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ABSTRACT

This paper deals with unsupervised clustering in high dimen-
sional space. The problem is to estimate both labels and a
sparse projection matrix of weights. To address this com-
binatorial non-convex problem maintaining a strict control
on the sparsity of the matrix of weights, we propose an al-
ternating minimization of the Frobenius norm criterion. We
provide a new efficient algorithm named k-sparse which al-
ternates k-means with projection-gradient minimization. The
projection-gradient step is a method of splitting type, with
exact projection on the ¢! ball to promote sparsity. The con-
vergence of the gradient-projection step is addressed, and a
preliminary analysis of the alternating minimization is pro-
vided. Experiments on Single Cell RNA sequencing datasets
show that our method significantly improves the results of
spectral clustering, SIMLR, and Sparcl methods. The com-
plexity of our method is linear with the number of samples
(cells), so that the method scales up to large datasets.

1. RELATED WORKS

This paper deals with unsupervised clustering and removal of
noisy features in high dimensional space. Clustering in high
dimension using classical algorithms such as k-means [[1} 2]
suffers from the curse of dimensionality. As dimensions in-
crease, vectors become indiscernible and the predictive power
of the aforementioned methods is drastically reduced [3]. We
advocate the use of sparsity promoting methods as they allow
not only to perform feature selection (dimensionality reduc-
tion), but also to use efficient state-of-the-art algorithms from
convex optimization. An early approach proposed in [4} |5]
is to combine clustering and dimension reduction by means
of Linear Discriminant Analysis (LDA). The heuristic used
in [5]] is based on alternating minimization, which consists in
iteratively computing a projection subspace by LDA, using
the labels y at the current iteration and then running k-means
on the projection of the data onto the subspace. Departing
from this work, the approach [6] proposes a convex relaxation
in terms of a suitable semi-definite program (SDP). Another
efficient method is spectral clustering where the main tools

are graph Laplacian matrices [7, 18]. The approach [9] use a
lagrangian lasso-type penalty to select the features and propose
a sparse k-means method. A main issue is that optimizing the
values of the Lagrangian parameter \ [9]] is computationally
expensive. All these methods [4} 15, 16, 9]] require a k-means
heuristic to retrieve the labels.

2. CONSTRAINED UNSUPERVISED
CLASSIFICATION

2.1. General Framework

Let X be the (nonzero) m x d matrix made of m line samples
x1,...,Zy, belonging to the d-dimensional space of features.
Let Y € {0, 1}™** be the matrix of labels where k > 2 is the
number of clusters. Note that we assume that this number is
known; It is indeed the case for the applications we present in
Section [3| while estimating % is in general a delicate matter
out of the scope of this paper. Each line of Y has exactly
one nonzero element equal to one, y;; = 1 indicating that the
sample x; belongs to the j-th cluster. Let W € R%*¢ be the
projection matrix, where the dimension in the projected space,
d, is understood to be much smaller than d. Let then 1 be the
k x d matrix of centroids of the projected data, X W:

pujy) = s
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The j-th centroid is the model for all samples z; belonging to
the j-th cluster (y;; = 1). The clustering criterion can be cast
as the Within-Cluster Sum of Squares (WCSS) [10, 9] in the
projected space

min
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where |||  is the Frobenius norm induced by the Euclidean
structure on m x d matrices,

(A|B)p := tr(ATB) = tr(AB™),

[AllF ==V (A]A)p .

In contrast with the Lagrangian formulation, we want to
have a direct control on the value of the ¢! bound, so we



constrain W according to

Wi <n (n>0), @

where ||.||1 is the #! norm of the vectorized d x d matrix of
weights:

d d
Wik = WG = D0 fwil.
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The problem is to estimate labels Y together with the sparse
projection matrix W. As Y and W are bounded, the set of
constraints is compact and existence of minimizers holds.

Proposition 1 The minimization of the norm (1)), jointly in'Y’
and W has a solution.

To attack this difficult nonconvex problem, we propose an alter-
nating (or Gauss-Seidel) scheme as in [4}15,9]. Another option
would be to design a global convex relaxation to address the
joint minimization in Y and W (see, e.g., [6]) The first convex
subproblem is to find the best projection from dimension d to
dimension d for a given clustering.

Problem 1 For a fixed clustering Y (and a given n > 0),
1
inimize —||Ypu — XW|3?
minimize o [|Yp [

where C := {W € R™? . |W|, < n}.

Given the matrix of weights W € C, the second subproblem
is the standard k-means on the projected data.

Problem 2 For a fixed projection matrix W € C,

1
minimize —||Yu— XW|Z.
,oimimize, 2|| % %

2.2. Exact gradient-projection splitting method

To solve Problem[I] we use a gradient-projection method. It
belongs to the class of splitting methods [[11} [12} [13 144 [15].
It is designed to solve minimization problems of the form

min (W), (©)
using separately the convexity properties of the function ¢ on
one hand, and of the convex set C on the other. We use the
following forward-backward scheme to generate a sequence
of iterates:

Vi == Wy — VWLV@(Wn)a (€]

Wn+1 = PC(Vn) + €n, (5)

where Pc denotes the projection on the convex set C' (a subset
of some Euclidean space). Under standard assumptions on

the sequence of gradient steps (7, )n, and on the sequence of
projection errors (€, )., convergence holds (see, e.g., [16]).

