign(ξi) if |ξi | � |ξj |
0 otherwise.

(34)

The ith component of a subgradient of ϕ3 at (ξi)1�i�d ∈ Rd is
given by

∑

(i,j )∈S

{
sign(ξi − ξj ) if ξi 
= ξj

0 otherwise.
(35)

D. Application to Regression

A common approach in regression is to learn w ∈ Rd by
employing the quadratic loss

Ψ : Rd → R : w �→ 1
2m

m∑

i=1

∣
∣〈xi | w〉 − yi

∣
∣2 (36)

instead of the function Φ of (13) in Problem 2. Since Ψ is convex
and has a Lipschitz-continuous gradient with constant β = σ2

1 ,
where σ1 is the largest singular value of the matrix [x1 | · · · |xm ],
it suffices to change the definition of vn in (32) by

vn = wn − γn

m

m∑

i=1

(〈xi | wn 〉 − yi

)
xi. (37)
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IV. EXPERIMENTAL EVALUATION

We illustrate the performance of the proposed constrained
splitting method on both synthetic and real data sets.

A. Synthetic Data Set

We first simulate a simple regulatory network in genomic
described in [27]. A genomic network is composed of regulators
(transcription factors, cytokines, kinase, growth factors, etc.)
and the genes they regulate. Our notation is as follows:

� m: number of samples.
� Nreg: number of regulators.
� Ng: number of genes per regulator.
� d = Nreg(Ng + 1).
The entry ξi,j of the matrix X = [x1 | · · · |xm ]�, composed of

m rows and d columns, is as follows.
i) The rth regulator of the ith sample is

ξi,regr
= ξi,Ng(r−1)+r = ξi,r(Ng+1)−Ng

∼ N (0, 1).

This defines ξi,j for j of the form r(Ng + 1) − Ng.
ii) The genes associated with ξi,regr

have a joint bivariate
normal distribution with a correlation of ρ = 0.7

ξi,r(Ng+1)−Ng+k ∼ N (
� ξi,regr

, 1 − �2).

This defines ξi,j 
= r(Ng + 1) − Ng.
The regression response Y is given by Y = Xw + ε, where
ε ∼ N (0, σ2) with σ = 2.

Example 1: In this example, we consider that 9 genes regu-
lated by the same regulators are activated and 1 gene is inhibited.
The true regressor is defined as

w =

(

5,
5√
10

, . . .

︸ ︷︷ ︸
9

,
−5√
10

, . . .

︸ ︷︷ ︸
1

,−5,
−5√
10

, . . .

︸ ︷︷ ︸
9

,
5√
10

, . . .

︸ ︷︷ ︸
1

, 3,

3√
10

, . . .

︸ ︷︷ ︸
9

,
−3√
10

, . . .

︸ ︷︷ ︸
1

,−3,
−3√
10

, . . .

︸ ︷︷ ︸
9

,
3√
10

, . . .

︸ ︷︷ ︸
1

, 0, . . ., 0

)

.

Example 2: We consider that 8 genes regulated by the same
regulators are activated and 2 genes are inhibited. The true re-
gressor is defined as

w =

(

5,
5√
10

, . . .

︸ ︷︷ ︸
8

,
−5√
10

, . . .

︸ ︷︷ ︸
2

,−5,
−5√
10

, . . .

︸ ︷︷ ︸
8

,
5√
10

, . . .

︸ ︷︷ ︸
2

, 3,

3√
10

, . . .

︸ ︷︷ ︸
8

,
−3√
10

, . . .

︸ ︷︷ ︸
2

,−3,
−3√
10

, . . .

︸ ︷︷ ︸
8

,
3√
10

, . . .

︸ ︷︷ ︸
2

, 0, . . ., 0

)

.

Example 3: This example is similar to Example 1, but we
consider that 7 genes regulated by the same regulators are

Fig. 3. Glmnet: Number of nonzero coefficients as a function of nλ.

activated and 3 genes are inhibited. The true regressor is

w =

(

5,
5√
10

, . . .

︸ ︷︷ ︸
7

,
−5√
10

, . . .

︸ ︷︷ ︸
3

,−5,
−5√
10

, . . .

︸ ︷︷ ︸
7

,
5√
10

, . . .

︸ ︷︷ ︸
3

, 3,

3√
10

, . . .

︸ ︷︷ ︸
7

,
−3√
10

, . . .

︸ ︷︷ ︸
3

,−3,
−3√
10

, . . .

︸ ︷︷ ︸
7

,
3√
10

, . . .

︸ ︷︷ ︸
3

, 0, . . ., 0

)

.

