
A workflow combining single-cell CRISPRi screening and a
supervised autoencoder neural network to detect subtle
transcriptomic perturbations induced by lncRNA
Knock-Down

Marin Truchi1‡, Caroline Lacoux1‡, Cyprien Gille2, Julien Fassy1, Virginie Magnone1,
Rafael Lopez-Goncalvez1, Cédric Girard-Riboulleau1, Iris Manosalva-Pena3, Marine
Gautier-Isola1, Salvatore Spicuglia3, Georges Vassaux1, Roger Rezzonico1, Michel
Barlaud2‡, Bernard Mari*1‡
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Abstract

Recent advances in cancer genomics have highlighted aberrant expression of various
families of non-coding RNAs in all cancer types, including lung adenocarcinomas
(LUAD). Here we aim to better understand the functions of long non coding RNAs
(lncRNAs) regulated by the hypoxic response in LUAD cells, conditions that promote
tumor aggressiveness and drug resistance. We performed a single-cell
CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) for HIF1A,
HIF2, and a subset of lncRNA candidates regulated by hypoxia and/or potentially
associated with LUAD prognosis. The mini-CROP-seq library of validated guides RNA
(gRNA) was amplified and transduced in A549 LUAD cells cultured in normoxia or
exposed to hypoxic conditions during 3, 6 or 24 hours. To overcome the challenge of
detecting subtle gRNA-induced transcriptomic perturbation and classifying the most
responsive cells, we used a new supervised autoencoding neural networks method (SAE),
leveraging on both transcriptomic data and cell labels corresponding to known received
gRNA. We first validated the SAE approach on HIF1A and HIF2 by confirming the
specific effect of their knock-down during the temporal switch of the hypoxic response.
Next, the SAE method was able to detect stable short hypoxia-dependent
transcriptomic signatures induced by the knock-down of some lncRNA candidates,
outperforming previously published machine learning approaches. This proof of concept
demonstrates the relevance of the SAE approach for deciphering weak perturbations in
single-cell transcriptomic data readout as part of CRISPR-based screening.

Introduction 1

Cancer cells in solid tumors, often suffer from hypoxic stress and adapt to this 2

micro-environment via the activation of Hypoxia inducible factor (HIF), a heterodimeric 3

transcription factor composed of either HIF-1α or HIF-2α (initially identified as 4

endothelial PAS domain protein (EPAS1)) and HIF-1β /ARNT subunits [1–3]. In 5

normoxia, HIFα is continuously degraded by an ubiquitin–dependent mechanism 6
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mediated by interaction with to the von Hippel–Lindau (VHL) protein. Hydroxylation 7

of proline residues in HIFα is necessary for VHL binding and is catalyzed by the 8

α-ketoglutarate-dependent dioxygenases prolyl hydroxylases (PHD). During hypoxia, 9

PHDs are inactive, leading to HIF-α stabilization, dimerization with HIF-1β and finally 10

translocation into the nucleus to bind to E-box-like hypoxia response elements (HREs) 11

within the promoter region of a wide range of genes that control cellular oxygen 12

homeostasis, erythrocyte production, angiogenesis and mitochondrial metabolism [4]. 13

These molecular changes are notably crucial for cells to adapt to stress by lowering 14

oxygen consumption by shifting from oxidative metabolism to glycolysis. While HIF-1 15

and HIF-2 bind to the same HRE consensus sequence, they are non-redundant and have 16

distinct target genes and mechanisms of regulation. It is generally accepted that the 17

individual HIFs have specific temporal and functional roles during hypoxia, known as 18

the HIF switch, with HIF-1 driving the initial response and HIF-2 directing the chronic 19

response [5]. In most solid tumors, including lung adenocarcinoma (LUAD), the degree 20

of hypoxia is associated with poor clinical outcome. Induction of HIF activity 21

upregulates genes involved in many hallmarks of cancer, including metabolic 22

reprogramming, epithelial-mesenchymal transition (EMT), invasion and metastasis, 23

apoptosis, genetic instability and resistance to therapies. 24

Emerging evidence have highlighted that hypoxia regulates expression of a wide 25

number of non-coding RNAs classes including microRNAs (miRNAs) and long 26

non-coding RNAs (lncRNAs) that in turn are able to influence the HIF-mediated 27

response to hypoxia [6–8]. LncRNAs constitute a heterogeneous class of transcripts 28

which are more than 200 nt long with low or no protein coding potential, such as 29

intergenic and antisense RNAs, transcribed ultraconserved regions (T-UCR) as well as 30

pseudogenes. Recent advances in cancer genomics have highlighted aberrant expression 31

of a wide set of lncRNAs [9], revealing their roles in regulating the genome at several 32

levels, including genomic imprinting, chromatin state, transcription activation or 33

repression, splicing and translation control [10]. LncRNAs can regulate gene expression 34

through different mechanisms, as guide, decoy, scaffold, miRNA sponges or 35

micropeptides. Of note, recent studies demonstrated the role of several lncRNAs in the 36

direct and indirect regulation of HIF expression and pathway through diverse 37

mechanisms [7]. Moreover, hypoxia-responsive lncRNAs have been shown to play 38

regulatory functions in pathways associated with the hallmarks of cancer. For instance, 39

the hypoxia-induced Nuclear-Enriched Abundant Transcript 1 (NEAT1) lncRNA has 40

been associated with the formation of nuclear structures called paraspeckles during 41

hypoxia as well as an increased clonogenic survival of breast cancer cells. Another 42

highly studied lncRNA, Metastasis-Associated Lung Adenocarcinoma Transcript 1 43

(MALAT1, also known as NEAT2) has been found upregulated by hypoxia in LUAD 44

A549 cells and associated with various cellular functions depending on tumor cell types 45

including cell death, proliferation, migration and invasion [11]. Starting from an 46

expression screening in LUAD patients samples and cell lines subjected to hypoxia, we 47

have characterized a new nuclear hypoxia-regulated transcript from the Lung Cancer 48