Theorem 1 Assume that (3) has a solution. Assume that ¢
is convex, differentiable, and that V¢ is 3-Lipschitz, 5 > 0.
Assume finally that C' is convex and that

Z|€n\<oo, i%f'yn>0, sup vy, < 2/p8.
n
n

Then the sequence of iterates of the forward-backward scheme
HP) converges, whatever the initialization. If moreover
(en)n = 0 (exact projections), there exists a rank N and
a positive constant K such that, forn > N,

p(Wn) —infe < K/n. (6)

In our case, V¢ is Lipschitz since it is affine,
Ve(W) = XT(XW - Ynu), (7
and we recall the estimation of its best Lipschitz constant.

Lemma 1 Let A be a d x d real matrix, acting linearly on the
set of d X k real matrices by left multiplication, W +— AW.
Then, its norm as a linear operator on this set endowed with the
Frobenius norm is equal to its largest singular value, o (A).

Proof. The Frobenius norm is equal to the /2 norm of the
vectorized matrix,

wt AW
Wile =11 : |l [AW]r =] : ll2,
wh AW
(®)
where W1, ... W" denote the h column vectors of the d x h

matrix W. Accordingly, the operator norm is equal to the
largest singular value of the kd x kd block-diagonal matrix
whose diagonal is made of k£ matrix A blocks. Such a matrix
readily has the same largest singular value as A. (]

As a byproduct of Theorem I} we get
Corollary 1 For any fixed step v € (0,2/02,. (X)), the
forward-backward scheme applied to the Problem[l|\with an ex-

act projection on £* balls converges with a linear rate towards
a solution, and the estimate ([6) holds.

Proof. The ¢! ball being compact, existence holds. So does
convergence, provided the condition of the step lengths is
fulfilled. Now, according to the previous lemma, the best
Lipschitz constant of the gradient of ¢ is Ty (X7 X) =
02, (X), hence the result. O

max

2.3. Alternating minimization algorithm and convergence

The resulting alternating minimization procedure is summa-
rized in Algorithm [T} Labels Y are for instance initialized
by spectral clustering on X, while the k-means computation



relies on standard methods such as k-means++ [2]]. We denote
by P (W) the (reshaped as a d x d matrix) £' projection of
the vectorized matrix W (:) which is computed by efficient
methods 17, [18]].

Algorithm 1 Alternating minimization clustering.
Input: XYy, po, Wo, L, N, k,v,n
Y «Y),

M= Ho
W + Wy
for[=0,...,Ldo
forn=20,...,N do
VW -y XT(XW —Yp)
W« P}(V)
end for
Y + kmeans(XW, k)
i+ centroids(Y, XW)
end for
Output: Y, W

Similarly to the approaches advocated in [4, 15,16, 9], our
method involves non-convex k-means optimization for which
convergence towards local minimizers only can be proved [19].
In practice, we use k-means++ with several replicates to im-
prove each clustering step. We assume that the initial guess for
labels Y and matrix of weights W is such that the associated
k centroids are all different. We note for further research that
there have been recent attempts to convexify k-means (see,
e.g., [20L21]). As each step of the alternating minimization
scheme decreases the norm in (II]), which is nonnegative, the
following readily holds.

Proposition 2 The Frobenius norm ||Y — XW/|| g converges
as the number of iterates L in Algorithm[I] goes to infinity.

This property is illustrated in Fig. [2] on biological data.
Further analysis of the convergence may build on recent results
on proximal regularizations of the Gauss-Seidel alternating
scheme for non convex problems [22} 23]].

3. EXPERIMENTAL EVALUATION ON SINGLE CELL
RNA-SEQ CLUSTERING

3.1. Single cell datasets

Our algorithm can be readily extended to multiclass clustering
of high dimensional databases in computational biology (single
cell clustering, mass-spectrometric data...). In this paper, we
provide an experimental evaluation on Single-cell sequencing
dataset [24]]. We performed our algorithm on three public
single-cell RNA-seq datasets: Klein [23]], Zeisel [26]], Usoskin
[27].

The Klein scRNA-seq dataset [25]] characterizes the tran-
scriptome of 2,717 cells clustered in & = 4 classes from 10,322

genes. The Zeisel scRNA-seq dataset [26] collected 3,005
mouse cells clustered in £ = 9 classes and 7364 genes from
the primary somatosensory cortex (S1) and the hippocampal
CA1 region. The Usoskin scRNA-seq dataset [27] collected
622 cells clustered in £ = 4 classes and 9195 genes from the
mouse dorsal root ganglion.

