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ABSTRACT
Annotation of biomedical databases by clinicians is a very

difficult, sometimes imprecise, and time consuming task. An
alternative is to ask the clinician expert for the annotations
they are the most confident in, which results in a semi-
supervised classification problem. In this paper, we present a
new approach to solve semi-supervised classification tasks for
biomedical applications, involving a supervised autoencoder
network. We train the Semi-Supervised AutoEncoder (SSAE)
on labelled data using a double descent algorithm. Then,
we classify unlabelled samples using the learned network
thanks to a softmax classifier applied to the latent space
which provides a classification confidence score for each
class. Experiments show that the SSAE outperforms Label
Propagation and Spreading and the Fully Connected Neural
Network both on a synthetic dataset and on four real-world
biological datasets.

Index Terms—Semi-supervised learning, Autoencoder neural
networks.

I. RELATED WORKS

Annotation of biomedical databases from clinical data by
clinicians is a very difficult and time consuming task. The
annotated labels are sometimes imprecise and noisy due an
heterogeneous treatment depending on detail filled in by
several clinicians. An alternative is to only ask the clinician
expert for the annotations they are the most confident in
: we then obtain a semi-supervised classification problem.
Semi-supervised learning is a machine learning paradigm [1]
using both labelled and unlabelled data to perform two tasks,
classically classification and clustering. Semi-supervised
learning algorithms attempt to improve performance in one of
these two tasks by utilizing information generally associated
with the other [2], [3], [4], [5], [6], [7]. Subramanya and
Talukdar (2014) provided an overview of several graph-based
techniques [8]; Triguero et al. analyzed pseudo-labelling
methods [9]; Oliver et al. compared several semi-supervised
neural networks, on two image classification problems [10].
Recent research on semi-supervised learning is focused
on neural network-based methods (see [11] for a survey).
Autoencoders were used in semi-supervised learning to
improve classification performance [12], [1], [13]. However,

Fig. 1. Supervised autoencoder framework

classical Variational Autoencoder networks encourage their
latent space to fit a prior distribution [12], typically a
Gaussian but they are non-adaptive and unfortunately may
not match the specific data distribution.
In this paper we propose a new approach using a supervised
autoencoder (SSAE) where our network encourages the
latent space to fit a distribution learned from the labels
rather than a parametric prior distribution. On top of that,
we propose a constrained regularization approach that takes
advantage of available efficient projection algorithms for the
ℓ1 constraint [14], [15], and the structured constraint ℓ1,1 [16].

II. SEMI-SUPERVISED AUTOENCODER
FRAMEWORK

Figure 1 depicts the main constituent blocks of our
proposed approach. Note that we added a "soft max" block
to our autoencoder to compute the classification loss.
Let X be the dataset in Rd, and Y the labels in {0, . . . , k},
with k the number of classes. Let Z ∈ Rk be the encoded
latent vectors, X̂ ∈ Rd the reconstructed data and W the
weights of the neural network. Note that the dimension of
the latent space k corresponds to the number of classes..

The goal is to compute the network weights W minimizing
the total loss which includes both the classification loss
and the reconstruction loss. To perform feature selection, as
biomedical datasets often present a relatively small number



of informative features, we also want to sparsify the network,
following the work proposed in [16], [17] and [18]. To do so,
instead of the classical computationally expensive lagrangian
regularization approach [19], we propose to minimize the
following constrained approach :

Loss(W ) = H(Z, Y ) + λψ(X̂ −X) s.t. ∥W∥11 ≤ η. (1)

We use the Cross Entropy Loss for the classification
loss H. We use the robust Smooth ℓ1 (Huber) Loss [20]
as the reconstruction loss ψ. Let us recall that ℓ1,1 norm
is computed as the maximum ℓ1 norm of a column. We
propose the following algorithm: we first compute the radius
ti and then project the rows using the ℓ1 adaptive constraint
ti (see [16] for more details).

Following the work by Frankle and Carbin [17] further
developed by [18], we follow a double descent algorithm,
originally proposed as follows: after training a network, set
all weights smaller than a given threshold to zero, rewind
the rest of the weights to their initial configuration, and then
retrain the network from this starting configuration while
keeping the zero weights frozen (untrained). We train the
network using the classical Adam optimizer [21].
To achieve structured sparsity, we replace the thresholding
by our ℓ1,1 projection and devise algorithm 1.

Algorithm 1 Double descent algorithm. ϕ is the total loss
as defined in (1), ∇ϕ(W,M0) is the gradient masked by the
binary mask M0, A is the Adam optimizer, N is the total
number of epochs and γ is the learning rate.

