
Near-Linear Time Projection onto the ℓ1,∞ Ball;
Application to Sparse Autoencoders

Guillaume Pereza, Laurent Condatb, Michel Barlauda

aUniversité Côte d’Azur, CNRS, Sophia Antipolis, 06900, France
bKing Abdullah University of Science and Technology (KAUST) Thuwal, Kingdom of Saudi Arabia

Abstract

Looking for sparsity is nowadays crucial to speed up the training of large-scale neural networks.
Projections onto the ℓ1,2 and ℓ1,∞ are among the most efficient techniques to sparsify and reduce
the overall cost of neural networks. In this paper, we introduce a new projection algorithm for
the ℓ1,∞ norm ball. The worst-case time complexity of this algorithm is O

(
nm + J log(nm)

)
for a matrix in Rn×m. J is a term that tends to 0 when the sparsity is high, and to nm when the
sparsity is low. Its implementation is easy and it is guaranteed to converge to the exact solution
in a finite time. Moreover, we propose to incorporate the ℓ1,∞ ball projection while training an
autoencoder to enforce feature selection and sparsity of the weights. Sparsification appears in the
encoder to primarily do feature selection due to our application in biology, where only a very small
part (< 2%) of the data is relevant. We show that both in the biological case and in the general
case of sparsity that our method is the fastest.

Keywords: Projection, Optimization, Gradient-based methods, Green AI

1. Introduction

It is well known that the impressive performance of neural networks is achieved at the cost of
a high-processing complexity and large memory usage. In fact, energy consumption and memory
limits are the main bottleneck for training neural networks [1, 2]. This implies that most of the
manpower energy is put into making the current hardware architectures able to work with such a
high demand. Such methods range from parallelism to rematerialization [3, 4], the latter being NP-
hard to solve. Recently, advances in sparse recovery and deep learning have shown that training
neural networks with sparse weights not only improves the processing time and batch sizes, but
most importantly improves the robustness and test accuracy of the learned models.

Looking for sparsity appears in many machine learning applications, such as the identification
of biomarkers in biology [5, 6] or the recovery of sparse signals in compressed sensing [7, 8, 9].
For example, consider the problem of minimizing a reconstruction cost function F of a parameter

Email addresses: guillaume.perez06@gmail.com (Guillaume Perez), barlaud@i3s.unice.fr
(Michel Barlaud)

Preprint submitted to Artificial Intelligence July 20, 2023

ar
X

iv
:2

30
7.

09
83

6v
1

 [
cs

.L
G

]
 1

9
Ju

l 2
02

3

vector x. In addition consider constraining the number of non-zero components (ℓ0 seminorm) of
the learned vector to at most a given sparsity value:

minimize
x∈Rd

F (x) subject to ∥x∥0 ≤ ϵ.

This problem is called feature selection and has been a large research area in machine learning.
Unfortunately, this problem is generally strictly nonconvex, combinatorial, and very difficult to
solve [10]. Nevertheless, many relaxed methods have been proposed, such as the LASSO method
[11, 12], which considers the ℓ1 norm instead of the ℓ0 seminorm of x. One of the reasons why such
regularization techniques are widely used is that Candès and Tao proved that using a ℓ1 projection
gives near-optimal guarantees on the reconstruction loss [13]. Since then, many methods have
been defined using either the ℓ1 or the reweighed ℓ1 norm for sparse regularization [14]:

minimize
x∈Rd

F (x) subject to ∥wx∥1 ≤ ϵ.

Solving such optimization problems is usually done using projected gradient descent. Given the
current point xt and the objective function F to optimize, a gradient step is taken toward the
objective: xt+1 = xt − γ∇F (x), for some step size, or learning rate, γ > 0. Gradient descent
does not take into account the presence of constraints, hence constraints are usually inserted in
the objective using Lagrange multipliers, or using projection or proximal methods. The projected
gradient algorithm is then xt+1 = αPC

(
xt − γ∇F (x)

)
+ (1 − α)xt, with PC the projection or

proximal operator. Note that projecting onto the ℓ1 or reweighed ℓ1 norm ball is of linear-time
complexity and is the common choice [15, 16].

In the context of deep learning, exploiting the sparsity of neural networks is not a new topic.
Indeed, dropout for example is an early implementation of sparsity, whose goal is to increase
the robustness of the learned representation [17, 18]. While dropout drastically improves the
robustness of non-sparse neural networks, feature selection methods have proved more efficient
to find robust and sparse models, leading to better accuracy. Indeed, in recent years, numerous
methods have been proposed in order to sparsify the weights during the training phase [19, 20].
For example, sparse iso-flops or similar methods aim at replacing dense layers with transformation
to improve the representation capacity [21, 22]. Other methods generally do produce sparse weight
matrices, but this sparsity, while helping the accuracy, was not memory or processing efficient. To
address this issue, the group-LASSO was proposed [23], in order to directly sparsify neurons
without loss of performance [24, 25, 26]. For every p, q ∈ R, the ℓp,q norm of a real matrix
X = [x1 · · · xm] ∈ Rn×m with columns xj and elements Xi,j is given by

∥X∥p,q :=

(
m∑
j=1

∥xj∥pq

) 1
p

, (1)

where the ℓq norm of the vector xj ∈ Rn is

∥xi∥q :=

(
n∑

i=1

|Xi,j|q
) 1

q

. (2)

2

By extension, the ℓ∞ norm of xj is

∥xj∥∞ := max
i=1,...,n

|Xi,j|. (3)

The group-LASSO aims at minimizing the ℓ1,2 norm. It has been shown to outperform traditional
stepwise backward elimination and provides interesting results.

Finally, the ℓ1 ball projection and its derivatives have been used to enforce sparsity everywhere
in deep neural networks, including with fully-connected layers, as we consider in this paper, with
self-attention layers [27], and even as a replacement for the softmax activation [28]. Thus, more
efficient projection algorithms have the potential to impact a large part of the deep-learning com-
munity.

The ℓ1,∞ norm is of particular interest because, compared to other norms, it is able to set
a whole set of columns to zero, instead of spreading zeros as done by the ℓ1 or ℓ1,2 norms. This
makes it particularly interesting for machine learning applications, and this is why many projection
algorithms have been proposed [29, 30, 31, 32].

In this paper, we introduce a new projection algorithm for the ℓ1,∞ norm ball. The worst-
case time complexity of this algorithm is O

(
nm + J log(nm)

)
for a matrix in Rn×m. J is a

term that tends to 0 when the sparsity is high, and to nm when the sparsity is low. While recent
algorithms are either approximate or based on complex reformulations, like semismooth Newton-
type methods, the proposed algorithm is simple yet efficient. As shown in the experimental section,
it is faster than all existing algorithms in the presence of sparsity.

