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Background
Deep neural networks have proven their effectiveness in bioinformatics for classification 
and feature selection [1–5]. They have also been recently used in metabolomic studies 
[6–10]. Classical stacked autoencoders [11] were used recently in metabolomic studies 
[12].

Abstract 

Background:  Presently, there is a wide variety of classification methods and deep 
neural network approaches in bioinformatics. Deep neural networks have proven their 
effectiveness for classification tasks, and have outperformed classical methods, but 
they suffer from a lack of interpretability. Therefore, these innovative methods are not 
appropriate for decision support systems in healthcare. Indeed, to allow clinicians to 
make informed and well thought out decisions, the algorithm should provide the main 
pieces of information used to compute the predicted diagnosis and/or prognosis, as 
well as a confidence score for this prediction.

Methods:  Herein, we used a new supervised autoencoder (SAE) approach for classifi-
cation of clinical metabolomic data. This new method has the advantage of providing 
a confidence score for each prediction thanks to a softmax classifier and a meaningful 
latent space visualization and to include a new efficient feature selection method, with 
a structured constraint, which allows for biologically interpretable results.

Results:  Experimental results on three metabolomics datasets of clinical samples 
illustrate the effectiveness of our SAE and its confidence score. The supervised autoen-
coder provides an accurate localization of the patients in the latent space, and an effi-
cient confidence score. Experiments show that the SAE outperforms classical methods 
(PLS-DA, Random Forests, SVM, and neural networks (NN)). Furthermore, the metabo-
lites selected by the SAE were found to be biologically relevant.

Conclusion:  In this paper, we describe a new efficient SAE method to support diag-
nostic or prognostic evaluation based on metabolomics analyses.
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Autoencoders were introduced within the field of neural networks decades ago, their 
most efficient application at the time being dimensionality reduction [13, 14]. Autoencod-
ers have also been used for denoising different types of data [11] to extract relevant fea-
tures. One of the main advantages of the autoencoder is the projection of the data in the 
low dimensional latent space.

These autoencoder models include variational autoencoders (VAE) [15]. VAE net-
works encourage the latent space to fit a prior distribution, like a Gaussian. This can alter 
the accuracy of the model. In order to cope with this issue, some recent papers have pro-
posed latent spaces with more complex distributions (e.g. mixtures of Gaussians [16]) 
on the latent vectors, but they are non-adaptive and unfortunately may not match the 
specific data distribution.

In this work, we relaxed the parametric distribution assumption on the latent space to 
learn a non-parametric data distribution of clusters [17]. Our network encourages the 
latent space to fit a distribution learned with the clustering labels rather than a paramet-
ric prior.

Recent untargeted metabolomic methods using liquid chromatography coupled with 
high resolution mass spectrometry (LC-MS/MS) allow for fast and high-resolution 
detection of massive amounts of metabolites. Metabolomics is a very promising omics 
field for fundamental research in biology as well as for clinical research applications. 
Indeed, metabolomics can be used to reveal new biomarkers of physiological or patho-
logical states [18–21], and could be particularly useful for personalized medicine [22, 
23].

In this study, we described a new SAE method using structured constraints and com-
pare its performances to classical machine learning and Neural Network methods, when 
applied to three clinical metabolomic databases.

Methods
A New supervised Autoencoder (SAE) framework

Projecting the samples in the lower dimension latent space is crucial to separate them 
accurately. Herein we propose to use a neural network autoencoder framework.

Let us recall that the encoder part of the autoencoder maps feature-points from a high 
dimensional space to a low dimensional latent space, and that the decoder maps feature 
points from that low dimensional space to a high dimensional space.

Figure  1 depicts the main constitutive blocks of our proposed approach. We have 
added to our SAE a “soft max” block to compute the classification loss.

Let X be the dataset, as an m× d data matrix made of m line samples x1, . . . , xm . Let 
yi = j, j ∈ [1...k] be the label, indicating that the sample xi belongs to the j-th cluster. Let 
Z, be the latent space, X the reconstructed data (Fig. 1) and W the weights of the neural 
network.