# First descent
Input: Winit, γ, η
for n = 1, . . . , N do
W ← A(W,γ,∇ϕ(W ))

end for
# Projection
for i = 1, . . . , d do
ti := projℓ1((∥vi∥1)li=1, η)
wi := projℓ1(vi, ti)

end for
(M0)ij := 1x ̸=0(wij)
Output: M0

# Second descent
Input: Winit,M0, γ
for n = 1, . . . , N do
W ← A(W,γ,∇ϕ(W,M0))

end for
Output: W

projℓ1(V, η) is the projection onto the ℓ1-ball of radius η,
which can be computed using fast algorithms [14], [15]. Low
values of η imply high sparsity of the network. Using the
ℓ1,1 constraint specifically gives us structured sparsity [22].

III. EXPERIMENTAL RESULTS

We implemented our SSAE method using the PyTorch
framework for the model, optimizer, schedulers and loss
functions. We used a symmetric linear fully connected
network, with the encoder comprised of an input layer of d
neurons, one hidden layer followed by a ReLU activation
function and a latent layer of dimension k.
We compare the SSAE with two classical semi-supervised
classification techniques based on similarity graphs, Label
Spreading (LabSpread) and Label Propagation (LabProp)
[23], using their respective implementations in scikit-learn.
We also provide comparison with a Fully Connected Neural
Network (FCNN) implemented in PyTorch, corresponding to
the encoder section of the SSAE. We evaluated our method
on synthetic data and two different biological datasets. We
apply classical log-transform, zero-mean and scaling to the
biological datasets. The code to reproduce our results is made
freely available on GitHub1. Note that our SSAE provides
a two-dimensional latent space where the samples can be
visualized, and their respective classifications interpreted.
Moreover our supervised autoencoder specifically provides
informative features [24] which are especially insightful for
biologists.

III-A. Synthetic data

To generate artificial data to benchmark our SSAE, we
use the make_classification utility from scikit-learn. This
generator creates clusters of points that are normally dis-
tributed along vertices of a k-dimensional hypercube. We
are able to control the length of those vertices and thus the
separability of the generated dataset. We generate n = 1000
samples (a number related to the number of samples in
large biological datasets) with a number d of features. We
chose d = 1000 as the dimension to test because this is the
typical range for biological data. We chose a low number
of informative features (< 64 ) realistically with single
cell or metabolomic biological databases [25], [26]. Within
this dataset, we randomly pick 40% of the samples to be
considered as unlabelled. We fit or train the algorithms on
the remaining samples, and then compute the classification
accuracy by comparing the labels predicted by the learned
network to the original labels. We report the results in figure
2.

Synthetic SSAE LProp LSpread FCNN
Accuracy % 85.55 63.6 71.0

AUC 0.921 0.701 0.803
F1 score 0.87 0.647 0.725

Table I. Synthetic dataset : comparison of LabelPropagation,
LabelSpreading, FCNN and SSAE. 40% of unlabeled data,
Mean over 3 seeds, separability=0.8, n=1000, d=1000, 8
informative features.

1https://github.com/CyprienGille/Semi-Supervised-AutoEncoder

https://github.com/CyprienGille/Semi-Supervised-AutoEncoder


Fig. 2. Accuracy as a function of separability: Comparison
on synthetic data of our SSAE, the FCNN, Label Propagation
and Label Spreading: Mean over 3 seeds, 40% unlabeled
samples, 8 informative features n = 1000, d = 1000.

Fig. 3. Accuracy as a function of the number of informative
features: Comparison on synthetic data of our SSAE, the
FCNN, Label Propagation and Label Spreading : 40%
unlabeled samples, Mean over 3 seeds, separability= 0.8,
n = 1000, d = 1000.

Figure 2 shows that our SSAE largely outperforms the
classical methods for any low number of informative features.
Classical methods such as label propagation and label
spreading are based on a similarity matrix and thus suffer
from the curse of dimensionality (the similarity function used
in this paper is a kNN algorithm, which has to compute the
distance between two samples). As the dimension increases,
vectors become indiscernible [27] and the predictive power of
the aforementioned methods is substantially reduced. Notably,
figure 2 demonstrates that in high dimension, the performance
of the FCNN also falls off in comparison to that of the SSAE.

Table I confirm the previous results: the SSAE outperforms
the two classical methods across all metrics. More notably,
our SSAE also outperforms the F1 score of the FCNN by
12% for n = 1000, d = 1000.

Figure 5 shows the distribution of the scores of the

predicted labels: the two classical methods show poor decision
capabilities, as the score of the predicted class will often
be close to 0.5. On the other hand, the neural networks are
more confident about their predictions, with the SSAE being
a better discriminator than the FCNN, which is reflected in
their respective metrics in table I.

Fig. 4. Synthethic dataset, n = 1000, d = 1000, 40% of
unlabeled samples, Separability=0.8, 8 informative features.
Unlabeled samples represented in the latent space of the
SSAE.