Moreover, we propose to incorporate the ℓ1,∞ ball projection while training an autoencoder to
enforce feature selection and sparsity of the weights. Sparsification appears in the encoder to pri-
marily do feature selection due to our application in biology, where only a very small part (< 2%)
of the data is relevant. As shown in our experimental section, this setting allows us to accurately
extract a tiny set (around 50) of relevant features from around three thousand biomarkers.

Our experimental section is split in two parts. First, we provide an empirical analysis of the
projection algorithms onto the ℓ1,∞ ball. This part shows the advantage of the proposed method,
especially in the context of sparsity. Second, we apply our framework on two biological datasets.
In biology, the number of features (RNA or proteins) is very large. To make a diagnosis, only a
reduced number of features is required. The problem is to select informative features. We show
the advantage of using the ℓ1,∞ norm as a regularizer instead of other projection methods.

2. ℓ1,∞ ball, simplex, and Projection

The projection onto the ℓ1,∞ ball has gain interest in the last years [29, 30, 31, 32]. The main
reasons being its efficiency to enforce sparsity and most importantly to often increase accuracy.
In this section, we formulate the problem and derive a near-linear algorithm for efficient sparse
projection.

3

2.1. Definitions
Let Y ∈ Rn×m be a real matrix of dimensions m ≥ 1, n ≥ 1, with elements Yi,j , i = 1, . . . , n,

j = 1, . . . ,m. The ℓ1,∞ norm of Y is

∥Y ∥1,∞ :=
m∑
j=1

max
i=1,...,n

|Yi,j|. (4)

Given a radius C ≥ 0, the goal is to project Y onto the ℓ1,∞ norm ball of radius C, denoted by

BC
1,∞ :=

{
X ∈ Rn×m : ∥X∥1,∞ ≤ C

}
. (5)

The projection PBC
1,∞

onto BC
1,∞ is given by:

PBC
1,∞

: Y 7→ arg min
X∈BC

1,∞

1

2
∥X − Y ∥2F, (6)

where ∥ · ∥F = ∥ · ∥2,2 is the Frobenius norm. This projection can be derived from the projection
onto the solid simplex ∆C

1,∞:

∆C
1,∞ :=

{
X ∈ Rn×m

+ : ∥X∥1,∞ ≤ C
}
, (7)

where R+ is the set of nonnegative reals. Indeed, let the sign function be defined by sign(x) :=
{−1 if x < 0; 0 if x = 0; 1 if x > 0}. The projection of Y ∈ Rn×m onto BC

1,∞ is given by

PBC
1,∞

(Y) = sign(Y)⊙ P∆C
1,∞

(|Y |), (8)

with ⊙ the Hadamard, or elementwise, product and |Y | the elementwise absolute value of Y .
Moreover, if ∥Y ∥1,∞ ≤ C, PBC

1,∞
(Y) = Y . Thus, in the following, we focus on the projection

onto ∆C
1,∞ of a matrix Y with ∥Y ∥1,∞ > C and nonnegative elements. This projection can be

characterized using auxiliary variables µj , j = 1, . . . ,m, as:

P∆C
1,∞

: Y 7→ argmin
X,µ

1

2

∑
i,j

(Xi,j − Yi,j)2 (9)

subject to ∀i, j, Xi,j ≤ µj (10)
m∑
j=1

µj = C (11)

∀i, j, Xi,j ≥ 0. (12)

2.2. Properties
In the above reformulation, the objective is a direct expression of the squared distance. The

constraint (10) enforces an upper bound on the values of the j-th column ofX . The constraint (11)

4

enforces that the sum of the maximum values is equal to the radius C. The last constraint ensures
non-negativity. The Lagrangian of this problem is:

L1,∞ :=
1

2

∑
i,j

(Xi,j − Yi,j)2

+
∑
i,j

αi,j(Xi,j − µi) + θ(
∑
i

µi − C)

−
∑
i,j

βi,jXi,j.

Lemma 1. At the optimal solution of problem (9)–(12), there exists a constant θ ≥ 0 such that
for every j = 1, . . . ,m: either µj > 0 and

∑
i(Yi,j − Xi,j) = θ; or µj = 0,

∑
i Yi,j ≤ θ, and

∀i = 1, . . . , n, Xi,j = 0.

The proof is given in [29] and is a direct application of the Kuhn–Tucker theorem [33]. This
lemma shows that a quantity θ is removed from all the columns of the matrix whose sum is greater
than θ, otherwise the whole column is set to zero.

Let P∆θ
1

be the projection onto ∆θ
1 :=

{
x ∈ Rn

+ :
∑n

i=1 xn ≤ θ
}

, the solid simplex of radius
θ.

Proposition 1. Let Y = [y1 · · · ym] ∈ Rn,m
+ be a matrix such that ∥Y ∥1,∞ > C. Then

P∆C
1,∞

(Y) =
[
y1 − P∆θ

1
(y1) · · · ym − P∆θ

1
(ym)

]
, (13)

with θ defined in Lemma 1.

Proof. Consider a column yj whose sum of elements is less than or equal to θ. Then yj = P∆θ
1
(yj)

so that yj−P∆θ
1
(yj) is the zero vector. Now consider a column yj whose sum of elements is greater

than θ. We have, for every i = 1, . . . , n, Xi,j = min(Yi,j, µj). Also, by properties of the projection
onto ∆θ

1, zj := P∆θ
1
(yj) satisfies [34, 15], for every i = 1, . . . , n, Zi,j = max(Yi,j − µj, 0),

so that Xi,j = min(Yi,j, µj) = Yi,j − Zi,j . Hence, xj = yj − zj . Also,
∑

i(Yi,j − Xi,j) =∑
i(Yi,j −max(Yi,j − µj, 0))) =

∑
i(max(Yi,j − µi, 0)) =

∑
i Zi,j = θ.

Thus, if θ were known, the projection onto ∆C
1,∞ would be easily done using m projections

onto ∆θ
1. Thus, the difficulty essentially lies in finding θ.