Associated Transcript (LUCAT1) locus associated with patient prognosis and involved 49

in redox signaling with implication for drug resistance [12]. Additional promising 50

lncRNA candidates regulated by hypoxia and/or associated with bad prognosis have 51

been identified but deciphering the regulatory functions of these poorly annotated 52

transcripts remains a major challenge. Pooled screening approaches using 53

CRISPR-based technology have offered the possibility to evaluate mammalian gene 54

function, including lncRNAs at genome scale levels [13]. More recently, they have been 55

applied to cancer cell lines and have confirmed the oncogenic or tumor suppressor roles 56

of some lncRNA [14]. This strategy is able to test a large number of candidates 57

simultaneously but require well identified phenotypes such as cell proliferation, cell 58
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viability, or cell migration. More subtle screens require techniques based on 59

transcriptomic signatures [15] and approaches have been developed to combine CRISPR 60

gene manipulation, including CRISPR interference and single-cell RNA-seq (scRNA-seq) 61

based on droplet isolation, such as Perturb-seq [16], CROP-seq [17] and 62

ECCITE-seq [18]. These methods combine the advantages of screening a large number 63

of genes simultaneously and linking the modifications to the transcriptomic phenotype, 64

all by breaking down the perturbation signal cell by cell [10, 16]. 65

Deep neural networks have proven their efficiency for classification and feature 66

selection in many domains, but have also been applied to omics data analyses [19,20]. 67

Among the proposed neural networks architectures, autoencoders are able to learn a 68

representation of the data, typically in a latent space of lower dimension than the input 69

space. As such, they are often used for dimensionality reduction [21] and have 70

applications in the medical field as data denoisers or relevant feature selectors [22–24]. 71

A widely used type of autoencoders is the Variational Autoencoder (VAE) [25]. This 72

VAE adds the assumption that the encoded data follows a prior gaussian distribution, 73

and thus combines the reconstruction loss with a distance function (between the 74

gaussian prior and the actual learned distribution). For example, VAE has been applied 75

to scRNA-seq to predict cell response to biological perturbations [26]. 76

In the present work, we have developed a single-cell CRISPR-interference-based 77

(CRISPRi) transcriptome screening based on the CROP-Seq approach to gain insight on 78

the regulatory functions of hypoxia-regulated lncRNAs. As a proof-of-concept, a 79

mini-CROP-seq library, including validated guide RNAs (gRNAs) targeting six 80

previously identified lncRNA regulated by hypoxia and/or associated with bad 81

prognosis [12] a well as the two master transcription factors of the hypoxic response 82

(HIF1A and HIF2/EPAS1) and negative control guides, was used. To optimize analysis 83

of fine-tuned regulations in this dataset, we have developed a supervised autoencoder 84

(SAE) neural network [27], where we relax the parametric distribution assumption of 85

classical VAE. It leverages on the known cell labels, corresponding to the received 86

gRNA, and a classification loss to incite the latent space to fit the true data distribution. 87

We first validated the approach on HIF1 and HIF2/EPAS1 knock-down, showing a good 88

sensitivity to detect the known temporal switch between both regulators. We then 89

applied the SAE to the cells treated with the different hypoxia-regulated lncRNA 90

gRNAs to identify subtle signatures linked to the knock-down of the lncRNAs. 91

Materials and methods 92

Lentivirus production 93

Lentiviruses were produced using a standard Lipofectamine 2000TM transfection 94

protocol, using one million HEK293 cells seeded in a 25 cm2 flask in DMEM medium 95

supplemented with 10% bovine serum. A mixture of four plasmids (3 µg pMDLg/pRRE 96

(addgene ”12251”), 1.4 µg pRSV-Rev (addgene ”12253”), 2 µg pVSV-G (addgene 97

”12259”) and 2.5 µg of the plasmid containing the expression cassette to package or the 98

pooled CROP-seq guides) was transfected. Forty-eight hours later, the medium was 99

collected, centrifuged for 5 minutes at 3000 rpm, and 2.5 mL supernatant containing the 100

viral particles was collected and used to infect cells or aliquoted and stored at -80°C. 101

Large scale preparations of lentivirus were produced at the Vectorology facility, PVM, 102

Biocampus (CNRS UMS3426), Montpellier, France. 103
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Generation of dCas9-expressing A549 cell line 104

The lung adenocarcinoma cell line A549 was infected with a lentivirus produced from 105

the plasmid lenti- dCas9-KRAB-MeCP2 (a gift from Andrea Califano, addgene 122205) 106

allowing the expression of a fusion protein MeCP2-KRAB-dCas9 and a gene conferring 107

resistance to blasticidin. Infected cells were then grown in the presence of 10 µg/mL of 108

blasticidin (Sigma). Selection of A549-KRAB-MeCP2 cells was complete within 3 to 5 109

days. Bulk blasticidin positive cells were amplified and cloned for the CRISPRi scRNA 110

seq experiments. The best clone was selected according to the expression level of 111

MeCP2-KRAB-dCas9 mRNA and to the most effective inhibition of NLUCAT1 using 112

the NLUCAT1 sg3 RNA. 113

Cloning of individual guides in the CROPseq-Guide-Puro 114

plasmid 115

The plasmid CROPseq-Guide-Puro (Datlinger et al. Nat Methods 2017) (a gift from C 116

Bock, Addgene plasmid 86708) was digested using the restriction enzyme BsmBI (NEB 117

R0580) for 2h at 50°C. The relevant fragments (around 8 kB) were gel-purified using the 118

Qiagen Gel purification kit and stored at –20°C in 20-fmol aliquots. Guides against the 119

targeted genes were cloned using the Gibson assembly method (NEBuilder HiFi DNA 120

Assembly Master Mix, NEB E2621). Aliquoted, BsmBI-digested plasmid was mixed 121

with 0.55 µL guide oligonucleotide (200nM, see Supplemental Table) in 10µl total 122

volume, combined with 10µl 2X NEBuilder HiFi Assembling Master mix and the 123

mixture was incubated at 50°C for 20 minutes. 8µL of NEBuilder Assembling mixture 124

were incubated with 100 µL of Stabl2 competent E coli. The mixture was heat-shocked 125

at 42°C for 45 seconds and transferred to ice for 2 minutes. SOC medium (900 µl) was 126

added to the Stabl2-NEBuilder mixture and the mix was incubated at 37°C for 1 hour. 127