The goal is to compute the weights W minimizing the total loss, which depends on 
both the classification loss and the reconstruction loss. Thus, we propose to minimize 
the following criterion to compute the weights W of the autoencoder (see [17] for 
details).

(1)Loss(W ) = φ(Z,Y )+ �ψ(X̂ − X) s.t. �W�11 ≤ η.
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Where φ(Z,Y ) is the classification loss in the latent space and ψ(X̂ − X) is the recon-
struction loss.

The parameter � controls the weight of the reconstruction loss in the criterion. We used 
the Cross Entropy Loss for the classification loss function φ . We used the robust Smooth ℓ1 
(Huber) Loss [24] as the reconstruction loss function ψ , as it is more robust to outliers than 
the classical Mean Squared Error (MSE) loss. The dimension of the latent space is defined 
by the number of clusters.

Structured constraints, sparsity and feature selection

The basic idea for feature selection is to use a sparse regularizer that forces some coeffi-
cients to be zero. To achieve feature selection, classically, the Least Absolute Shrinkage and 
Selection Operator (LASSO) formulation [25–29] is used to add an ℓ1 penalty term to the 
classification loss. However the LASSO is computationally expensive [26, 27]. Thus, we 
used a feature selection method by optimizing a criterion under constraints [30].

Let us recall that the classical ℓ2 norm constraint does not induce any sparsity. More-
over the “group Lasso ℓ2,1 constraint” induces small sparsity [31] and the ℓ1 constraint 
induces unstructured sparsity [32, 33]. Thus we used ℓ1,1 constrained regularization penalty 
�W�1

1
≤ η for feature selection [17].

Algorithm

We compute the ℓ1,1 constraint with the following algorithm: we first compute the radius ti 
and then project the rows using the ℓ1 adaptive constraint ti.
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Fig. 1  Supervised autoencoder framework
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Following the work developed by [34], which proposed a double descent algorithm, we 
replaced the thresholding by our ℓ1,1 projection and devised a new double descent algo-
rithm (See Barlaud and Guyard [35]) as follows :

Implementation

Pytorch implementation of our supervised autoencoder

We implemented our sparse supervised autoencoder model in the Pytorch framework. 
The losses are averaged across observations for each batch. We chose the ADAM opti-
mizer [36], as the standard optimizer in PyTorch. We used the Netbio SAE, a linear 
fully connected network (LFC), which has an input layer of d neurons, 1 hidden layer 
of 96 neurons followed by a ReLU activation function, and a latent layer of dimension 2 
(the number of classes). The parameter η is determined by the maximum accuracy after 
cross-validation.

We compared the Netbio SAE with a classical linear fully connected Neural Network 
(NN) with the same structure.

We used the captum package [37] to compute the feature weights of the SAE.
We provide comparisons with a PLS-DA using 4 components, with Random Forests 

using 400 estimators and a maximum depth of 3 (using the Gini importance (GI) for 
feature ranking), and with a support vector classifier (SVM) with a linear kernel. For the 
SVM, we perform a cross-validation grid search to find the best regularization param-
eter C.

We provide the statistical evaluation (Accuracy, AUC, and F1 score) using a 4-fold 
cross validation process: the dataset is randomly divided into four parts, and trained 
on three of the four splits. The metrics are computed on the remaining test split, which 
wasn’t used during training. We then repeat this process three more times, leaving a dif-
ferent split as the test set each time. The final metrics given in this paper are averages 
over the four cross-validation steps, over three different random seeds (12 different test-
ing/training splits in total).

We compare the performances of the different methods using the F1 Score. The F1 
Score is the weighted average of Precision and Recall. Therefore, this score takes both 
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false positives and false negatives into account. The F1 score is more relevant than accu-
racy, especially for unbalanced datasets.