2.3. Relation between the ℓ1,∞ and ℓ∞,1 norms
As detailed in Section 2 of [32], the projection onto the ℓ1,∞ norm ball can be used to compute

the proximity operator of the dual norm, which is the ℓ∞,1 norm:

∥Y ∥∞,1 := max
j=1,...,m

n∑
i=1

|Yi,j|. (14)

5

Given a matrix Y ∈ Rn×m and a regularization parameter C > 0, the proximity operator of
C∥ · ∥∞,1 is the mapping [35]

proxC∥·∥∞,1
: Y 7→ arg min

X∈Rn×m

1

2
∥X − Y ∥2F + C∥X∥∞,1. (15)

Thus, computing this proximity operator amounts to solving the optimization problem in (15).
This operator can be used as a subroutine in proximal splitting algorithms [36] to solve more
complicated problems involving the ℓ∞,1 norm.

Then, by virtue of the Moreau identity [37], computing this proximity operator is equivalent to
projecting onto the ℓ1,∞ norm ball:

proxC∥·∥∞,1
(Y) = Y − PBC

1,∞
(Y). (16)

Hence, our projection algorithm can also be used in problems involving the ℓ∞,1 norm.

3. Projection algorithms

3.1. Algorithmic mechanisms
Let Y µj

j = {i : Yi,j ≥ µj} the set of positions from column j where the values are greater than
µj . From the definition of the ℓ1 simplex we can extract:

µj =

∑
i∈Y

µj
j
Yi,j − θ

|Y µj

j |
, (17)

with |Y µj

j | the cardinality of the set. Let a denote the set of active columns (aj = 1 =⇒ µj > 0).
Let A = {i, ..., j} the set of positions of ones in a. Using Equation (17) and Equation (11) we
have

C =

∑
j∈A
∑

i∈Y
µj
j
Yi,j − θ

|Y µj

j |
. (18)

Finally, from equation (17) and equation (18), we have

θ =

∑
j∈A
∑

i∈Y
µj
j

Yi,j

|Y
µj
j |
− C∑

j∈A
1

|Y
µj
j |

(19)

Let Z be the matrix where Zi,j is the ith greatest value of column j of Y . Let S be the matrix
where Si,j is the cumulative sum of the i largest values of column j for Y , Si,j =

∑i
k=1 Zk,j . Let

θt be the current approximation of θ. Consider the addition of an element to θt and its evolution
with respect to its previous value. Let θt+1 be the new value after another element of Y is added
to θt.

Proposition 2. Adding element Zi+1,j to θt such that θt > iZi+1,j − Si,j implies θt+1 ≥ θt.

6

Proof. The proof is given in appendix.

Proposition 3. Removing column j from θt if
∑

i Yi,j ≤ θt implies θt+1 ≥ θt

Proof. The proof is given in appendix.

Using these two proposition allows to define a first Naive algorithm. Algorithm 1 directly uses
ℓ1 projection to perform the ℓ1,∞ projection. This algorithms updates θt until no further modifica-
tions are possible. At line 5 it removes columns with respect to proposition 3. At line 10 it gathers
all the elements of a column that satisfy proposition 2. This algorithm, despite its simplicity, has
been only recently proposed [32]. The authors proposed two efficient implementation preventing
the recomputation the ℓ1 projection from scratch each time. Nevertheless, its worst-case complex-
ity is O(n2mP) with P the complexity of projection onto the ℓ1 simplex.

Algorithm 1: Projection naive [32]
Data: Y ∈ Rn,m

+ , C > 0
Result: X = Pℓ1,∞(Y)

1 a←set({1, . . . ,m})
2 θ ←

∑
j max yj−c

m

3 while θ changed do
4 for j ∈ a do
5 if ∥yj∥1 < θ then
6 a← a\{j}
7 continue
8 end
9 xj ← P θ

1 (yj)
10 Sj ← set({i|xi,j> 0})
11 end

12 θ ←
∑

j∈a

∑
i∈SjYi,j
|Sj |

−C∑
j∈a

1
|Sj |

13 end
14 ∀j, µj ← max(0,

∑
i∈SjYi,j−θ

|Sj |)

15 ∀i, j,Xi,j ← min(Yi,j, µj)

Total order. Proposition 2 can be used to define a total order of the values of matrix Y . Let
R = {iZi+1,j −Si,j|∀i,∀j} be the residual matrix of Y . Let P be a non-increasing permutation of
R.

Lemma 2. For all i, j ∈ [1, nm]such that i < j, if RPi
cannot be added to θt with respect to

proposition 2, then RPj
cannot be added too.

7

This implies that once P is known, iterating over P until proposition 2 can no longer be
satisfied is enough to find all the elements that satisfy it. Here, proposition 3 is ignored, but it can
be incorporated into P . Let matrixR′ ∈ Rn+1,m equal toR for the n first rows. The additional row
filled with Sn,j for all j. Let P ′ be a non-increasing permutation of R′. Lemma 2 can be directly
extended to P ′.

Build P ′ then find θ [29]. One of the first projection algorithms starts by computing P ′ and then
iterates over the elements of P ′ until R′ < θt [29]. Despite a different presentation, the processing
of the residual matrix and its sorting is the same. This algorithm was one of the first algorithms
able to project a matrix onto the ℓ1,∞ ball. Its complexity is O(nm+ nm log(nm)), a large part of
the complexity being in the preprocess of P ′. The performances of this algorithm are given in our
experimental section.

3.2. Proposed Projection Algorithm
We propose here to follow a logical path to decrease the time complexity of the total order

algorithm [29]. The complexity of computing Z is O(nm log(n)) as each of the columns have to
be sorted. The complexity of computing P ′ isO(nm log(nm)) as the complete matrixR′ has to be
sorted. Then, the final step of finding the first element such that none of the proposition allows to
add an element to the computation is linearO(nm) . More precisely, letK be the index in P ′ where
the algorithm stops. It corresponds roughly to the number of modified values by the projection,
either set to zero, or bounded. The final step of [29] is in fact of complexity O(K), which implies
that the global complexity can be seen as O(nm + nm log(n) + nm log(nm) + K). In the next
paragraphs, we will decrease the complexity step by step, using algorithmic improvements. The
complete algorithm is then given.

• From O(nm + nm log(n) + nm log(nm) + K) to O(nm + nm log(n) + K log(nm)).
Projecting vectors onto the ell1 ball is a well-studied topic [38, 34, 15]. One of the first fast
algorithms proposed to use a heap instead of sorting the complete vector [39]. We propose
to reuse the same idea. Given a vector in Rn, the creation of the heap (i.e. Heapify) time
complexity is O(n), the Top operation complexity is O(1), the Pop operation and Insert
operation complexity is O(log(n)). Processing P ′ requires sorting a vector of size nm. We
propose to use a heap to store P ′ and to extract elements one by one until θ is found. As
only K iterations over P ′ are required, the total complexity of this part of the algorithm is
O(nm+K log(nm)) instead of O(nm log(nm)+k). Using a heap for the processing of P ′

leads to a global worst-case time complexity of O(nm+ nm log(n) +K log(nm)).