B. Breast Cancer Data Set

We use the breast cancer data set [36], which consists of gene
expression data for 8,141 genes in 295 breast cancer tumors
(78 metastatic and 217 non-metastatic). In the time comparison
evaluation, we select a subset of the 8141 genes (range 3000 to
7000) using a threshold on the mean of the genes. We use the
network provided in [8] with p = 639 pathways as graph con-
straints in our classifier. In biological applications, pathways are
genes grouped according to their biological functions [8], [27].
Two genes are connected if they belong to the same pathway.
Let Si be the subset of genes that are connected to gene i. In this
case, we have a subset of only 40,000 connected genes in Si.
Note that we compute the subgradient (34) only on the subset
Si of connected genes.

C. Comparison Between Penalty Method and our �1

Constrained Method for Classification

First, we compare with the penalty approach using glmnet
MATLAB software [31] on the breast cancer data set described
in Section IV-B. We tuned the number of path iterations nλ

for glmnet for different values of the feature dimension. The
number of nonzero coefficients ‖w‖0 increases with nλ. The
glmnet method requires typically 200 path iterations or more
(see Fig. 3).

Our classification implementation uses the logistic loss. Let
‖w‖1 � η be the surrogate sparsity constraint. Fig. 4 shows
for different values of the feature dimension that the number
of nonzero coefficients ‖w‖0 decreases monotonically with the
number of iterations. Consequently, the sweep search over η
consists in stopping the iterations of the algorithm when ‖w‖0
reaches value specified a priori.
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Fig. 4. Number of nonzero coefficients as a function of the number of itera-
tions.

TABLE I
TIME COMPARISON (MATLAB AND MEX) VERSUS GLMNET [31]

Fig. 5. Computing time as a function of the dimension.

Our direct constrained strategy does not require the often
heuristic search for meaningful and interpretable Lagrange mul-
tipliers. Moreover, we can improve processing time using sparse
computing. Namely, at each iteration we compute scalar prod-
ucts using only the sparse sub-vector of nonzero values. We com-
pare time processing using the breast cancer data set (n = 295
samples, d = 3022) described in Section IV-B. We provide time
comparison using a 2.5 GHz Macbook Pro with an i7 processor
and Matlab software. We report time processing in Table I using
glmnet software [31] and our method using either Matlab �1 or a
standard mex �1 file. Moreover, since the vector w is sparse, we
provide mex-sparse and matlb-sparse times using sparse com-
puting. Fig. 5 shows that our constrained method is ten times
faster than glmnet [31]. A numerical experiment is available
in [1].

A potentially competitive alternative �1 constrained optimiza-
tion algorithms for solving the projection part of our constrained
classification splitting algorithm is that described in [15]. We
plug the specific projection onto the ball algorithm into our
splitting algorithm. We provide time comparison (in seconds) in

TABLE II
TIME COMPARISON(S) WITH PROJECTION ONTO THE �1 BALL [15] FOR

DIMENSION d = 3022 USING MATLAB

TABLE III
BREAST CANCER AUC COMPARISONS

Table II for classification for the breast cancer data set (d =
3022) described in Section IV-B. Note that the most expensive
part of our algorithm in terms of computation is the evalua-
tion of the gradient. Although the projection onto the �1 ball
[15] is faster than our projection, our method is basically 12%
slower than the specific ϕ1 constrained method for dimension
d = 3022. However, our sparse implementation of scalar prod-
ucts is twice as fast. Moreover, since the complexity of our
method relies on the computation of scalar products, it can be
easily sped up using multicore CPU or Graphics Processing Unit
(GPU) devices, while the speed-up of the projection on the ball
[15] using CPU or GPU is currently an open issue. In addition
our method is more flexible since it can take into account more
sophisticated constraints such as ϕ2 , ϕ3 , or any convex con-
straint. We evaluate classification performance using area under
the ROC curve (AUC). The result of Table III show that our
ϕ1 constrained method outperforms the ϕ1 penalty method by
5.8%. Our ϕ2 constraint improves slightly the AUC by 1% over
the ϕ1 constrained method. We also observe a significant im-
provement of our constrained ϕ2 method over the penalty group
Lasso approach discussed in [24]. In addition, the main benefit
of the ϕ2 constraint is to provide a set of connected genes which
is more relevant for biological analysis than the individual genes
selected by the ϕ1 constraint.

D. Comparison of Various Constraints for Regression

In biological applications, gene activation or inhibition are
well known and summarized in the ingenuity pathway analysis
(IPA) database [2]. We introduce this biological a priori knowl-
edge by replacing the ϕ3 constraint by

ϕ4 : w �→
∑

(i,j )∈S

|ωi − aijωj |, (38)

where aij = 1 if genes i and j are both activated or inhibited,
and aij = −1 if gene i is activated and gene j inhibited. We
compare the estimation of w for Example 3 using ϕ1 versus the
ϕ2 and ϕ4 constraint. For each fold, we estimate the regression
vector w on 100 training samples. Then we evaluate on new 100
testing samples. We evaluate regression using the mean square
error (MSE) in the training set and the predictive mean square
error (PMSE) in the test set. We use randomly half of the data for
training and half for testing, and then we average the accuracy
over 50 random folds.