Transformed bacterial cells (350µl) were plated onto LB agarose plates containing 128

ampicillin (100µg/mL) and incubated overnight at 37°C. Individual colonies were picked 129

and grown overnight in 5 mL of Terrific Broth medium containing 150µg/mL ampicillin 130

and low-endotoxin, small scale preparation of plasmid DNA were performed using the 131

ToxOut EndoFree Plasmid Mini Kit from BioVision (K1326-250). All plasmids were 132

verified by Sanger sequencing with the primer 5’-TTGGGCACTGACAATTCCGT-3’. 133

Selection of the guides 134

A549-KRAB-MeCP2 cells were infected with lentivirus obtained from individual 135

CROPseq-Guide-Puro plasmids, encoding individual guides. Infected cells were then 136

grown in the presence of 1 µg/mL of puromycin (Sigma). A week later, total RNAs 137

were purified from A549-KRAB-MeCP2 cells infected with guide encoding lentiviruses 138

and RT-qPCR (primers sequences presented in Supplemental Table YYY) were 139

performed to measure expression of the targeted genes. A validated guide was defined 140

as a guide providing at least 75% inhibition of targeted gene expression compared to a 141

control guide. 142

Lentiviral transduction with gRNA libraries and cell preparation 143

for chromium scRNA-seq 144

A549-KRAB-MeCP2 cells were transduced with different amounts of the viral stock 145

containing the library of pooled, selected sgRNA. After six hours, the virus-containing 146

medium was replaced by fresh complete culture medium. Puromycin selection (1µg/ml) 147

was started at 48 h post-transduction, and two days later, the plate with about 30% 148

surviving cells was selected, corresponding roughly to a MOI=3. The cells were then 149
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amplified under puromycin selection for 5 days. The cells were then plated and further 150

cultured in normoxia or in hypoxic condition (1% O2) for 3h, 6 h or 24h. Cells were 151

trypsinized counted and assessed for cell viability using the Countess 3 FL (Fisher 152

Scientific). Samples were then stained for multiplexing using cell hashing [28], using the 153

Cell Hashing Total-Seq-ATM protocol (Biolegend) following the protocol provided by 154

the supplier, using 4 distinct Hash Tag Oligonucleotides-conjugated mAbs 155

(TotalSeq™-B0255, B0256, B0257 and B0258). Briefly, for each condition, 1.106 cells 156

were resuspended in 100µL of PBS, 2% BSA, 0.01% Tween and incubated with 10µL Fc 157

Blocking reagent for 10 minutes at 4°C then stained with 0.5µg of cell hashing antibody 158

for 20 minutes at 4°C. After washing with PBS, 2% BSA, 0.01% Tween, samples were 159

counted and merged at the same proportion, spun 5 minutes 350 x g at 4°C and 160

resuspended in PBS supplemented with 0.04% of bovine serum albumin at final 161

concentration of 500 cells/µL. Samples were then adjusted to the same concentration, 162

mixed in PBS supplemented with 0.04% of bovine serum albumin at a final 163

concentration of 100 cells/µl and pooled sample were immediately loaded onto10X 164

Genomics Chromium device to perform the single cell capture. 165

Generation of CROP-seq librairies and single-cell RNA-seq data 166

processing 167

After single-cell capture on the 10X Genomics Chromium device (3’ V3), libraries were 168

prepared as recommended, following the Chromium Next GEM Single Cell 3’ Reagent 169

Feature Barcoding V3.1 kit (10X Genomics) and a targeted sgRNA amplification [29] 170

with respectively 6, 8 and 10 PCR cycles. Libraries were then quantified, pooled (80% 171

RNA libraries, 10% sgRNA libraries and 10% hashing libraries) and sequenced on an 172

Illumina NextSeq 2000. Alignment of reads from the single cell RNA-seq library and 173

unique molecular identifiers (UMI) counting, as well as oligonucleotides tags (HTOs) 174

counting, were performed with 10X Genomics Cell Ranger tool (v3.0.2). Reads of the 175

gRNA library were counted with CITE-seq-Count (v1.4.2). Counts matrices of total 176

UMI, HTOs, and gRNA were thus integrated on a single object using Seurat R package 177

(v4.1.0), from which the data were processed for analysis. HTOs and gRNA were 178

demultiplexed with HTODemux() and MULTIseqDemux(autoThresh = TRUE) 179

functions respectively, in order to assign treatment and received gRNA for each cell. 180

Only cells identified as “Singlet” after both demultiplexing and passing quality control 181

thresholds of UMI and mitochondrial content were kept. Inhibitions of target genes 182

expression in presence of specific gRNA were validated in all 4 conditions, as well as 183

their progressive upregulation (CYTOR, LUCAT1, NEAT1, SNHG12) or 184

downregulation (HIF1A and SNHG21) during exposition to hypoxia. 185

Supervised Autoencoder Neural network framework 186

In this section, we provide the background of the supervised autoencoder (SAE) neural 187

network [27], and the structured sparsity projection method for selecting features. 188

Figure 1 depicts the main constituent blocks of our proposed approach. Note that 189

we added a ”soft max” block to our SAE to compute the classification loss. 190

Let X be the dataset in , and Y the labels in {0, . . . , k}, with k the number of 191

classes. Let Z ∈ be the encoded latent vectors, X̂ ∈ the reconstructed data and W the 192

weights of the neural network. Note that the dimension of the latent space k 193

corresponds to the number of classes. 194

The goal is to compute the network weights W minimizing the total loss which 195

includes both the classification loss and the reconstruction loss. To perform feature 196

selection, as biomedical datasets often present a relatively small number of informative 197
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features, we also want to sparsify the network, following the work proposed 198

in [30], [31], [32] and [33]. Thus, instead of the classical computationally expensive 199

lagrangian regularization approach [34], we propose to minimize the following 200

constrained approach : 201

Loss(W ) = H(Z, Y ) + λψ(X̂ −X) s.t. ∥W∥11 ≤ η. (1)

We use the Cross Entropy Loss for the classification loss H. We use the robust 202