• From O(nm + nm log(n) + K log(nm)) to O(nm + K log(nm). At any moment of the
algorithm, only the next largest value of a given column might be picked up by P ′. This
implies that the heap P ′ can contain only m elements at worst, instead of nm elements.
The counterpart is that each time an element of P ′ is popped, the next greatest value of the
column that just got popped must be inserted into the heap. If Z has been processed, then
it is easy to get the next greatest element, but processing Z is costly. We propose to have
one heap per column of Y , and each time the next greatest value of the column is required,
then the column’s heap is popped. Using a heap for the processing of P ′ and one heap per

8

column instead of sorting leads to a global worst-case complexity of O(nm + K log(n) +
K log(m)) = O(nm+K log(nm)).

• From O(nm + K log(nm) to O(nm + J log(nm)). The last and most important remark
comes from the following point: Usually, the projection onto the ℓ1,∞ ball is applied to
enforce sparsity, as in our experimental section where the best accuracy was around 99
percent of sparsity. In such case, most columns will be zeroed, and many values will be
bounded in the remaining columns. Such a remark implies that K ≈ nm, which implies
that there is almost no gain in complexity from using all the proposed improvements. Let
J = nm−K be roughly the number of non-modified values of the projected matrix. As K
tends to nm, J tends to 0 and vice-versa.

We propose to reverse the iteration over P ′. Instead of starting from the beginning and
looking for the first value smaller than θ, We start from the end of P ′ and look for the first
value greater than θ. This value is the last value added by proposition 2 or the last column
that need to be removed with respect to proposition 3. The worst-case time complexity of
this algorithm is O(nm+ J log(nm)).

Implementation. A possible implementation is given in Algorithm 2. Function UpdateTheta() is

θ ←
∑

j

ajSj
kj

−C∑
j

aj
kj

. First, at line 2, the global heap is created. This heap contains m elements, one for

each column. For each element, two values are given, the first one is the column index, the second
one is the sorting key. The initial sorting key is given by the sum of the elements of a column, this
is because we are reversing the total order P ′. At line 9, if it is the first time that the column is
encountered, it is heapified as it will start being used by the global heap. Putting the heapify here
and not at the beginning is done to spare the time used to heapify the zeroed columns. Then, the
total sum of the elements of the columns is added to the current value of θ. If the current value of
θ is already dominating the column, then the threshold has been found. Otherwise, at line 16, the
current element is tested to check if it can be added to the current approximation of θ. As shown
in our experimental section, this new algorithm is faster compared to all other methods for sparse
projections, and is the first near-linear method for high sparsity.

columns eliminations. Performances of [32] are strongly dependent on a O(nm+m log(m)) pre-
process that tries to remove rows that provably will be set to zero. In the proposed algorithm, there
is no need to apply this algorithm as our algorithm ignores such rows by design. Indeed, as the
algorithm works backward, it never reaches rows that are dominated by θ. In the worst case, it
ends on a dominated row, and will directly discard it.

3.3. Masked projection
PyTorch is one of the most famous deep learning frameworks and is used in many industrial

project [40]. Recently, a direct API to sparsify existing neural networks has been implemented
into PyTorch 1. Using this API, a sub-network can be extracted using a Boolean mask. The goal

1https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

9

https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

Algorithm 2: Projection Inverse Total Order
Data: Y ∈ Rn,m

+ , C > 0
Result: X = Pℓ1,∞(Y)

1 S ← (
∑

i yi,1, . . . ,
∑

i yi,m)
2 P ←Heapify((1 : −S1, . . . ,m : −Sm), global, increasing)
3 k← ones(m, 1)⊙ (n+ 1); a← zeros(m, 1);
4 θ ← 0
5 while θ changed do
6 while NotEmpty(P) do
7 j ← Top(P); i← kj
8 kj ← kj − 1
9 if i = n+ 1 then

10 aj ← 1 ; UpdateTheta()
11 if ∥yj∥1 < θ then
12 aj ← 0 ; UpdateTheta()
13 Break
14 end
15 Xj ←Heapify(Yj , increasing)
16 else
17 Sj ← Sj−Top(Xj)
18 UpdateTheta()
19 if Sj−θ

kj
< Yi,j then

20 kj ← kj + 1
21 Sj ← Sj+Top(Xj)
22 UpdateTheta()
23 Break
24 end
25 end
26 UpdateTop(P ,kjTop(Xj) - Sj); Pop(Xj)
27 end
28 end
29 ∀i, j,Xi,j ← min(Yi,j,max(0,

Sj−θ

kj
))

might be, for example, to extract interesting sub-networks satisfying the lottery ticket hypothesis
[41]. We propose in this section to define the masked projection. The masked projection is defined
by:

PM
BC
1,∞

(Y) =

{
Y if Y ∈ BC

1,∞,
Y ⊙ sign(PBC

1,∞
(|Y |))) otherwise, (20)

It corresponds to the restriction of the matrix to the remaining non-zero columns after the projec-
tion. This implies that the maximum value of the columns is not bounded. This masked projection

10

is compared in the experimental section against the projection onto the ℓ1,∞ ball. The results sug-
gest that we can directly embed the masked projection onto PyTorch and keep high accuracy, while
enforcing sparsity.

4. Projection Experiments

This section presents experimental results of the projection operation alone. The goal of such
experiments is to highlight the advantages and drawbacks of the proposed and known algorithms.
We compared the proposed method against Chu et. al.[31] which uses a semi-smooth Newton
algorithm for the projection. Then Quattoni et. al. [29], whose algorithm corresponds to the total
order defined in section 15. Finally, Bejar et. al. [32] whose algorithm starts by removing columns
that we know will be set to zero, and then applies Algorithm 1. All the code used in this experiment
is the code generously provided by the authors of the respective algorithms. Unfortunately, only
Chu et. al. and Bejar et. al. compete in term of performances against the proposed method.
All other methods usually takes order of magnitude more times, hence are not present in most
of our figures and tables. Note that such a result is coherent with already published papers [31,
32]. The complete code of these experiments can be found online2. The code used to implement
the proposed method is directly using the standard library of C++ for heaps and vectors. The
experiments were run on an AMD Ryzen 9 5900X 12-Core Processor 3.70 GHz desktop machine
having 32 GB of memory. No parallelism was allowed.