Figure 4 shows the latent space of the SSAE. We can see
that, after learning, the SSAE is able to accurately separate
the labeled samples, and that the unlabeled samples have been
relatively clustered according to their labels. This feature,
offered only by the SSAE, provides interpretability to the
results and an insightful tool for practical use.

III-B. Biological datasets
We now present the results of our SSAE on four biological

datasets : two single-cell databases and two metabolomics
databases.

The IPF dataset is a single cell RNA seq published
database which is made of human fibroblasts transcriptomic
profiles, obtained from lung explants of patients with Idio-
pathic Pulmonary Fibrosis and from healthy donors. This
dataset comes from a study [28] aimed at characterizing
the transcriptional changes induced by the pathology in
pulmonary cell types. The 1443 samples are described by
14369 numerical features with high sparsity. From this
labelled dataset, we randomly pick a subset of samples to
be considered unlabelled, following the same procedure as
described in section III-A.

IPF SSAE LProp LSpread FCNN
Accuracy % 96.66 72.14 72.14 95.55

AUC 0.9947 0.7792 0.7730 0.9903
F1 score 0.9633 0.6977 0.6976 0.9510

Table II. IPF dataset: Mean Metrics over 3 seeds : compari-
son of LabelPropagation, LabelSpreading, FCNN and SSAE.
40% of unlabeled data.

Table II shows that for the IPF dataset (which is a
high-dimensional dataset) only the neural networks manage



Fig. 5. Synthetic dataset, n = 1000, d = 1000, separability=
0.8, unlabeled proportion of 40%, 8 informative features.
Comparison of the prediction score distributions. From top
to bottom : LabelPropagation/LabelSpreading, FCNN, SSAE
with ℓ1,1 constraint.

to accurately classify the unlabelled samples; they both do
so almost optimally, reaching very high metrics.

The IFNGR2 dataset is a single cell RNA seq published
database from [25]. Its goal is to decipher the CRISPRI-
induced signature as well as the heterogeneity of the pertur-
bation response.

IPF SSAE LProp LSpread FCNN
Accuracy % 90.06 68.8 68.8 88.33

AUC 0.874 0.605 0.605 0.89
F1 score 0.879 0.45 0.45 0.863

Table III. IFNGR2 dataset: Mean Metrics over 3 seeds :
comparison of LabelPropagation, LabelSpreading, FCNN and
SSAE. 40% of unlabeled data.

Table III shows that on this second single-cell dataset,
the SSAE outperforms the other three methods : Label
Propagation and Label Spreading by over 22% of accuracy;
and the FCNN by 2% of accuracy and 3% of F1 Score.

The LUNG dataset was provided by Mathe et al. [26]. This
dataset includes metabolomic data concerning urine samples
from 469 Non-Small Cell Lung Cancer (NSCLC) patients
prior to treatment and 536 control patients. Each sample is
described by 2944 features.

Lung SSAE LProp LSpread FCNN
Accuracy % 82.59 59.27 58.66 78.15

AUC 0.9009 0.6569 0.6593 0.8713
F1 score 0.8258 0.5489 0.5399 0.7806

Table IV. LUNG dataset: Mean Metrics over 3 seeds :
comparison of LabelPropagation, LabelSpreading, FCNN
and SSAE. 40% of unlabeled data.

Table IV shows that our SSAE also outperforms the
classical methods on this smaller, less balanced dataset. Note
that SSAE also outperforms the FCNN by 3% of AUC and
4% of both accuracy and F1 Score.

The BREAST dataset was provided by Dr. Jan Budczies
and can be found in the supplementary material of Budczies et
al. [29]. It includes metabolomics data concerning 271 breast
tumor samples: 204 tumors with over-expression of estrogen
receptors (ER) and 67 tumors without over-expression of ER.
Each sample is described by 161 features.

Lung SSAE LProp LSpread FCNN
Accuracy % 87.9 73.14 73.14 85.18

AUC 0.87 0.73 0.73 0.87
F1 score 0.837 0.52 0.52 0.780

Table V. BREAST dataset: Mean Metrics over 3 seeds :
comparison of LabelPropagation, LabelSpreading, FCNN and
SSAE. 40% of unlabeled data.

Table V confirms that our SSAE outperforms both the
classical methods and the simple FCNN, by a wide margin
for the former and 5% of F1 Score for the latter.

IV. CONCLUSION AND PERSPECTIVES
In this paper we have presented a new framework to solve

semi-supervised classification tasks, involving a supervised
autoencoder network. Results on synthetic data and on four
real-world biomedical datasets show that this approach out-
performs classical semi-supervised classification techniques,
and provides insightful features for biological applications,
such as a confidence score and a latent space, compared to
classical methods and fully connected neural networks.
In a future work, we propose to apply our method to other
architectures, such as large Convolutional Neural Networks
for image processing.
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