Smooth ℓ1 (Huber) Loss [35] as the reconstruction loss ψ. The main difference with the 203

criterion proposed in [25] is the introduction of the constraint on the weights W to 204

sparsify the neural network. A classical approach is the Group LASSO method [36] 205

which consists of using the ℓ2,1 norm for the constraint on W . However, the ℓ2,1 norm 206

does not induce a structured sparsity of the network [37], which leads to negative effects 207

on performance. 208

The main difference with the criterion proposed in [25] is the introduction of the 209

constraint on the weights W to sparsify the neural network. Note that low values of η 210

imply high sparsity of the network. To achieve structured sparsity (feature selection), 211

we use the ℓ1,1 projection [30]. The basic idea of the ℓ1,1 projection is first to compute 212

the radius ti and then project the rows using the ℓ1 adaptive constraint ti [38, 39]. 213

Fig 1. Supervised autoencoder framework

Following the work by Frankle and Carbin [31] further developed by [33], we follow a 214

double descent algorithm, originally proposed as follows: after training a network, set 215

all weights smaller than a given threshold to zero, rewind the rest of the weights to their 216

initial configuration, and then retrain the network from this starting configuration while 217

keeping the zero weights frozen. We replace the thresholding by our ℓ1,1 projection. 218

We implemented our SAE method using the PyTorch framework for the model, 219

optimizer, schedulers and loss functions. We train the network using the classical Adam 220

optimizer [40]. We used a symmetric linear fully connected network [27], with the 221

encoder comprised of an input layer of d neurons, one hidden layer followed by a ReLU 222

activation function and a latent layer of dimension k = 2 since we have two classes. 223

We compute features significance for the supervised autoencoder using the SHAP 224

method, implemented in the captum python package [41]. The accuracy of the model 225

was systematically computed for each SAE run using 4 folds cross-validation and a 226

mean over 3 seeds. 227

Results 228

Single-cell CRISPRi screening of hypoxia-regulated lncRNA 229

In order to gain new insights into the molecular functions of 6 hypoxia-regulated 230

lncRNA in LUAD cells we performed a single-cell CRISPRi transcriptome screening 231

based on the CROP-Seq approach. We transduced A549 cells expressing double 232

repressor Krab-MeCP2-dCas9 with a mini-library containing 12 validated gRNA 233

targeting CYTOR (also known as LINC00152), LUCAT1, MALAT1, NEAT1, SNHG12 234

and SNHG21 as well as the two key regulators of the hypoxic response, HIF1A and 235

HIF2 (Table 1). Two additional guides, with no effect on the genome, were used as 236

negative controls. In order to mimic the hypoxic environment in which tumors develop 237

in vivo, we equally divided the transduced dCas9-Krab-MeCP2 A549 cells in 4 samples 238

that we then cultured in normoxia or in hypoxia during 3, 6 or 24 hours Figure 2A. 239

Cells from each sample were labeled with a specific barcoded antibody (HTOs), pooled, 240

and simultaneously sequenced using droplet based scRNA-seq (10X Genomics 241

July 11, 2023 6/19



Chromium). The received gRNA and the culture condition were subsequently assigned 242

for each cell by demultiplexing both gRNA and HTOs counts respectively. 243

Table 1. gRNA library

gRNA Target Type % Inhibition
HIF1A-sg1

HIF1A
Hypoxic response regulator

>95%
HIF1A-sg2 >95%
HIF2-sg5 HIF2/EPAS1 >95%

LINC00152-sg3 CYTOR

Hypoxia-regulated lncRNA

>75%
LUCAT-sg3

LUCAT1
>97%

LUCAT-sg5 >90%
MALAT-sg1 MALAT1 >95%
NEAT1-sg2

NEAT1
>85%

NEAT1-sg6 >95%
SNHG12-sg1

SNHG12
>75%

SNHG12-sg3 >90%
SNHG21-sg5 SNHG21 >85%

Neg-sg1
None Negative control None

Neg-sg2

Fig 2. Single-cell CRISPRi screening A: Design of CROP-seq experiment. B:
Heatmaps of gRNA counts or target gene RNA in each cell, labelled according to
assigned gRNA and condition after demultiplexing. C: Heatmap of target gene RNA in
each cell, labelled according to assigned gRNA and condition after demultiplexing. D:
Supervised autoencoder classification workflow.

Overall, we found a balanced representation for each treatment and for each gRNA 244

among the sequenced cells, except for the cells targeted by ”SNHG12-sg3” which were 245

depleted in all conditions (Figure 2B, Table 2). Moreover, the expression of this 246

particular gRNA was lowly detected in those cells, confirming previous observations that 247

this gRNA induced cell death and that only cells with low expression survive. Inhibition 248

of target gene expression in the presence of their corresponding gRNAs were validated 249

in all 4 conditions, as well as their progressive increase (CYTOR, LUCAT1, NEAT1, 250

SNHG12) or decrease (HIF1A and SNHG21) during hypoxia exposure (Figure 2C). 251

Data analysis using the supervised autoencoder classification 252

workflow 253

For each target gene in each condition, a matrix concatenating raw count from 254

non-targeted control and gRNA-targeted cells was prepared, with cell labels as first row. 255

Cells were pooled according to their targeted gene, and only the top 10 000 most 256

expressed genes were kept. This matrix is the single input of the SAE classification 257

workflow, which is carried out as follows Figure 2D.The first SAE run gives a 258

classification score for both non-targeted control cells and for cells targeted for a 259

particular gene. According to the classification, this specific score, called perturbation 260

score, separates cells into 2 subsets : targeted cells with a score ¿ 0.5 are classified as 261

”perturbed” cells, whereas targeted cells with a score ¡ 0.5 are classified as 262

”non-perturbed” cells. A new matrix is generated, containing only the raw counts and 263

labels of the selected perturbed cells and an equivalent number of randomly sampled 264

non-targeted control cells in order to balance both classes size. The second SAE run 265

gives a list of the most discriminant features between both classes, ranked by their 266
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Table 2. Repartition of Doublet, Singlet, and Negative cells in all conditions after demulplexing