The computation of the statistical metrics, the classifiers, the cross-validation func-
tion and the grid search were all provided by the scikit-learn machine learning python 
package. The python code is available on github: https://​github.​com/​Cypri​enGil​le/​Super​
vised-​Autoe​ncoder.

Diagnosis with confidence score

One of the main advantages of an autoencoder is the projection of the data in the latent 
space, which can easily be visualized if the latent space is of dimension 2.1 Thanks to this, 
we propose a clinical diagnosis simulation: having trained a network on a database of 
patients, we can predict a diagnosis with a confidence score for new patients. To perform 
this simulation, we removed a patient from each of the k classes from the databases. We 
then trained the SAE on (n-k) patients and we fed the k “test” patients through the best 
net. We thus obtained a visualization of the projections of these new “test” patients in 
the latent space as well as their classification with a confidence score (see Figs. 4, 10 and 
7).

The clinician then has an accurate and reliable system to help with the diagnosis. 
Indeed, in addition to obtaining the confidence score for the diagnosis, the clinician can 
see where the patient is located among the others in the database and have a critical 
evaluation of the prediction (the clinician can easily see if a patient stands out).

Evaluation on 3 clinical metabolomics databases

The SAE was tested on three different metabolomic datasets : the “LUNG” , “BREAST”, 
and “BRAIN” datasets.

The LUNG dataset was published by Mathe et al. [38] and is available at MetaboLights 
(study identifer MTBLS28). It includes metabolomics data concerning urine samples 
from 469 Non-Small Cell Lung Cancer (NSCLC) patients prior to treatment and 536 
controls collected from 1998 to 2007 in seven hospitals and in the Department of Motor 
Vehicles (DMV) from the greater Baltimore, Maryland area. Urine samples were ana-
lyzed using an unbiased metabolomics LC-MS/MS approach. Mathe et al. used Random 
Forests to classify patients as lung cancer patients or controls [38]. The aim was to cre-
ate a new screening test for lung cancer, based on metabolomics data from urine. Lung 
cancer is one of the most common cancers and it is well established that early diagnosis 
is crucial for treatment. An efficient screening method based on urinary metabolomics 
could be of great benefit.

The BREAST dataset was kindly provided by Dr. Jan Budczies and can be found in the 
supplementary material of Budczies et al. [39]. It includes metabolomics data concerning 
271 breast tumor samples: 204 tumors with over-expression of estrogen receptors (ER) 
and 67 tumors without over-expression of ER. Metabolomics analysis was performed 
using Gas chromatography followed by time of flight mass spectrometry as described in 
[40].

1  If the latent space is of dimension k > 2 , we can project the latent space on a 2D plot using a PCA.

https://github.com/CyprienGille/Supervised-Autoencoder
https://github.com/CyprienGille/Supervised-Autoencoder
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The BRAIN dataset was obtained through a study performed in our lab1∗ . It includes 
metabolomic data obtained on 88 frozen samples of glial tumors. The samples were ret-
rospectively collected from two declared biobanks from the Central Pathology Laboratory 
of the Hospital of Nice and from the Center of Biological Resources of Montpellier (Plate-
forme CRB-CHUM). Consent or non-opposition was verified for every participant. Tumors 
were analyzed using Liquid Chromatography coupled to tandem Mass Spectrometry (LC-
MS/MS) in an unbiased metabolomics approach. The details of the analysis are available in 
Additional file 1.

With this dataset, the goal was to create a model that accurately discriminated between 
mutated isocitrate dehydrogenase (IDH) and IDH wild-type glial tumors. The dataset 
includes (38 IDH wild-type tumors and 50 IDH-mutant tumors). This mutation is a key 
component of the World Health Organization classifcation of glial tumors [29]. The muta-
tional status is usually assessed by IDH1 (R132H)-specifc (H09) immunohistochemis-
try. Yet this technique can lead to False-Negative results, which can only be identified by 
sequencing. Thus an accurate metabolomic based test, able to assess the IDH mutational 
status, could be a promising additional diagnostic tool.