The goal of the projection onto the ℓ1,∞ ball is usually to enhance sparsity. Our first experiment
investigates the correlation between the radius C and the induced sparsity, and most importantly
the running time of the algorithms. The size of the matrices is 1000x1000, values between 0 and
1 uniformly sampled and the radius are in [10−3, 8].

Figure 1: Impact of the radius on the sparsity of the matrix. Comparison of the projection times.

Figure 1 shows that the sparsity decreases exponentially as the radius is increasing. Moreover,
we can see that the proposed algorithm is faster than the best existing methods when the sparsity
is at least 40 percents. It is not surprising since the complexity of our method tends to linear when

2https://github.com/memo-p/projection

11

https://github.com/memo-p/projection

the sparsity is high. Bejar method seems to be worst than Chu et. al., that is why it is omitted
from the second plot. As we can see, when less sparsity is present, the cost of using multiple heaps
starts to slow down the algorithm. The same kind of results appears when the size of the matrix
varies, as shown in Figure 2.

Figure 2: Projection time for matrix sizes (left) 1000x10000, (right) 10000x1000.

For the second experiment, we propose to vary the size of the matrix instead of the radius.
Figure 3 gives a global view of the methods as the matrix size is increasing. we can see that as the
matrix size growth, even for the radius of 1, the proposed method is significantly faster; Indeed,
we can see that in both cases, the impact of the increase in the size has less impact on the proposed
method. Note that the figure showing increase of size with fixed n is the best scenario for the
proposed algorithm as the sparsity is increasing up with the size. We can see that overall, the
proposed method is in average faster than the other methods. In the CAE experiment of the next
section the proposed method was in average 2.18 faster than Chu et. al. given the configuration of
the network.

Figure 3: (left) Projection time for a fixed n. (right) Projection time for a fixed m

12

5. Supervised Autoencoder (SAE) framework

Autoencoders were introduced within the field of neural networks decades ago, their most effi-
cient application at the time being dimensionality reduction [42, 43]. Autoencoders have also been
used for denoising different types of data to extract relevant features. One of the main advantages
of the autoencoder is the projection of the data in the low dimensional latent space.
Autoencoders were used in application ranging from unsupervised deep-clustering [44] to su-
pervised learning to improve classification performance [45, 46, 47]. In this paper, we use the
supervised autoencoder (SAE) neural network, analogously to [48], where no constraints on the
parametric distribution are present.

Figure 4 depicts the main constituent blocks of the approach. Let X be the dataset in Rd, and
Y the labels in {0, . . . , k}, with k the number of classes. Let Z ∈ Rk be the encoded latent vectors,
X̂ ∈ Rd the reconstructed data and W the weights of the neural network. Note that the dimension
of the latent space k corresponds to the number of classes. Let E(X) = Z be the encoder function
of the autoencoder, and let D(Z) = X̂ be the decoder function of the autoencoder. It is an
implementation of multitask learning [49] where both the reconstruction loss ψ(X,D(E(X)))
and the classification loss H(Y,E(X)) are minimized. We use the Cross Entropy Loss for the
classification loss H and the robust Smooth ℓ1 (Huber) Loss [50] as the reconstruction loss ψ.
Parameter λ is a linear combination factor used to define the final loss ϕ(X, Y) = λψ(X, X̂))+
H(Y, Z).

Figure 4: Supervised autoencoder framework

The goal is to learn the network weights W minimizing the total loss. In order to perform
feature selection, as biomedical datasets often present a relatively small number of informative
features, we also want to sparsify the network, following the work proposed in [48], [41] and
[51]. We propose to use the ℓ1,∞ ball as a constraint to enforce sparsity in our model. The global
problem to minimize is

minimize
W

ϕ(X, Y) subject to ∥W∥1,∞ ≤ C

Following the work by Frankle and Carbin [41] further developed by [51], we follow a double
descent algorithm, originally proposed as follows: after training a network, set all weights smaller
than a given threshold to zero, rewind the rest of the weights to their initial configuration, and

13

then retrain the network from this starting configuration while keeping the zero weights frozen
(untrained). We train the network using the classical Adam optimizer [52].
To achieve structured sparsity, we replace the thresholding by our ℓ1,∞ projection. A possible
implementation of this method is given in Algorithm 3 Note that low values of C imply high
sparsity of the network. The impact and selection of such a value is discussed in the next section.

Algorithm 3: Projection algorithm. ϕ is the total loss,∇ϕ(W,M0) is the gradient masked
by the binary mask M0, A is the Adam optimizer, N is the total number of epochs and γ
is the learning rate.

Data: Winit, γ, η
Result: W

1 t← P η
1 ((∥Y1∥1, . . . , ∥Yn∥1)); /* First descent */

2 for i ∈ 1, . . . , N do
3 W ← A(W, γ,∇ϕ(W))

4 W ← projℓ1,∞(W) /* Projection */
5 (M0)ij ← 1x ̸=0(wij) /* Binary mask */
6 for i ∈ 1, . . . , N do
7 W ← A(W, γ,∇ϕ(W,M0)) /* Second descent */

6. SAE experimental results

We implemented our SAE method using the PyTorch framework for the model, optimizer,
schedulers and loss functions. We chose the ADAM optimizer [52], as the standard optimizer in
PyTorch. We used a symmetric linear fully connected network [48], with the encoder comprised
of an input layer of d neurons, one hidden layer followed by a ReLU activation function and a
latent layer of dimension k.
We compare 3 projections ℓ1 , ℓ2,1 ,ℓ1,∞ . Note that our SAE provides a two-dimensional latent
space where the samples can be visualized, and their respective classifications interpreted. More-
over we provide results using torch.nn.utils.prune to sparsify our neural networks, implementing
our own custom projection pruning technique 3

Finally, our supervised autoencoder specifically provides informative features [53] which are es-
pecially insightful for biologists. We provide for each experiment the accuracy and the column
sparsity (number of columns set to zero).

6.1. Synthetic data
To generate artificial biological data to benchmark our ℓ1,∞ projection in the SAE framework,

we use themake classification utility from scikit-learn. This generator creates clusters of points
that are normally distributed along vertices of a k-dimensional hypercube. This generator control

3https : //pytorch.org/tutorials/intermediate/pruningtutorial.html

14

the length of those vertices and thus the separability (we chose separability= 0.8) of the synthetic
dataset. We generate n = 1, 000 samples (a number related to the number of samples in large
biological datasets) with a number d of features. We chose d = 10, 000 as the dimension to test
because this is the typical range for biological data. We chose a low number of informative features
(64) realistically with single cell or metabolomic biological databases.