Normoxia (%) Hypoxia-3h (%) Hypoxia-6h (%) Hypoxia-24h (%)
Doublet 8,378 9,908 7,717 8,096
HIF1A-sg1 6,752 5,766 5,681 5,181
HIF1A-sg2 8,346 8,236 8,110 8,265
HIF2-sg5 4,720 5,063 3,859 5,157
LINC00152-sg3 4,720 4,918 5,645 5,108
LUCAT1-sg3 5,345 5,911 5,288 6,048
LUCAT1-sg5 8,690 8,842 9,218 10,120
MALAT1-sg1 6,471 6,686 7,181 5,976
NEAT1-sg2 5,220 5,354 4,823 5,373
NEAT1-sg6 3,501 4,288 3,930 3,952
SNHG12-sg1 4,189 3,125 3,823 3,759
SNHG12-sg3 2,094 2,253 1,751 1,639
SNHG21-sg5 6,690 6,492 6,967 7,398
Neg-sg1 6,346 5,838 6,717 6,554
Neg-sg2 7,221 6,783 7,503 7,373
Negative 11,316 10,538 11,790 10,000
Total cell number 3199 4128 2799 4150

weight in the learned latent space. The complete procedure is run multiple times with 267

different initialization seeds in order to compute a mean and a standard deviation of the 268

obtained ranks, which are used to evaluate the robustness of the perturbation signature. 269

A cell is definitively considered as perturbed if it is classified as such in each run. 270

Knock-down of HIF1A and HIF2 differentially modulate the 271

hypoxic response 272

In order to validate the approach, we first evaluated the transcriptomic perturbations 273

induced by the knock- down of the two main regulators of the hypoxic response, HIF1A 274

and HIF2. Globally, the inhibition of HIF1A induced a strong transcriptomic 275

perturbation which affected more than 85% of targeted cells in all conditions (Table 3). 276

Even in normoxic condition, the signature breadth was sufficient to allow a classification 277

accuracy above 93%. Among the genes modulated independently from the hypoxic 278

status, we found SNAPC1, IGFL2-AS1, BNIP3L and LDHA, whereas PGK1, PDK1, or 279

BNIP3 modulations were specific to hypoxic conditions (Figure 3A). We also found 280

gene modulations specific to early (KDM3A, HIPLDA, ZNF292, EGLN3) or late 281

(SLC16A3, GPI, PGAM1, TPI1) hypoxic response, which correspond to the progressive 282

establishment of the HIF1A-mediated metabolic switch [42]. In normoxia, the 283

knock-down of HIF2 did not produce stable perturbations, except for its own target 284

gene EPAS1 (Figure 3B). The 2 early time points of hypoxia exposure showed an 285

improvement of the associated classification accuracy, which reflected a slight increase of 286

the transcriptomic perturbation induced by HIF2 knock-down in these experimental 287

settings. This early signature was mainly driven by genes involved in lipid metabolism 288

ANGPTL4, IGFBP3 and HILPGA. Discrepancies between the results at 3h or 6h were 289

mainly due to the lower number or targeted cells at 6h (104 instead of 202), which 290

impacted the classification. At 24h of hypoxic exposure, the effect of HIF2 inhibition 291

reached its maximum, with 84% perturbed cells and an accuracy of 97%. However, this 292

signature was quite different from that of HIF1A-targeted cells under the same 293

condition. Indeed, some upregulated (ALDH3A1,CPLX2,FTL,PAPPA) or 294

downregulated (ATP1B1,FXYD2,ANXA4,LOXL2) genes in HIF2-targeted cells were 295
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not modulated in HIF1A-targeted cells ((Figure 3C)). Moreover, several genes showed 296

an opposite perturbation between the two groups of cells. This was the case for BNIP3, 297

PGK1, GPI, FAM162A, SLC16A3, TPI1, or PGAM1 which were downregulated upon 298

HIF1A inhibition but were found upregulated upon HIF2 inhibition after 24h of culture 299

in hypoxia. These results were consistent with the known role of HIF2, which is 300

activated upon prolonged exposure to hypoxia and is involved in the regulation of the 301

chronic hypoxic response [5]. They also confirm that in LUAD cells, HIF1A and 302

HIF2-regulated functions are specific, or even antagonistic for certain genes, which has 303

been previously demonstrated in other cancers [43]. 304

Table 3. Supervised autoencoder classification and accuracy for HIF1A and
HIF2 gRNA targeted cells

Treatment Targeted cells Perturbed cells (%) Accuracy (%)
HIF1A Normoxia 475 86,7 95,33
HIF1A Hypoxia 3h 554 87,5 94,00
HIF1A Hypoxia 6h 372 85,8 93,67
HIF1A Hypoxia 24h 554 85,7 94,67

HIF2 Normoxia 147 11,6 66,67
HIF2 Hypoxia 3h 202 51 86,33
HIF2 Hypoxia 6h 104 38,5 82,33
HIF2 Hypoxia 24h 213 84 97,67

Fig 3. Knock-down of HIF1A and HIF2 differentially modulate the hypoxic
response A: Top 20 discriminant features between perturbed and control cells for
HIF1A for each treatment. Upregulated or downregulated genes are written in red or
blue respectively. B: Top 20 discriminant features between perturbed and control cells
for HIF2/EPAS1 for each treatment. C: Differentially expressed genes between
perturbed and control cells for HIF1A and HIF2 for each treatment.

Knock-down of hypoxia-regulated lncRNAs results in weak and 305

heterogeneous condition-dependent transcriptomic modulations 306

We then applied the SAE workflow to classify cells treated with the 6 gRNA targeting 307

hypoxia-regulated lncRNAs and cultured in the 4 conditions. Globally, the SAE was 308

able to classify perturbed and control cells with a good overall accuracy around 80%, 309

except for SNHG12 and SNHG21 (Table 4). For the SNHG12 and SNHG21 datasets, 310

the first round of SAE selected only around 10% of perturbed cells. Thus we could not 311

run the SAE for the second round because of a too low number of cells for the 4 fold 312

cross validation. For those 2 genes, we just reported the average accuracies obtained 313

after the first round of the SAE. These initial good performances for LINC00152, 314