The characteristics of the three metabolomic datasets are presented in Table 1. We chose 
to study these databases for their diversity both in terms of the number of features and 
number of patients, to test the robustness of our method on different types of databases.

The LUNG dataset includes a very large number of patients (1,005), with an equivalently 
large number of features (2,944), and 2 classes. The BREAST dataset includes a midsize 
number of patients (271), with a small number of features (161), and 2 classes. The BRAIN 
dataset includes a limited number of patients (88), with a much higher number of features 
(7,022), and 2 classes.

Results
LUNG dataset

Statistical performances

As shown in Table 2 our SAE outperformed PLS-DA, Random Forests, SVM and NN 
by 4.58, 9.58, 9.63 and 2.74% respectively for the F1 score. Note that we checked that 

Table 1  Overview of the datasets

Dataset No. of samples No. of features Sample type

LUNG 1005 2944 Urine

BREAST 271 161 Tumor tissue

BRAIN 88 7022 Glial tumor tissue

Table 2  LUNG dataset: Accuracy using 3 seeds and 4-fold cross validation: comparison with 
PLS-DA, Random Forest, SVM and NN

Lung SAE ℓ1 SAE ℓ2 PLS-DA RF SVM NN

Accuracy % 81.22 80.46 76.56 72.47 76.26 78.27

AUC​ 80.98 80.29 76.85 74.46 78.37 77.94

F1 score 80.74 80.29 76.16 71.16 71.11 78.00
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increasing the number of trees for Random forests from 100 to 400 resulted in a small 
improvement in accuracy of only 1% while the computational cost increased by a factor 
of 3. The performances of the SAE were a little better when using an ℓ1 loss than when 
using an ℓ2 loss.

Feature selection using the ℓ1,1 structured constraint

Figure 2 shows the matrix ( d × n ) of the network connections between the input layer (d 
feature neurons) and the hidden layer (n neurons).

It shows the benefit of using the ℓ1,1 constraint: The ℓ1,1 constraint selects features 
while the constraint ℓ1 selects only weights of features. All the following results are given 
with the ℓ1,1 constraint.

As shown in Table 3, all methods selected metabolite “MZ 264.121”, which most likely 
corresponds to creatine riboside (expected m/z value in the positive mode: 264.1190). 
Note that the SVM selected metabolite “MZ 264.121” at rank 3. Metabolite “MZ 
308.098”, which most likely corresponds to N-acetylneuraminic acid, was only selected 
by the SAE and the NN at rank 2 and 3, respectively. These metabolites were described 
by Mathé et  al. [38] as the most important metabolites to discriminate between lung 
cancer patients and healthy individuals. Note that the author of RF proposes two meas-
ures for feature ranking, the variable importance (VI) and Gini importance (GI): a recent 
study showed that if predictors are categorical, or real with multimodal Gaussian distri-
butions, both measures are biased [41].

As shown in Fig. 3, selected features were not significantly correlated. The highest 
correlation found was between MZ 308.09 and MZ 332.09, with a Pearson coefficient 

Fig. 2  LUNG SAE Netbio Matrix: features versus hidden layer:Left with ℓ1,1 constraint,Right with ℓ1 constraint

Table 3  Top 5 features on the LUNG dataset

From left to right: SAE, PLS-DA, Random Forest, SVM and NN

SAE PLS-DA Random Forest SVM NN

MZ 264.12 MZ 264.12 MZ 264.12 MZ 170.06 MZ 264.12

MZ 308.09 MZ 126.90 MZ 441.16 MZ 126.90 MZ 126.90

MZ 126.90 MZ 613.35 MZ 584.26 MZ 264.12 MZ 308.09

MZ 232.03 MZ 170.06 MZ 486.25 MZ 94.06 MZ 613.35

MZ 332.09 MZ 243.10 MZ 204.13 MZ 110.99 MZ 332.09
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of 0.67. Both features correspond to adducts of N-acetylneuraminic acid (MZ 308.09 
being the [M+H]+ adduct and MZ 332.09 the [M+Na]+ adduct).