Figure 5: Synthetic data: Accuracy as a function of the radius C.

Figure 5 shows the impact of the radius (C) used by the projection (∥W∥1,∞ ≤ C). It can be
seen that tuning the projection radius, and thus the sparsity, is necessary to improve the accuracy
for synthetic data. From this figure, it can be seen that the best accuracy is around 0.1.

Figure 6: Synthetic data. Left: sparsity and parameter θ as a function of the radius C.Right:Parameter θ as a function
of the radius C.

Then, Figure 6 (left) shows the impact of the radius on the obtained sparsity. Unsurprisingly,
the larger is the radius, the smaller is the sparsity. Yet, by considering that the best accuracy is
around 0.1, the column sparsity is around 99.6, hence the number of selected features is around
40. Figure 6 (right) shows the impact of the radius on the obtained parameter θ. θ is the threshold

15

used by the projection. As we can see, the θ value does not decrease linearly with respect to the
radius

Synthetic data Baseline ℓ1 ℓ2,1 ℓ1,∞ ℓ1,∞ masked
Accuracy % 86.60 ±2.0 90.78 ±1.51 89.1 ±1.8 92.77 ±1.8 92.73 ±1.21

Colsp 0 81.94 93.97 99.6 99.6

Table 1: Synthetic dataset: Metrics over multiple seeds: comparison of no projection and 4 projections methods ℓ1
(η = 10), ℓ2,1 (η = 10), ℓ1,∞ (C=0.1), Proj ℓ1,∞ (C=0.1) masked.

Table 1 presents the results of the different possible implementation of the framework. The
baseline is an implementation that does not contains any projection. It is the usual implementation
of neural networks. Then, ℓ1, ℓ2,1, ℓ1,∞, and ℓ1,∞ masked are the projection on their respective
norms. Compared to the baseline the SAE using the ℓ1,∞ projection improves the accuracy by
6.12%, while using only 0.4% of the features. Moreover, the ℓ1,∞ projection improved the accuracy
obtained with the ℓ1. Such a result is not surprising as the ℓ1 does not consider the relationship
inside columns, and only see the matrix from a global point of view. It is even more interesting that
the ℓ1,∞ projection outperforms the ℓ2,1, whose results are even lower than the ℓ1. Results between
the ℓ1,∞ and ℓ1,∞ masked are almost similar, hence this experiments cannot help decide which one
is best. Finally, considering now the sparsity the ℓ1,∞ (and masked) projection outperformed the
ℓ1 and the ℓ2,1 by 15% and 12% respectively.

6.2. Biological data
The biological LUNG dataset was provided by Mathe et al. [54]. The goal of this experiment is

to propose a diagnosis of the Lung cancer from urine samples. This dataset includes metabolomic
data concerning urine samples from 469 Non-Small Cell Lung Cancer (NSCLC) patients prior
to treatment and 536 control patients. Each sample is described by 2944 metabolomic features.
We apply to this metabolic dataset the classical log-transform for reducing heteroscedasticity and
transforming multiplicative noise into additive noise.

Figure 7: Lung dataset: Accuracy as a function of the radius C.

16

Analogously to the synthetic data, Figure 7 shows the impact of the radius on the accuracy. In
this plot, it can be seen that the best accuracy is obtain with a radius of 0.5. It is also interesting to
note that the slope of the decrease of the accuracy for the lung biological dataset, is smoother and
less abrupt than the synthetic data.

Figure 8: Left: sparsity and parameter θ as a function of the radius C.Right:Parameter θ as a function of the radius C.

Figure 8 (left) shows the impact of the radius on the sparsity. In this data set, at 0.5, where the
accuracy is best, the sparsity is around 98.6. This implies that the best accuracy is achieve by using
only around 40 metabolomic features, of the three thousand ones available. It is also interesting to
remark that the curves looks like a piece-wise linear with a cut at 0.5. Then, Figure 8 (right) shows
the impact of the radius on the parameter θ. The curve is almost similar to the synthetic data one.

Lung Baseline ℓ1 ℓ2,1 ℓ1,∞ ℓ1,∞ masked
Accuracy % 77.12 ±3.45 79.8 ±2.20 78.5 ±2.24 81.09 ±2.14 80.84±1.72

Colsp 0 45.72 73.53 98.6 98.6
Sum of W - 49.99 405 45.44 241

Table 2: Lung dataset: Metrics over multiple seeds: comparison of no projection and 4 projections methods ℓ1
(η = 50), ℓ2,1 (η = 50), ℓ1,∞ (C=0.5), ℓ1,∞ (C=0.5) masked.

Table 2 presents the results of the different possible implementation of the framework for the
Lung data set. Analogously to the previous experiment, the baseline is an implementation that does
not contains any projection. The SAE with the ℓ1,∞ projection improves the baseline accuracy by
almost 4%, while using 1.4% of the available features. Note that the ℓ1,∞ projection improved the
accuracy obtained with the ℓ1 and the ℓ2,1 by 1.29% and 2.59% respectively. Considering now the
sparsity the ℓ1,∞ projection outperformed the ℓ1 and the ℓ2,1 by 43% and 25% respectively.

Overall: Masked VS Projected . It can be seen in both experiments (synthetic and biologic) that
the accuracy of the of masked ℓ1,∞ is almost as good as the projection itself. Indeed, using the
masked method, the accuracy drop is only of 0.04% in synthetic data, and of 0.75% in biological
data. The only difference between the masked projection and the projection itself is the non-zeros

17

values that are upper bounded in each columns. Such results may implies that the upper bounding
does have a beneficial effect on the result as it regularizes the data during the training. This can be
seen in Table 2 where the sum of the weights of the projection is 5 times smaller that the masked
one.

Figure 9: Sparsity of the first layer: Left: using ℓ1 , Right: using ℓ1,∞

Selected Features. Figure 9 shows a heat map of the selected features. On the left, the selected
features of the ℓ1 method are displayed, they are 54.82% of the features. It is interesting to remark
that selected features are randomly selected. On contrary, the ℓ1,∞ number of selected features is
smaller, only 1.4% of the features. A closer look at the parameters shows that the ℓ1 method radius
was η = 50. Such a parameter implies that the maximum total sum of the weights is bounded by
50. The radius parameter of the ℓ1,∞ method is C = 0.5, this implies that the maximum total sum
of the weights is also bound by 0.5 ∗ n = 48 since n=96.