3.2. Experimental settings

The problem of estimating the number of clusters is out of the
range of this study, and we refer to the popular GAP method
[28]. We compare our method with spectral clustering [S8]],
SIMLR (Single-cell Interpretation via Multikernel Learning)
[29] [ﬂand Sparcl (Sparse k-means clustering) [9] using the R
software package Sparcl.

In order to evaluate the results of each algorithms, we com-
pare the labels obtained by each clustering method with the
true labels to compute the clustering accuracy. We also report
the popular Adjusted Rank Index (ARI) [30] and Normalized
Mutual Information (NMI) criteria as well as silhouette coeffi-
cients [31]. Processing times are obtained on a computer using
an i7 processor (2.5 Ghz).

Regarding our method and as illustrated in Fig. |1} the
parameter 7 has a direct impact on the number of selected
features. Here, we chose 7 such that it allows to achieve
both the best silhouette coefficient and also to discard a large
number of noisy features.
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Fig. 1: Evolution of the number of selected genes versus the
constraint is a smooth monotonous function. In our constrained
approach, the parameter 7 is directly connected to the number
of genes.

3.3. Evaluation and comparison between methods

We observe in Tables|[T} 2] and 3] that our k-sparse algorithm sig-
nificantly improves the results of Sparcl and SIMLR methods
in terms of silhouette, accuracy, ARI and NML.

Moreover, Fig. [3]illustrates the clustering results of each
method in a 2D visualization using the t sne representation
[32]]. Each colored point represents a cell and misclassified
cells are reported in black. We can observe that our k-sparse

Ihttps://github.com/BatzoglouLabSU/SIMLR/tree/SIMLR/MATLAB



algorithm significantly improves visually the results of Sparcl
and SIMLR methods. Note that SIMLR fails to discover one
class on Usoskin.

Table 1: Usoskin dataset (4 clusters, 622 cells, 9,195 genes): Com-
parison between methods and with real labels. With n = 5000,
k-sparse selected 3,095 genes out of a total of a total of 9,195 and
outperforms others methods in terms of accuracy by 15%.

Usoskin Spectral | SIMLR | Sparcl | k-sparse
Silhouette 0.61 0.88 - 0.95
Accuracy (%) | 60.13 76.37 | 57.24 92.60
ARI (%) 26.46 67.19 | 31.30 87.42
NMI 0.33 0.75 0.39 0.85
Time (s) 0.91 15.67 1,830 57.07

Table 2: Klein dataset (4 clusters, 2,717 cells, 10,322 genes):
Comparison between methods and with real labels. For n = 25000,
k-sparse selected 9, 870 genes out of a total of a total of 10,332 and
has an accuracy close to 100%. SIMLR has similar performances
(accuracy, ARI and NMI) than k-sparse (which is 5 times faster than
SIMLR).

Klein Spectral | SIMLR | Sparcl | k-sparse
Silhouette 0.73 0.95 - 0.96
Accuracy (%) | 63.31 99.12 65.11 99.12
ARI (%) 38.91 98.34 45.11 98.34
NMI 0.54 0.97 0.56 0.97
Time (s) 20.81 511 30,384 | 97.10

Table 3: Zeisel dataset (9 clusters, 3,005 cells, 7,364 genes): Com-
parison between methods and with real labels. With n = 12500,
k-sparse selected 3, 981 genes out of a total of a total of 7,364 and
outperforms others methods in terms of accuracy by 16%. For this
clustering K-sparse is 6 times faster than SIMLR.

Zeisel Spectral | SIMLR | Sparcl | k-sparse
Silhouette 0.56 0.82 - 0.83
Accuracy (%) 59.30 71.85 65.23 88.15
ARI (%) 50.55 64.8 59.06 84.17
NMI 0.68 0.75 0.69 0.81
Time (s) 23 464 28,980 | 71.60

Fig. 2] illustrates that K-sparse converged within around
L = 10 loops on each database. Regarding the computa-
tion time of each algorithm, Ksparse was particularly faster
than SIMLR on the two largest datasets, as reported in Ta-
ble 2] and Table 3] Finally, let us note that optimizing
the values of the Lagrangian parameter using permutations
(as in the Sparcl algorithm) is computationally more expen-
sive than the projection onto the the ¢; ball [17, [18]] (as
in our Ksparse approach). Our Matlab code is available at
github.com/cypgilet/Ksparse_Clusteringl
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Fig. 2: Decay of the Frobenius norm for the three datasets versus the
number of loops of the alternating minimization scheme emphasizes
the fast and smooth convergence of our algorithm.
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Fig. 3: Comparison of 2D visualization using t sne [32]]. Each point
represents a cell. Misclassified cells are reported in black.

4. CONCLUSION

In this paper, we focus on unsupervised clustering. We provide
a new efficient algorithm based on alternating minimization
introducing an ¢! constraint in the gradient-projection step.
This step, of splitting type, uses an exact projection on the
¢! ball to promote sparsity, and is alternated with k-means.
Convergence of the projection-gradient method is established,
and each iterative step of our algorithm necessarily lowers the
cost. Experiments on single-cell RNA-seq dataset in Section [3]
demonstrate the efficiency of our method.
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