Diagnosis in the latent space with a confidence score

As shown in Fig. 4, the two classes are well separated in the latent space of the SAE. 
Furthermore, the red and green squares show the location of the two random “test” 
patients in the SAE’s latent space. The red patient is at the heart of the class distribu-
tion and the green patient is close to the edge of the other class. This is important 
for a clinician’s assessment of the result. Moreover, the distribution plot shows the 
nearly perfect separability of the distributions calculated with the SAE, which means 
most of the patients were diagnosed with a high degree of confidence. The patient 
represented by the red square was classified in class 0 with a confidence score of 
0.94 and the patient represented by the green square was labeled class 1 with a confi-
dence score of 0.70. Both predicted labels were correct.

Fig. 3  Correlation matrix of selected features in the LUNG dataset 

Fig. 4  LUNG dataset. Right: Latent space, with test patients as squares. Left: Distribution using a Gaussian 
kernel
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BREAST dataset

Statistical performances

As shown in Table 4 our SAE outperformed PLS-DA, Random Forests, SVM and NN 
by 9.16, 14.1, 9.11 and 2.23% respectively for the F1 score. The performances of the SAE 
were a little better when using an ℓ1 loss than when using an ℓ2 loss.

Feature selection using the ℓ1,1 structured constraint

Figure 5 shows the matrix ( d × n ) of the network connections between the input layer 
(d feature-neurons) and the hidden layer (n neurons). It shows the benefit of using the 
ℓ1,1 constraint: The ℓ1,1 constraint selects features, while the constraint ℓ1 selects only 
weights of features.

As shown in Table  5, the SAE and the NN selected the same top five metabolites 
(beta-alanine, xanthine, uracil, glutamic acid). These metabolites have already been 

Table 4  BREAST dataset: Accuracy using 3 seeds and 4-fold cross validation: comparison with 
PLS-DA, Random Forest, Logistic Regression, SVM and NN

Breast SAE ℓ1 SAE ℓ2 PLS-DA RF SVM NN

Accuracy % 90.15 89.05 86.58 80.23 83.20 89.04

AUC % 84.88 81.62 83.07 88.02 77.64 80.34

F1 Score 85.17 83.66 76.01 71.07 76.06 82.94

Fig. 5  BREAST SAE Netbio Matrix: features versus hidden layer:Left with ℓ1,1 constraint,Right with ℓ1 
constraint

Table 5  Top 5 features on the BREAST dataset. From left to right: SAE, PLS-DA, Random Forest, SVM 
and NN

SAE PLS-DA Random Forest SVM NN

Beta-alanine Beta-alanine Beta-alanine 3-Phosphoglycerate Beta-alanine

Xanthine Xanthine Xanthine Beta-alanine Xanthine

Uracil Nicotinamide glutamic acid Uracil 2-hydroxyglutaric

Glutamic acid Isothreonic acid idonic acid NIST Taurine Uracil

2-Hydroxyglutaric acid Creatinine Uracil 2-Ketoadipic acid Glutamic acid
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shown to have significantly different concentrations in ER− breast tumors compared 
to ER+ breast tumors in the original paper by Budczies et al. [39]. Increased concen-
trations of glutamic acid and 2-hydroxyglutaric acid indicate higher glutaminolysis, 
a key feature of metabolic changes in cancer cells. As shown in Budczies et al. [39], 
increased concentrations of uracil, xanthine and beta-alanine levels are related to 
higher hexokinase 3, xanthine dehydrogenase and 4-aminobutyrate aminotransferase 
expressions, respectively.

As shown in Fig. 6, selected features were highly correlated.