7. Conclusion and Perspectives

In this paper we introduced a fast projection algorithm onto the ℓ1,∞ ball. This projection
algorithm is exact and of near-linear time complexity when the sparsity is high. As shown in our
experiments, the proposed algorithm is faster than existing methods. In addition, the main goal of
such a norm is to enforce structured sparsity for neural networks. As shown in the second part of
our experiments, the use of the ℓ1,∞ ball to enforce sparsity is efficient in terms of feature selection,
in terms of accuracy, and in terms of computational complexity. Such a result confirms that sparsity
efficient projections should become mainstream for neural network training. Our future works
involve to sparsify different types of neural networks such as autoencoders convolutional networks
for image coding [55, 56].

Acknowledgments

The authors thank Thierry Pourcher (TIRO Laboratory) for providing the Lung dataset.

18

8. Appendix

Consider the addition of an element to θt and its evolution with respect to its previous value.
Let θt+1 be the new value after the element Yk,l is added to θt. First, let’s consider the impact on
its local sum. Let v = µ′

k be the new set of selected values and w = µk be the value before the
addition of the element.

∑
j∈Y

µ′
k

k

Yk,j

|Y µ′
k

k |
=

∑
j∈Y w

k

Yk,j

|Y µ′
k

k |
+

Yk,l

|Y µ′
k

k |∑
j∈Y

µ′
k

k

Yk,j

|Y µ′
k

k |
=

∑
j∈Y w

k

Yk,j
|Y w

k |
+
Yk,l − Y w

i

|Y µ′
k

k |

Then we have:

θt+1 =

∑
i∈A
∑

j∈Y µi
i

Yi,j

|Y µi
i | +

Yk,l−Y w
i

|Y
µ′
k

k |
− C∑

i∈A
1

|Y
µ′
i

i |

θt+1 = θt

∑
i∈A

1
|Y µi

i |∑
i∈A

1

|Y
µ′
i

i |

+

Yk,l−Y w
i

|Y
µ′
k

k |∑
i∈A

1

|Y
µ′
i

i |

θt+1 = θt +

θt
|Y µi

i |∑
i∈A

1

|Y
µ′
i

i |

+

Yk,l−Y w
i −θt

|Y
µ′
k

k |∑
i∈A

1

|Y
µ′
i

i |

θt+1 = θt +

θt|Y
µ′k
k |+|Y µk

k |(Yk,l−Y w
i −θt)

|Y
µ′
k

k ||Y µk
k |∑

i∈A
1

|Y
µ′
i

i |

θt+1 = θt +

θt+|Y µk
k |(Yk,l−Y w

i)

|Y
µ′
k

k ||Y µk
k |∑

i∈A
1

|Y
µ′
i

i |

θ > jXi,j+1 − Si,j (21)

This condition is sufficient to ensure an increasing θ.

19

When a row k, previously used until its lth element is removed: Then we have:

θt+1 =

∑
i∈A′

∑
j∈Y µi

i

Yi,j

|Y µi
i | + Y l

k − Y l
k − C∑

i∈A′
1

|Y
µ′
i

i |

θt+1 = θt

∑
i∈A

1
|Y µi

i |∑
i∈A′

1

|Y
µ′
i

i |

− Y l
k∑

i∈A′
1

|Y
µ′
i

i |

θt+1 = θt +

θt
|Y l

k |
− Y l

k∑
i∈A′

1

|Y
µ′
i

i |

This time, it is clear that if the sum of the values of the removed row is below θ, then the row can
be safely removed and the θ is increased.

References

[1] W. Zeng, X. Ren, T. Su, H. Wang, Y. Liao, Z. Wang, X. Jiang, Z. Yang, K. Wang, X. Zhang, et al., Pangu-
α: Large-scale autoregressive pretrained Chinese language models with auto-parallel computation, preprint
arXiv:2104.12369 (2021).

[2] R. Schwartz, J. Dodge, N. A. Smith, O. Etzioni, Green AI, preprint arXiv:1907.10597 (2019).
[3] R. Kumar, M. Purohit, Z. Svitkina, E. Vee, J. Wang, Efficient rematerialization for deep networks, Advances in

Neural Information Processing Systems 32.
[4] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez, K. Keutzer, I. Stoica, Checkmate: Breaking

the memory wall with optimal tensor rematerialization, Proceedings of Machine Learning and Systems 2 (2020)
497–511.

[5] T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, Y. Saeys, Robust biomarker identification for cancer diagnosis
with ensemble feature selection methods, Bioinformatics 26 (3) (2009) 392–398.

[6] Z. He, W. Yu, Stable feature selection for biomarker discovery, Computational biology and chemistry 34 (4)
(2010) 215–225.

[7] D. L. Donoho, et al., Compressed sensing, IEEE Transactions on information theory 52 (4) (2006) 1289–1306.
[8] S. J. Wright, R. D. Nowak, M. A. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans-

actions on signal processing 57 (7) (2009) 2479–2493.
[9] M. A. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction: Application to

compressed sensing and other inverse problems, IEEE Journal of selected topics in signal processing 1 (4)
(2007) 586–597.

[10] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM journal on computing 24 (2) (1995)
227–234.

[11] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series
B (Methodological) (1996) 267–288.

[12] T. Hastie, R. Tibshirani, M. Wainwright, Statistcal learning with sparsity: The lasso and generalizations, CRC
Press.

[13] E. J. Candès, T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?,
IEEE transactions on information theory 52 (12) (2006) 5406–5425.

[14] E. J. Candès, M. B. Wakin, S. P. Boyd, Enhancing sparsity by reweighted ℓ1 minimization, Journal of Fourier
analysis and applications 14 (5-6) (2008) 877–905.

[15] G. Perez, M. Barlaud, L. Fillatre, J.-C. Régin, A filtered bucket-clustering method for projection onto the simplex
and the ℓ1-ball, Mathematical Programming.

20

[16] G. Perez, S. Ament, C. Gomes, M. Barlaud, Efficient projection algorithms onto the weighted ℓ1 ball, Artificial
Intelligence 306 (2022) 103683.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent
neural networks from overfitting, The journal of machine learning research 15 (1) (2014) 1929–1958.

[18] J. Cavazza, P. Morerio, B. Haeffele, C. Lane, V. Murino, R. Vidal, Dropout as a low-rank regularizer for matrix
factorization, in: International Conference on Artificial Intelligence and Statistics (AISTATS), 2018, pp. 435–
444.