MALAT1 and NEAT1 were not found to be associated with a specific transcriptomic 315

perturbation signature, but were exclusively due to the strong inhibition of the target 316

gene, as indicated by the high means and standard deviations of the ranks obtained for 317

the other genes (Figure 4A-C). For example, the combined inhibition of 318

CYTOR/LINC00152 with MIR4435-2HG, whose sequences are highly homologous (99% 319

in the 220 bp region including the most efficient sgRNA), was sufficient to select half of 320

the targeted cells with an accuracy above 85% regardless of the condition. Surprisingly, 321

we did not detect any other stable perturbations than the target gene for both MALAT1 322

and NEAT1 targeted cells, as indicated by the obtained high means and standard 323
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deviations of the computed ranks, while those two lncRNAs were previously associated 324

with various gene regulation functions [44,45]. As SNHG21 expression is relatively low 325

in LUAD cells and is decreased by hypoxic stress, the extent of its inhibition was 326

therefore weaker and not sufficient to distinguish targeted from control cells. Combined 327

with the lack of transcriptomic effect induced by its knock-down, it explains the poor 328

classification results and the randomness of features selected for cells targeted by this 329

particular gene under all conditions (Figure 4D). 330

Table 4. Supervised autoencoder classification and accuracy for hypoxia
regulated lncRNA gRNA targeted cells (*obtained without cell selection)

Treatment Targeted cells Perturbed cells (%) Accuracy (%)
LINC00152 Normoxia 147 55,1 87,67
LINC00152 Hypoxia 3h 200 59 91,67
LINC00152 Hypoxia 6h 150 58 86,33
LINC00152 Hypoxia 24h 209 42,6 85,00

LUCAT1 Normoxia 438 51,8 73,33
LUCAT1 Hypoxia 3h 583 77,7 82,33
LUCAT1 Hypoxia 6h 391 63,9 79,00
LUCAT1 Hypoxia 24h 666 90,4 85,67

MALAT1 Normoxia 205 37,1 82,67
MALAT1 Hypoxia 3h 269 45 82,33
MALAT1 Hypoxia 6h 194 37,1 78,00
MALAT1 Hypoxia 24h 241 26,1 78,67

NEAT1 Normoxia 274 59,1 86,33
NEAT1 Hypoxia 3h 390 73,3 89,00
NEAT1 Hypoxia 6h 237 52,7 85,33
NEAT1 Hypoxia 24h 566 58,7 87,33

SNHG12 Normoxia 196 14,8 65*
SNHG12 Hypoxia 3h 217 14,7 69*
SNHG12 Hypoxia 6h 154 3,9 67,4*
SNHG12 Hypoxia 24h 213 8,5 71*

SNHG21 Normoxia 211 5,2 60.7*
SNHG21 Hypoxia 3h 256 3,5 61.1*
SNHG21 Hypoxia 6h 192 6,8 59,1*
SNHG21 Hypoxia 24h 299 2 63,5*

Fig 4. Top 20 discriminant features between perturbed and control cells for LINC00152
(A), MALAT1 (B), NEAT1 (C), and SNHG21 (D) for each treatment. Upregulated or
downregulated genes are written in red or blue respectively.

Knock-down of hypoxia-regulated lncRNA LUCAT1 leads to 331

hypoxic condition-dependent transcriptomic modulations 332

The SAE outcomes were different for the classification of LUCAT1-targeted cells. 333

Indeed, the transcriptomic inhibition of LUCAT1 resulted in a stable upregulation for 334
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PCOLCE2 and ISCA1 in normoxia, HDHD2 after 3h, and 6h of hypoxia (Figure 5A). 335

ISCA1 and HDHD2 encode for metal ion binding proteins, whereas TFCP2 is a known 336

oncogene. After 24h of hypoxia, a completely different perturbation signature was 337

found, with at least 6 stably modulated genes, including the upregulation of KDM5C, 338

TMEM175 and NIT1, as well as the downregulation of ATP6AP1, PEX1 and PHF20. 339

ATP6AP1 and PEX1 are respectively components of the V-ATPase and the peroxisomal 340

ATPase complexes, while TMEM175 is a proton channel also involved in pH regulation. 341

KDMC5 and PHF20 are both involved in chromatin remodeling and transcriptomic 342

regulation, while NIT1 is associated to tumor suppressor functions. This particular 343

signature allowed the classification of 90,4% of targeted cells with an accuracy of 344

85,67%. These results indicate that LUCAT1 inhibition induces hypoxic 345

condition-dependent transcriptomic modulations that potentially impact tumor survival 346

and gene regulatory processes during prolonged exposure to hypoxic conditions, 347

completing our previous observations [12]. 348

Fig 5. Top 20 discriminant features between perturbed and control cells for LUCAT1
(A) and SNHG12 (B) for each treatment. Upregulated or downregulated genes are
written in red or blue respectively.

Supervised autoencoder classification revealed an anti-apoptotic 349

signature expressed by a subset of SNHG12-targeted cells in 350

response to the cytotoxic effect of one of its gRNA 351

Looking at the SAE classification outcomes for SNHG12-targeted cells, only about 15% 352

of them were classified as perturbed in normoxia and after 3h of hypoxia, with a poor 353

accuracy. The number of selected cells was even worse for a longer exposure to hypoxia 354

(Table 2). Nevertheless, the ranked list of top discriminant features between the few 355

perturbed cells and control cells obtained for the first two time points showed a notable 356

perturbation signature. In normoxia, it was only composed of BAG1 upregulation, 357

whereas after 3h of hypoxia exposure, this signature was completed by GAS5 (snoRNAs 358

containing lncRNA gene), ARRB2, ATF5, and ETHE1 upregulations (Figure 5B). 359

These 5 genes are all known anti-apoptotic factors. We hypothesized that this 360

anti-apoptotic signature was expressed by a subset of LUAD cells that were actively 361

escaping the cytotoxic effect we systematically observed for the most efficient of the two 362

gRNAs selected for targeting SNHG12, (SNHG12-sg3) (Table 1). Indeed, most of the 363

cells classified as perturbed were specific to this particular gRNA (Figure 6). As this 364

signature progressively attenuated over time under hypoxic conditions, we speculate 365

that the activation of this anti-apoptotic response may be inhibited by hypoxic stress, 366

or that hypoxia may protect against the cytotoxic effect of this guide. These results 367

demonstrate the precision of the SAE-based approach to detect a short signature, even 368

restricted to a small subset of cells.. 369

Fig 6. Percentages of targeted cells classified as perturbed or non-perturbed for each
gRNA in each condition.

