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Abstract—This interdisciplinary work focuses on the interest of a new auto-encoder for supervised classification of live cell populations
growing in a thermostated imaging station and acquired by a Quantitative Phase Imaging (QPI) camera. This type of camera produces
interferograms that have to be processed to extract features derived from quantitative linear retardance and birefringence
measurements. QPI is performed on living populations without any manipulation or treatment of the cells. We use the efficient new
autoencoder classification method instead of the classical Douglas-Rachford method. Using this new supervised autoencoder, we
show that the accuracy of the classification of the cells present in the mitotic phase of the cell cycle is very high using QPI features.
This is a very important finding since we demonstrate that it is now possible to very precisely follow cell growth in a non-invasive
manner, without any bias. No dye or any kind of markers are necessary for this live monitoring. Any studies requiring analysis of cell
growth or cellular response to any treatment could benefit from this new approach by simply monitoring the proportion of cells entering
mitosis in the studied cell population.

Index Terms—Mitotic index, non-invasive cell monitoring, Quantitative Phase Imaging (QPI), Supervised autoencoder.
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1 INTRODUCTION

Somatic cells constitute the vast majority of our body.
These cells may have to multiply to allow our organism
to maintain normal homeostasis. Growth occurs through a
very tightly regulated process called the cell cycle. During
this process, a cell ultimately divides into two identical cells
within one or two days. Deregulation of the cell cycle may
result in cell death [1] or in uncontrolled cell growth leading
to cancer [2]. In addition, exposure to toxic compounds may
also result in alteration to cell growth or cell death [3].

It is thus of utmost importance for biologists to monitor
cell growth. This is usually done either with molecular tools
on cell lysates, or via flow cytometry performed on isolated
cells placed in suspension and processed with a FACS
machine (Fluorescence-activated cell sorting) [4]. While
both methods have advantages, they both interfere with
the cells being monitored. Molecular analysis requires cell
killing to obtain a workable lysate that is used to quantify
molecular markers of the cell cycle. Flow cytometry, while
being able under specific conditions to keep cells alive, will
strongly interfere with the physiology of cells due to the
extensive manipulations inherent to the FACS procedure [5].

Quantitative Phase Imaging (QPI) is a well established
imaging technology that only requires short bursts of low
intensity white light that are relatively harmless to living
cells compared to fluorescence. QPI cameras produce phase
images that are processed to extract biologically significant
features. The optical phase differences measured after light
propagates through biological samples are a direct reflection
of the dry matter encountered along the optical path. Many
reviews focus on this technique [6], [7], [8], [9], [10] [11],

[12], [13], [14]. The QPI strategy used here does not require
temporally coherent illumination and can thus be used with
conventional microscope sources, such as halogen lamps
[15]. It accurately measures increases in the growing cell
mass [16]. We previously showed that these and other fea-
tures derived from QPI, associated with proximal machine
learning methods, accurately recognize HeLa cells experi-
mentally blocked in early S and M phases [17] following
thymidine and nocodazole treatments, respectively. The S
and M phases of the cell cycle correspond to the beginning
of chromosome duplication (DNA synthesis) and to the
onset of cell division (mitosis), respectively.
Stemming from this observation, we reasoned that we
should be able to perform mathematical testing on nor-
mal (untreated) exponentially growing cell populations to
characterize cells undergoing mitosis. This was performed
with a supervised deep neural autoencoder. As presented
in this work, our algorithms were able to identify cells
with a very high accuracy from QPI-derived features. To
biologically validate these computed results, we compared
the phenotypes of the cells present in the predicted M class
(Mitosis) to images of the same identical cells obtained
with a regular CMOS camera in the presence of a per-
meant dye emitting light under fluorescent illumination.
This dye specifically labels cellular nucleic acids (mainly
DNA present in chromosomes). We could thus validate the
coherence of the computed classification.
Deep neural networks have proven their effectiveness in
bioinformatics for both classification and feature selection
[18], [19]. Autoencoders were introduced into the field of
neural networks decades ago and their most efficient ap-
plication was dimensionality reduction [20], [21]. Stacked
autoencoders were successfully used for denoising [22], and
fault classification [23].