Prognosis in the latent space with confidence score

Figure  7 (left), shows the accurate separation of the two classes in the latent space 
of the SAE. The red and green squares show the location of the two random “test” 
patients in the SAE’s latent space. The patient represented by the red square was clas-
sified in class 0 with a confidence score of 0.55 and the patient represented by the 
green square was labeled class 1 with a confidence score of 0.80. Both predictions are 
correct. Figure 7 (right) shows the separability of the distributions calculated with the 
SAE.

Fig. 6  Correlation matrix of selected features in the BREAST dataset 

Fig. 7  BREAST dataset. Left: latent space of the SAE. Right: Distribution using a Gaussian Kernel
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BRAIN dataset

Statistical performances

Table 6 shows that, despite the small number of patients, the supervised autoencoder 
outperformed PLS-DA, Random Forest, SVM and NN by 8.78, 4.61, 6.15 and 18.47% 
respectively for the F1 score. For this base with few patients the performance of NNs 
collapses as reported in the literature. As for the other databases, the performances of 
the SAE were a little better when using an ℓ1 loss than when using an ℓ2 loss.

Feature selection using the ℓ1,1 structured constraint

Figure  8 shows the matrix ( d × n ) of the network connections between the input 
layer (d feature-neurons) and the hidden layer (n neurons). It shows the benefit of 
using the ℓ1,1 constraint: The ℓ1,1 constraint selects features, while the constraint ℓ1 
selects only weights of features.

As expected, the top features selected by each method (shown in Table  7) corre-
spond mainly to different isotopes and adducts of 2-hydroxyglutarate (marked in 
bold). The features selected using the SAE were all different adducts of this specific 
product of IDH-mutated cells. Indeed, POS_MZ132.03 and POS_MZ131.03 corre-
spond to the [M+H-H2O]+ adduct of 2-hydroxyglutarate with one 13C isotope for 
the first ion. POS_MZ171.02 is the [M+Na]+ adduct, NEG_MZ147.02 is the [M-H]- 
and POS_MZ86.03 is the [M+Na+H]2+ adduct. NEG_MZ148.03 is the [M-H]- 
adduct of 2-hydroxyglutarate with one 13C isotope. POS_MZ173.03 is the [M+Na]+ 
adduct with two 13C isotope. Finally, POS_MZ149.04 is the [M+H]+ adduct ion of 

Table 6  BRAIN dataset Accuracy using 3 seeds and 4-fold cross validation: comparison with 
PLS-DA, Random Forest , SVM and NN

Brain SAE ℓ1 SAE ℓ2 PLS-DA RF SVM NN

Accuracy % 92.80 88.63 84.84 86.73 87.12 75.75

AUC % 93.29 88.64 85.37 89.5 87.52 74.85

F1 score 92.66 88.40 83.88 88.05 86.51 74.19

Fig. 8  BRAIN SAE Netbio Matrix: features versus hidden layer: Left with ℓ1,1 constraint, Right with ℓ1 
constraint
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2-hydroxyglutarate. As expected, and shown in Fig. 9, these features, all correspond-
ing to adducts of 2-hydroxyglutarate, were highly correlated.

Diagnosis in the latent space with confidence score

Figure 10 (left), shows the nearly perfect separation of the two classes in the latent space 
of the SAE. Furthermore, the red and green squares show the location of the two ran-
dom “test” patients in the SAE’s latent space. The patient represented by the red square 

Table 7  BRAIN dataset with 7,022 features : Top 5 features selected by the SAE, PLS-DA, Random 
Forests, SVM and NN