Comparison with other Machine learning methods for features 370

selection 371

We compared the performance of our SAE, with or without selection of the most 372

responsive cells, with classical machine learning methods such as the popular Partial 373
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Least Squares regression (PLS) [32] and random forests (RF) [33] using 400 estimators 374

(using the Gini importance (GI) for feature ranking). Note that the authors of RF 375

proposes two measures for feature ranking, the variable importance (VI) and Gini 376

importance (GI) : a recent study showed that if predictors are real with multimodal 377

Gaussian distributions, both measures are biased [34]. We also used the Log Fold 378

Change (LFC) results, which is a common analysis in scRNA-seq, even if this particular 379

metric does not produce a value of accuracy. We ranked the top differentially expressed 380

genes according to p-values obtained with Wilcoxon Rank Sum test and ajusted with 381

Bonferroni correction. We performed this comparison for 3 representative datasets, 382

namely HIF2-targeted cells versus 24h hypoxia-related control cells, LUCAT1-targeted 383

cells versus 24h hypoxia -related control cells, and SNHG12-targeted cells versus 3h 384

hypoxia-related control cells. For the first dataset, HIF2 inhibition induced a large 385

perturbation signature. With an accuracy of 97.67%, the SAE outperformed both PLS 386

and RF, for which we obtained an accuracy of 92.5% and 72.42% respectively (Table 387

5). Note that selecting the cells thanks to the confidence score improved significantly 388

the accuracy of the SAE by 4.67%. However, the top 15 selected features between all 389

methods were highly similar, because of the strong effect of HIF2 inhibition (Figure 390

7A). 391

Table 5. Comparison of the 15 first selected features between SAE (with or
without selection), PLS, Random Forest and Log Fold Change, for HIF2
(EPAS1) targeted cells in hypoxia 24h

SAE (selection) SAE (no selection) PLS Random Forest Log Fold Change
97.67% 93% 92.5 % 72.42 %

TMEM141 TMEM141 TMEM141 IGFBP3 TMEM141
IGFBP3 PGK1 IGFBP3 FTL PGK1
BNIP3 IGFBP3 FAM162A PGK1 IGFBP3

FAM162A BNIP3 BNIP3 TMEM141 BNIP3
EPAS1 EPAS1 EPAS1 BNIP3 FAM162A
PGK1 FAM162A PGK1 FAM162A ENO1
FXYD2 FXYD2 TESC EPAS1 EPAS1
ATP1B1 GPI ATP1B1 FXYD2 FTL
TESC SLC16A3 FXYD2 ATP1B1 FXYD2

SLC16A3 ANXA4 SLC16A3 ENO1 ATP1B1
GPI TESC LOXL2 GPI TESC

ALDH3A1 FTL GPI TESC GPI
ANXA4 PGAM1 ANXA4 PGD LOXL2
GAL3ST1 ATP1B1 CYP1B1 ALDH1A1 PGAM1

FTL LOXL2 DSP ALDH3A1 VIM

We observed more extreme results for the LUCAT1 dataset. Indeed, with an 392

accuracy of 85.67%,the SAE outperformed both PLS and RF, for which we obtained an 393

accuracy of only 62% and 54.6% respectively (Table 6). Note that selecting the cells 394

thanks to the confidence score improved the accuracy of the SAE by 1.67%. 395

Furthermore, most of the obtained signatures were specific to a particular Machine 396

Learning method, with some overlaps (Figure 7B) such as ATP6AP1 that is also 397

detected by PLS. NIT1, PEX1, KDMC5, PHF20 and TMEM175 were all found specific 398

to the SAE. 399

For the SNHG12 dataset, we stopped the workflow of SAE tests before the selection 400

step since only 14% of perturbed cells were found perturbed. All methods performed 401

similarly, with a poor average accuracy of 70% (Table 7). They all detected for 402

instance the strong modulation of BAG1, but the other selected genes were mostly 403
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Table 6. Comparison of the 10 first selected features between SAE (with or
without selection), PLS, Random Forest and Log Fold Change (LFC), for
LUCAT1 targeted cells in hypoxia 24h

SAE (selection) SAE (no selection) PLS Random Forest LFC
85.67% 84% 62% 54.6 %
LUCAT1 LUCAT1 LUCAT1 LUCAT1 LUCAT1
ATP6AP1 ATP6AP1 PAIP2 BPTF ATP6AP1
KDM5C CCDC142 CFLAR G3BP1 AHNAK2
TMEM175 NIT1 EIF3J NKAPD1 AMIGO2
PEX1 PEX1 RAB13 PDCL H1-3
NIT1 KDM5C DKC1 HSF1 KLHL5
PHF20 PHF20 ATP6AP1 MFSD1 SLBP
ZNF181 GFRA1 APP BCLAF1 H3C2
CCDC142 CMBL H2AJ UBE2R2 PAIP2
AGO2 ELF1 RPAIN RPL14 MKI67

specific to each method (Figure 7C). Of note, the SAE was the only method that 404

detected SNHG12 target gene inhibition. Taken together, our results indicate that the 405

SAE approach is relevant to detect subtle perturbation signals found in CRISPRi 406

screening with a scRNA-seq readout. 407

Table 7. Comparison of the 10 first selected features between SAE (without
selection), PLS, Random Forest and Log Fold Change (LFC), for SNHG12
targeted cells in hypoxia 24h

SAE (no selection) PLS Random Forest LFC
70% 70% 69%
BAG1 BAG1 BAG1 BAG1
GAS5 RPL22L1 DPP3 RPL22L1
SNHG5 ETHE1 SNHG5 GAS5
ZMAT5 PPDPF C12orf75 H4C3
SNHG12 NFKBIA RPS27L H1-3
RPL22L1 GAS5 FXYD2 MKI67
ATF5 TLE1 DCDC2 SNHG5
DCDC2 REXO2 FAM136A KPNA2
FAM98C SNHG5 MRPL14 NOP56
MAD1L1 PARD3 CXCL8 NOLC1

Fig 7. Intersection of the 15 first selected features lists between SAE with selection,
SAE without selection, PLS, Random Forest and LFC for indicated datasets.