Page 1 of 8 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

An autoencoder is a discriminative model which maps
feature points to a high dimensional space to labels in a
low dimensional latent space. Let us recall that variational
autoencoders (VAEs) [24], [25] encourage the latent space
to fit a prior distribution, like a Gaussian. These classical
priors in the latent space are chosen for their computa-
tional simplicity rather than their compatibility with the
latent structure and thus can lead to inaccurate latent low-
dimensional representations of data.
Recently Barlaud and Guyard proposed a non-parametric
supervised Autoencoder framework [26] where they relaxed
the parametric distribution assumption in the latent space
to learn a non-parametric data distribution of clusters. This
supervised network encourages the latent space to fit a
distribution learned with the clustering labels rather than
a parametric prior distribution.
In this paper, we point out the following specific contribu-
tions:

• We estimate a new Mitosis reference cells using a
hand made microscopy approach without any inva-
sive chemical treatment.

• We use the efficient new autoencoder classifica-
tion [26] method instead of the classical Douglas-
Rachford method [17] [27].

The paper is organized as follows: Section 2 deals with
live cell cycle monitoring. In section 3 we develop the
autoencoder classification method. In section 4 experimen-
tal results are provided on real biological datasets with a
discussion in section 5. Finally in section 6 we conclude the
paper.

2 LIVE CELL CYCLE MONITORING

The cell cycle is a biological process ultimately resulting in
cell division, yielding two daughter cells with exactly the
same genetic content. This highly regulated process is of the
utmost importance and is a direct reflection of cell growth.
It consists in four phases:

• The mitotic phase per se (M-Phase), in which nuclei
loose their membrane, nucleoli disappear and chro-
mosomes are physically sorted to be equally split
among two identical daughter cells. These new cells
then enter:

• The G1 phase, in which the cell nucleus is reorga-
nized following cell division. The entry into the G1
phase requires the passage of a checkpoint (”Spindle
checkpoint”) where cells verify that division occurs
as planned. If not, cells cannot proceed to G1. The
G1 phase is associated with the formation of nucleoli,
sub-nuclear structures that produce ribosomal RNAs
required for the synthesis of proteins from tran-
scribed DNA, as well as for the normal physiology
of the cell. DNA transcription into RNA restarts to
support cellular functions. Following the G1 phase
and after another checkpoint validating their well
being, the cells proceed to:

• the S phase, in which DNA is replicated. This phase
is associated with an increase in cell size and mass.
After chromosomal duplication, cells enter:

• the G2 phase, in which there is a last checkpoint
before entering the M-Phase again.

Monitoring the cell cycle allows direct evaluation of cell
growth, but no method is currently available to do so
without interfering with normal cell growth. Fluorescence-
Activated Cell Sorting (FACS) is very powerful for monitor-
ing cell cycling, but requires non-physiological cell handling
and/or cell labeling with exogenously expressed fluores-
cent proteins [5]. We investigated whether high resolution
quadri-wave lateral shearing interferometry, that allows
quantitative linear retardance and birefringence measure-
ments on biological samples could allow non-invasive mon-
itoring of the cell cycle in populations. The QPI strategy,
presented in [16], [28], only requires short bursts of low in-
tensity white light which appears to have a negligible effect
on cell physiology. The optical phase difference measured
when photons exit a biological sample is a direct reflection
of the dry mass present in the sample being analyzed. It
has been shown for example that the mass increase asso-
ciated with cellular cell cycle progression (2N toward 4N
chromosomes) can be accurately determined [1]. In addition,
the characteristic cell rounding associated with the late G2
phase is also easily detected by QPI [28]. Biologists partners
[17] have investigated how reliable this approach would
be to monitor a live cell population under the microscope.
They first setup a controlled system in which HeLa cells
were synchronized into the early S phase (double thymidine
block) and late G2/mitosis (nocodazole block) [16]. Cells
were classically labeled with Hoechst 33342 to visualize
nuclei by fluorescence imaging with the dye. Multiple fields
were then acquired in parallel with a regular CMOS camera
(Zyla 5.5) to visualize the blue Hoechst fluorescence, and
with a SID4Bio camera to acquire quantitative phase images.
Typical images of cells obtained by Fluorescent labeling and
Phase imaging are presented in Figure 1 and 2.

Fig. 1. ”Fluorescence versus Phase imaging, G1 and S phases in HeLa
Cells”. G1 (top row): 2 representative cells before DNA synthesis are
shown as seen by Fluorescence (”Fluo”, left) and Phase (”QPI”, right)
imaging. S (bottom row) illustrates cells undergoing DNA synthesis. The
cells are larger, and the nucleoli are more visible (pointed out with green
stars) with Fluorescence labeling and in Phase imaging. White scale
bar: 10µm.