SAE PLS-DA RF SVM NN

NEG MZ147.028 POS MZ131.034 NEG MZ148.031 POS MZ132.523 NEG MZ148.031

POS MZ132.037 POS MZ132.523 NEG MZ215.016 NEG MZ147.028 NEG MZ147.028

POS MZ171.026 POS MZ132.037 POS MZ132.037 POS MZ131.034 POS MZ132.037

POS MZ132.037 NEG MZ147.028 POS MZ85.029 POS MZ132.037 POS MZ85.029

POS MZ149.044 POS MZ171.026 POS MZ132.523 POS MZ171.026 POS MZ173.030

Fig. 9  Correlation matrix of selected features in the BRAIN dataset 

Fig. 10  BRAIN dataset. Left: latent space of the SAE, Red and green squares are “test” patients. Right: 
Distribution using a Gaussian kernel
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was classified in class 0 with a confidence score of 0.75 and the patient represented by 
the green square was labeled class 1 with a confidence score of 0.62. Both predictions 
were correct. Figure 10 (right) shows the peak separability of the distributions calculated 
with the SAE. It shows that most patients will have a good prediction with a high degree 
of confidence.

Discussion
Thus, we have shown that our SAE outperformed classical machine learning methods 
and NN for classification of metabolomics data, while providing reliable confidence 
score for the predictions and performing relevant feature selection.

The real distributions of many datasets, including metabolomics datasets, are far more 
complex than multi-gaussian mixtures.Thus we chose to use a non-parametric super-
vised autoencoder (SAE) rather than a classical autoencoder that assumes a latent space 
modeling [42, 43] and force a multi-gaussian distribution upon the data.

Regardless of data size and feature space dimensions, the SAE outperforms all other 
methods (PLS-DA, Random Forests, SVM and NN). As expected, the NN also outper-
formed classical methods (PLS-DA, Random Forests and SVM), except on small data-
bases. Indeed, NN are known to be less accurate when trained on small numbers of 
samples [44, 45]. Furthermore, as anticipated, the SAE’s performances were a little better 
when using the Huber loss than when using the MSE. This is most likely due to the fact 
that the Huber loss is more robust to outliers.

The SAE provides high-level distribution visualization of the samples in the latent 
space, as well as their classification confidence score. This is crucial for any diagnostic 
tool. Indeed, these two features enable clinicians to gauge how reliable each prediction is 
and if a sample corresponds to a potential outlier, for which predictions should be con-
sidered with particular care.

Metabolomics is a very promising approach, particularly adapted to routine clinical 
practice, because metabolomics analyses are fast and relatively inexpensive. However, 
human metabolomics are complex data, influenced by many external and internal fac-
tors. The high number of features included in metabolomics analyses require high per-
formance statistical methods such as our SAE to be exploited. However, no statistical 
method can replace the critical reasoning of a researcher to make conclusions on the 
statistical results and to identify potential confounding factors. To make such conclu-
sions, the statistical method needs to have some degree of interpretability.

Interestingly, the SAE combined with a structured projection provides efficient feature 
selection (Tables 3, 5 and 7). This feature selection step is crucial for interpretability. Bet-
ter yet, we have verified that the selected features in the LUNG, BREAST and BRAIN 
datasets were known to be biologically relevant metabolites. Efficient feature selection 
adds interpretability to the model which is crucial for metabolomic studies in biological 
research or clinical trials.

We have observed that selected features can have a low to very high degree of correla-
tion. In our case, the correlated features were isotopes and adducts of metabolites with 
high weights for the classification. Even though multivariate methods, such as the one 
we have used, account for correlation, correlated features do have an impact on feature 
selection and the performances of the trained models. When studying metabolomics 
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one must adapt the level of filtering. Indeed, filtering removes isotopes and adducts but 
can also remove important features. This must be taken into consideration when using 
our SAE or any other classification method for metabolomics analyses.

Conclusion
In this paper we have proposed a new and efficient classification method for metabo-
lomics datasets, based on the representation of data on the latent space of a new super-
vised autoencoder (SAE). In clinical applications, our method provides a diagnosis score 
for each patient’s predicted class. Moreover, from a statistical point of view (Accuracy, 
AUC, F1 score) our SAE outperformed PLS-DA, Random Forest, SVM, and NN while 
selecting biologically relevant features.
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