We show in Fig. 6(a) the true regression vector and, in
Fig. 6(b), the estimation using the ϕ1 constraint for Example 3.
In Fig. 6(c) we show the results of the estimation with the ϕ2
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Fig. 6. Example 3: (a): True vector w. (b): Estimation with the ϕ1 constraint. (c): Estimation with the ϕ2 constraint. (d): Estimation with the ϕ4 constraint.

Fig. 7. ϕ1 constraint for Examples 1, 2, and 3. Mean square error as a function
of the parameter η.

Fig. 8. ϕ2 constraint for Examples 1, 2, and 3. Mean square error as a function
of the parameter η.

Fig. 9. ϕ4 constraint for Examples 1, 2, and 3. Mean square error as a function
of the parameter η.

Fig. 10. MSE as a function of the number of samples m for Example 2.
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constraint, and in Fig. 6(d) with the ϕ4 constraint. We provide
for the three examples the mean square error as a function of
η for ϕ1 (Fig. 7), ϕ2 (Fig. 8), and ϕ4 (Fig. 9). We report for
Example 2 in Fig. 10 the estimation of the mean square error in
the training set as a function of the number of training samples
for the ϕ1 , ϕ2 , and ϕ4 constraint. The ϕ4 constraint outperforms
both the ϕ2 and the ϕ1 constrained method. However, the selec-
tion of the parameter η for constraint ϕ4 is more challenging.

V. CONCLUSION

We have used constrained optimization approaches to pro-
mote sparsity and feature grouping in classification and regres-
sion problems. To solve these problems, we have proposed a
new efficient algorithm which alternates a gradient step on the
data fidelity term and an approximate projection step onto the
constraint set. We have also discussed the generalization to mul-
tiple constraints. Experiments on both synthetic and biological
data show that our constrained approach outperforms penalty
methods. Moreover, the formulation using the ϕ4 constraint
outperforms those using the pairwise ϕ2 and the ϕ1 constraint.

APPENDIX A
THE CASE OF MULTIPLE CONSTRAINTS

Let Φ be as in Problem 2 and, for every j ∈ {1, . . . , p}, let
ϕj : Rd → R be convex, let ηj ∈ R, and let αj ∈ ]0, 1] be such
that

∑p
j=1 αj = 1. Consider the problem

minimize
ϕ1 (w )�η1

...
ϕp (w )�ηp

Φ(w). (A1)

In other words, C =
⋂p

j=1

{
w ∈ Rd

∣
∣ϕj (w) � ηj

}
in (16). Let

k ∈ N. For every j ∈ {1, . . . , p}, let sj,k ∈ ∂ϕj (pk ) and set

pj,k =

⎧
⎨

⎩
pk +

ηj − ϕj (pk )
‖sj,k‖2 sj,k if ϕj (pk ) > ηj

pk if ϕj (pk ) � ηj .
(A2)

Now define

pk+1/2 = pk + Lk

(
p∑

j=1

αjpj,k − pk

)

, (A3)

where

Lk =

p∑

j=1

αj‖pj,k − pk‖2

∥
∥
∥
∥
∥

p∑

j=1

αjpj,k − pk

∥
∥
∥
∥
∥

2 . (A4)

Then pk+1 = Q(p0 , pk , pk+1/2) → PC (p0) [10, Theorem 6.4]
and therefore the generalization

for n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn = wn − γn∇Φ(wn )
p0 = vn

for k = 0, 1, . . . ,Kn − 1⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζk = min1�j�p

(
ηj − ϕj (pk )

)

if ζk � 0
�terminate.

for j = 1, . . . , p
�sj,k ∈ ∂ϕj (pk )

compute pk+1/2 as in (A2)–(A4)
wn+1 = pKn

.

(A5)

of (31) solves (A1).
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Curie-Paris 6 before joining North Carolina State
University as a Distinguished Professor of mathe-
matics in 2016.

Lionel Fillatre received the Dipl.Ing. degree in deci-
sion and information engineering, the M.Sc. degree
in systems optimization in 2001, and the Ph.D. de-
gree in systems optimization in 2004 from Troyes
University of Technology (UTT), Troyes, France. In
2005, he was an Assistant Professor at the UTT and
had a postdoctoral position in the Computational De-
partment of Telecom Bretagne in 2006. From 2006
to 2007, he was an Associate Professor at Telecom
Bretagne, Brest, France. From 2007 to 2012, he was
an Associate Professor in the Systems Modelling and

Dependability Laboratory, Troyes University of Technology. Since 2012, he has
been a Full Professor in the I3S Laboratory, University of Nice Sophia-Antipolis,
Nice, France. His current research interests include statistical decision theory,
machine learning, bioinspired coding and compression, signal and image pro-
cessing, and biological data processing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