As shown on Figure 2, the phenotype of the cells
undergoing mitosis is very characteristic. The left hand
fluorescent image displays individual chromosomes
blocked before equatorial plate formation because of
nocodazole treatment, while the right hand fluorescent
image illustrates a typical equatorial plate (pointed out by
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green stars). This work demonstrated the robustness of the
approach. However, classification relied on training sets
obtained from chemical treatments of the cells. While useful
to arrest cells in their cycle, these treatments do not provide
phenotypically normal cells.

Fig. 2. ”Fluorescence versus Phase imaging, M phase”. Left pair: Cell
blocked during mitosis following nocodazole treatment. The green stars
point to chromosomes blocked in prophase, the first stage of mitosis.
Chromosome visualization in Phase imaging is possible but difficult
(contrast was enhanced) compared to Fluorescence imaging (where
labeling is chromosome specific). However, the phase analysis of the
image unambiguously indicates a bona fide mitotic cell. Right pair: Con-
trol cell in metaphase (second stage of mitosis), with densely packed
chromosomes highly visible in Fluorescence imaging, equatorial plate
also distinguishable in QPI (contrast was enhanced).

In this work, we focused on the classification of mitotic
cells. These cells, or more precisely their percentage among
the whole population, represent the so-called mitotic
index [29]. It is a reliable reflection of the growth of a
cell population. To avoid the bias of chemically arrested
cells, training sets were obtained by supervised selection
of cells undergoing mitosis. This strategy allowed us to
monitor in a completely non-invasive manner the growth of
a living cell population in real time by following the mitotic
index. Since the cells are kept alive under a robotic imaging
station allowing QPI time-lapse acquisitions, screening of
the effect of pharmacological substances of interest becomes
possible in the absence of any manipulation other than
interferogram treatment and mathematical processing.

3 METHOD: NON-PARAMETRIC SUPERVISED AU-
TOENCODER FRAMEWORK

Let X be the dataset, as a m × d data matrix made of m
line samples x1, . . . , xm. Let yi = j, j ∈ [1...k] be the label,
indicating that the sample xi belongs to the j-th cluster.
Projecting the data in the lower dimension latent space
is crucial to be able to separate them accurately. In this
paper we propose to use a deep neural network autoencoder
framework.
Let us recall that the encoder (or discriminative part) of
the autoencoder map features points of a high dimensional
space to a low dimensional latent space in and that the
decoder maps feature points of a low dimensional space
to a high dimensional latent space.
Figure 3 depicts the main constituent blocks of our proposed
approach. We have added to our autoencoder a ”soft max”
block to compute the classification loss.
Let Z, the latent space, X̂ the reconstructed data (Figure 3)
and W the weights of the neural network.
The goal is to compute the weights W minimizing the

Fig. 3. Autoencoder framework

total loss which depends on both the classification loss
and the reconstruction loss. Thus we propose to minimize
the following criterion to compute the weights W of the
autoencoder [26].

Loss(W ) = φ(Z, Y ) + λψ(X̂ −X) s.t. ‖W‖1 ≤ η. (1)

Where φ(Z, Y ) is the classification loss in the latent space
and ψ(X̂ −X) is the reconstructed loss.
We also introduce a constrained regularization loss
‖W‖1 ≤ η for features selection [30], [31]. The parameter λ
weights the classification loss and the reconstruction loss.
We use the Cross Entropy Loss for the classification loss
function. We use the robust Smooth `1 (Huber) Loss [32] as
reconstruction loss function ψ. The size of the latent space
is the number of clusters.

The authors of [33] proposed a double descent algo-
rithm as follows: after training a network, set all weights
smaller than some threshold to zero, rewind the rest of
the weights to their initial configuration, and then retrain
the network from this starting configuration but keeping
the zero weights frozen (untrained). In order to minimize
our global criterion 1, we use the modified double descent
algorithm proposed by Barlaud and Guyard [34] where they
replaced the thresholding by the `1 projection.

Algorithm 1 Projection on the `1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η, ∇φ(W,M0) is the
masked gradient with binary mask M0, and f is the ADAM
optimizer, γ is the learning rate