Discussion 408

Single-cell CRISPR(i)-based transcriptome screenings are powerful tools for 409

simultaneously accessing the expression profiles of cells targeted by different gRNA, in 410

order to infer target genes functions from the observed perturbations. However, these 411

approaches are limited by the low molecule capture rate and sequencing depth provided 412

by droplet-based scRNA-seq, which produce sparse and noisy data. Furthermore, the 413

outcome of CRISPR-induced modification in each cell is a stochastic event, depending 414

July 11, 2023 13/19



among other things, on the expression levels of the transcribed gRNA and dCas9, as 415

well as the accessibility of the target gene locus, that may be heterogeneously regulated 416

at the epigenomic levels in the different cells. For these reasons, the induced 417

perturbation signature and its detection are likely heterogeneous between cells, even 418

when dCas9-expressing cells receiving the same gRNA have been cloned. Deciphering 419

this heterogeneity in sparse data is even more complex when the targeted genes are not 420

master geneq involved in signaling or regulatory pathways, such as transcription factors 421

and receptors. In this respect, a previous study [46] has shown that this particular 422

challenge cannot be met using conventional scRNA-seq analysis tools such as differential 423

expression, which is clearly limited to the detection of weak and heterogeneous 424

perturbation signals. This challenge seems even more complex for the study of 425

perturbations mediated by knockdown of non-coding RNAs, which have been largely 426

involved in the fine-tuning of gene expression regulation. To increase the sensitivity of 427

single-cell CRISPR(i)-based transcriptome screenings, we propose here a powerful 428

feature selection and classification approach based on a supervised autoencoder (SAE). 429

It leverages in particular on the known cell labels initially given by gRNA counts 430

demultiplexing to constrain the latent space to fit the original data distribution. Beyond 431

high statistical accuracy, our SAE offered relevant properties that distinguishes it from 432

classical classification methods : i) a stringent feature selection producing an 433

interpretable readout of ranked top discriminant genes associated to their weights; ii) a 434

classification score which allow the selection of the most perturbed cells and the 435

eventual signal to obtain a more robust perturbation signature. 436

We first validated this approach by analyzing the perturbations associated with the 437

knock- down of the two master regulators of the hypoxic response, HIF1A and HIF2. 438

Using this classification workflow, we showed that the SAE was able to learn a latent 439

space and a perturbation signature which can for exemple almost perfectly discriminate 440

HIF2-targeted cells from their control in condition of prolonged hypoxia. The SAE 441

classification accuracy provided a global perturbation score associated with HIF1A and 442

HIF2 at each time point, reflecting the biological activity of each factor during the 443

hypoxic response. We were able to recapitulate the known distinct influence and target 444

specificity of HIF1 and HIF2 during the hypoxia time course [5], with notably i) a 445

strong perturbation driven by HIF1 at early time points; ii) a progressive influence of 446

HIF2 with a maximum effect observed at 24h of hypoxia; iii) a specificity regarding 447

their targets, with sometimes an opposite regulation for some genes. Finally, this unique 448

dataset provides a global and dynamic description of the transcriptomic modulations 449

mediated by the two main regulators of the hypoxic response in LUAD A549 cells. 450

Surprisingly, we did not detect any relevant and stable perturbation in cells targeted 451

for LINC00152, MALAT1, NEAT1 and SNHG21, in the four culture conditions. This 452

result appears quite unexpected for MALAT1 and NEAT1, two of the most studied 453

lncRNAs that are associated with various functions in cancer, including proliferation, 454

migration, and invasion [44,47]. In particular, it has been shown that MALAT1 455

knockout in the same cellular model (A549) modulated a set of metastasis-associated 456

genes [48]. Although CRISPRi-mediated knock-down achieved an efficient knock-down 457

(¿95%), it is however possible that based on the very high level of MALAT1, the 458

remaining transcripts are sufficient to mediate the cellular function. Another possibility 459

could be due to differences in methodology, notably the need to isolate single clones for 460

the knockout protocol, a long procedure that can profoundly affect the transcriptome, 461

compared with the CROP-seq approach performed on a bulk population prior to 462

immediate single-cell isolation. A similar situation may occur for NEAT1, a highly 463

abundant lncRNA acting as a structural scaffold of membraneless paraspeckle nuclear 464

bodies. Moreover, NEAT1 can produces two isoforms, with a differential regulation 465

upon stress and distinct functions [49]. Additional work will be thus necessary to 466

July 11, 2023 14/19



further analyze the relative proportion of the two isoforms in A549 cells and their 467

potential function during hypoxia. 468

However, for LUCAT1-targeted cells after 24h of hypoxia exposure, we found a 469

stable signature of 6 modulated genes, which are associated with pH or gene regulation. 470

It suggested a potential capacity of LUCAT1 to promote tumor cell survival during 471

prolonged hypoxia and to contribute to an aggressive phenotype in LUAD cells, as we 472

previously demonstrated [12]. Finally, we also found a relevant signature in 473

SNHG12-targeted cells, characterized by the upregulation of anti-apoptotic genes. As 474

this signature is almost exclusive to cells targeted by the most effective gRNA against 475

SNHG-12, which appeared to systematically induce cell death, we hypothesized that it 476

is expressed by surviving cells. The potential pro-oncogenic role of the complex 477

SNHG-12 locus, producing a lncRNA and 3 snoRNAs, should be pursued to decipher 478

the molecular components associated with this phenotype, as also suggested by previous 479

studies [50]. 480

In this paper, we demonstrate that the SAE is highly relevant in situations in which 481

low signals in a restricted number of cells need to be detected. However, SAE has some 482

limitations. Like all statistical method, it is highly dependent on the number of 483

samples/cells compared. Low cell number impact classification performance and can 484

produce inconsistent results, such as better accuracy and robustness of selected features 485

for HIF2-targeted cells after 3h of hypoxia compared with 6h exposure. In this context, 486

the relevance of the top selected genes list and their superiority over other compared 487

methods can be asserted by evaluating the robustness of the ranks and the classification 488

accuracies. The size of the perturbation signatures obtained for LUCAT1 and SNHG12 489

datasets prevented the utilization of functional enrichment analysis to characterize their 490

modulated functions. Furthermore, as these small signatures were found in specific 491

subsets of targeted cells, it seems complicated to validate them using a bulk 492

experimental approach that will average the signal across all cells. Despite these 493

limitations, we believe that our approach is well suited to the particular deciphering of 494

single cell CRISPR-based screen with omics readout, or for other similar assays to 495

assess the effect of perturbation at the single cell level. 496
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