[19] E. Tartaglione, S. Lepsøy, A. Fiandrotti, G. Francini, Learning sparse neural networks via sensitivity-driven
regularization, in: Advances in Neural Information Processing Systems, 2018, pp. 3878–3888.

[20] H. Zhou, J. M. Alvarez, F. Porikli, Less is more: Towards compact cnns, in: European Conference on Computer
Vision, Springer, 2016, pp. 662–677.

[21] S. Saxena, V. Thangarasa, A. Gupta, S. Lie, Sift: Sparse iso-flop transformations for maximizing training effi-
ciency, preprint arXiv:2303.11525 (2023).

[22] X. Ma, M. Qin, F. Sun, Z. Hou, K. Yuan, Y. Xu, Y. Wang, Y.-K. Chen, R. Jin, Y. Xie, Effective model sparsifi-
cation by scheduled grow-and-prune methods, preprint arXiv:2106.09857 (2021).

[23] M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 68 (1) (2006) 49–67.

[24] J. M. Alvarez, M. Salzmann, Learning the number of neurons in deep networks, in: Advances in Neural Infor-
mation Processing Systems, 2016, pp. 2270–2278.

[25] Z. Huang, N. Wang, Data-driven sparse structure selection for deep neural networks, in: Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 304–320.

[26] U. Oswal, C. Cox, M. Lambon-Ralph, T. Rogers, R. Nowak, Representational similarity learning with applica-
tion to brain networks, in: International Conference on Machine Learning, 2016, pp. 1041–1049.

[27] B. Cui, Y. Li, M. Chen, Z. Zhang, Fine-tune bert with sparse self-attention mechanism, in: Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th international joint conference
on natural language processing (EMNLP-IJCNLP), 2019, pp. 3548–3553.

[28] A. Laha, S. A. Chemmengath, P. Agrawal, M. Khapra, K. Sankaranarayanan, H. G. Ramaswamy, On controllable
sparse alternatives to softmax, Advances in neural information processing systems 31.

[29] A. Quattoni, X. Carreras, M. Collins, T. Darrell, An efficient projection for ℓ1,∞ regularization, in: Proceedings
of the 26th Annual International Conference on Machine Learning, 2009, pp. 857–864.

[30] G. Chau, B. Wohlberg, P. Rodriguez, Efficient projection onto the ℓ1,∞ mixed-norm ball using a newton root
search method, SIAM Journal on Imaging Sciences 12 (1) (2019) 604–623.

[31] D. Chu, C. Zhang, S. Sun, Q. Tao, Semismooth newton algorithm for efficient projections onto ℓ1,∞-norm ball,
in: International Conference on Machine Learning, PMLR, 2020, pp. 1974–1983.

[32] B. Bejar, I. Dokmanić, R. Vidal, The fastest ℓ1,∞ prox in the West, IEEE transactions on pattern analysis and
machine intelligence 44 (7) (2021) 3858–3869.

[33] M. A. Hanson, On sufficiency of the kuhn-tucker conditions, Journal of Mathematical Analysis and Applications
80 (2) (1981) 545–550.

[34] L. Condat, Fast projection onto the simplex and the l1 ball, Mathematical Programming Series A 158 (1) (2016)
575–585.

[35] J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, Comptes Rendus de
l’Académie des Sciences de Paris A255 (22) (1962) 2897–2899.

[36] L. Condat, D. Kitahara, A. Contreras, A. Hirabayashi, Proximal splitting algorithms for convex optimization: A
tour of recent advances, with new twists, SIAM Review 65 (2) (2023) 375–435.

[37] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd
Edition, Springer, New York, 2017.

[38] J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections onto the l 1-ball for learning in high
dimensions, in: Proceedings of the 25th international conference on Machine learning, ACM, 2008, pp. 272–
279.

[39] E. Van Den Berg, M. P. Friedlander, Probing the pareto frontier for basis pursuit solutions, Siam journal on
scientific computing 31 (2) (2009) 890–912.

21

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
S. Chintala, Pytorch: An imperative style, high-performance deep learning library, in: Advances in Neural
Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[41] J. Frankle, M. Carbin, The lottery ticket hypothesis: Finding sparse, trainable neural networks, arXiv preprint
arXiv:1803.03635.

[42] G. E. Hinton, R. Zemel, Autoencoders, minimum description length and helmholtz free energy, Advances in
neural information processing systems 6.

[43] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, Vol. 1, MIT press, 2016.
[44] X. Guo, X. Liu, E. Zhu, J. Yin, Deep clustering with convolutional autoencoders, in: Neural Information Pro-

cessing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings,
Part II 24, Springer, 2017, pp. 373–382.

[45] D. Kingma, M. Welling, Auto-encoding variational bayes, International Conference on Learning Representation.
[46] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, M. Welling, Semi-supervised learning with deep generative

models, Advances in neural information processing systems 27.
[47] J. Snoek, R. Adams, H. Larochelle, On nonparametric guidance for learning autoencoder representations, in:

Artificial Intelligence and Statistics, PMLR, 2012, pp. 1073–1080.
[48] M. Barlaud, F. Guyard, Learning a sparse generative non-parametric supervised autoencoder, Proceedings of the

International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada.
[49] R. Caruana, Multitask learning, Machine learning 28 (1997) 41–75.
[50] P. J. Huber, Robust statistics, Wiley, New York, 1981.
[51] H. Zhou, J. Lan, R. Liu, J. Yosinski, Deconstructing lottery tickets: Zeros, signs, and the supermask, in: Ad-

vances in Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 3597–3607.
[52] D. Kingma, J. Ba, a method for stochastic optimization., International Conference on Learning Representations

(2015) 1–13.
[53] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, Neural Information Processing

Systems, Barcelone, Spain 30.
[54] E. Mathé et al., Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung

cancer, Cancer research 74 (12) (2014) 3259—3270.
[55] L. Theis, W. Shi, A. Cunningham, F. Huszár, Lossy image compression with compressive autoencoders, ICLR

Conference Toulon.
[56] G. Cyprien, F. Guyard, M. Antonini, M. Barlaud, Learning sparse autoencoders for green ai image coding,

Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Rhodes, Greece.

22

	Introduction
	1, ball, simplex, and Projection
	Definitions
	Properties
	Relation between the 1, and ,1 norms

	Projection algorithms
	Algorithmic mechanisms
	Proposed Projection Algorithm
	Masked projection

	Projection Experiments
	Supervised Autoencoder (SAE) framework
	SAE experimental results
	Synthetic data
	Biological data

	Conclusion and Perspectives
	Appendix