Input: W∗, γ, η
for n = 1, . . . , N(epochs) do
V ← f(W,γ,∇φ(W ))

end for
W := proj`1((V, η)
Output: W,M0

Input: W∗
for n = 1, . . . , N(epoch) do
W ← f(W,γ,∇φ(W,M0))

end for
Output: W

In this paper, we used a linear fully connected network
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(LFC) with an input layer of d = 15 neurons, one hidden
layers (64 neurones) followed by a ReLU activation function
and a latent layer of dimension k.
We have implemented our sparse learning method using a
constraint approach in the PyTorch framework. The losses
are averaged across observations for each mini-batch. We
chose the ADAM optimizer [35], as the standard optimizer
in PyTorch. We have used the default parameters of the
Pytorch software or previous publications. However two
parameters must be tuned. The parameter η is determined
by the maximum accuracy after cross-validation. The ”mini-
batch” parameter is a compromise between the computa-
tional cost and accuracy. In our case the computational cost
is not an issue and we have privileged the accuracy with
a low value of ”mini-batch”. We used the Captum method
[36] to compute the weights of features.
First we learn a neural network using the mitoses and G1/S
reference cells and a part of the control dataset. Then we
save the best learned network with a sense of accuracy.
Finally we use this best learned network to predict the labels
and probabilities on the control data.

4 EXPERIMENTAL RESULTS

4.1 Datasets
The following work was done on widely used HeLa
cells, an immortalized cell line derived in 1953 from an
epidermoid carcinoma of the cervix [37]. Hoechst 33342
labeling allows visualization of nuclei by fluorescence,
and clearly detects in a proliferating population mitotic
structures where chromosome condensation reaches a peak
(see Figure 4, Panel A, arrows).
First, both visible (fluorescent labeling) and phase images
were processed with software (CellProfiler for fluorescent
images [38], and BioData (Phasics) for QPI) to extract
multiple features stored as matrix (the X matrix defined
in section 3), in which each line corresponds to a detected
cell/nuclei and each column displays the values of a
specific feature (diameter, phase value, ...) for all the cells.
In our experiment we have 15 features for QPI images: 8
features related to QPI Interferograms (Dry mass, Phase
max, Phase min ...) and 7 features related to geometry
of the cell (Surface, ...) [17]. Note that we obtain at least
equivalent accuracy using 15 QPI features as when we used
65 fluorescent features [17]. Datasets were retrieved from
cell segmented after interferogram processing. Each data
set consists of one row per identified cell, and multiple
columns corresponding to the multiple features calculated.
These features have been described in [16].
Interferogram processing of the same field acquired via
QPI produces the image shown in Panel B, where cells
have been segmented. One can clearly see that the two
mitotic cells visualized by nuclear staining correspond to
cells with a high density signal, as pointed out by the green
arrows. Double arrow labeled ”2” points to a cell in which
chromosomes have migrated to the just separated two
daughter cells at the end of mitosis.
The data set were normalized as follows [39]: i) Log-
transformation of the datas for the following main benefits:
Reducing heteroscedasticity and thus the bias on regression,
transforming multiplicative noise into additive noise and ii)

Fig. 4. ”Fluorescence versus Phase imaging”, Panel A: Fluorescence
labeling of nuclei, Panel B: Phase imaging. The arrows point to cells
in the M phase, clearly visualized with both fluorescence and phase
imaging. The equatorial plate, corresponding to chromosome alignment
during metaphase can be seen both with fluorescence and phase imag-
ing (arrows 1 and 3). Double arrow ”2” points to chromosomes migrating
to the two daughter cells at the end of mitosis. Scale bar: 50µm.

Classical column zero mean.

In this paper, we provide experiments using three spe-
cific databases:

• The first dataset was presented in [17]. Briefly,
HeLa cells were grown either in standard condition
(Control cells, containing all phases of the cell
cycle), or in the presence of chemicals to enriched
the population in Mitosis phase (with nocodazole
treatment) or in G1/early S phase (with double
thymidine block). This dataset consist in 1163 G1/S
reference cells and 9871 control cells (no chemical
treatment).

• The second dataset was also built from HeLa cells.
To avoid the bias resulting from mitotic nocodazole
enrichment, we manually identified more than 150
cells entering mitosis and followed them with our
imaging station, acquiring interferograms every
3 minutes until the end of mitosis, resulting in
thousands of mitotic cell images. In parallel, we
also acquired interferograms on the general HeLa
population. This dataset consist in 1581 Mitotic
reference cells and 84,411 control cells.

• In the third database, we use the 1581 Mitotic refer-
ence cells of the second database and 50,000 control
cells from an acquisition performed on another day.

4.2 First experiment using chemical blocking

Initial results were published by the authors using a
Douglas-Rachford classification method [17], [27]. Interest-
ingly, we observed during this first study that the 15 QPI
features used were at least as reliable as the 61 fluorescence
features in term of classification accuracy. Mean accuracy
Fluorescence = 89.24 and mean QPI accuracy = 91.86. This
is why we now work exclusively with a QPI camera.
In the present paper, we use a non parametric supervised
autoencoder [26]. The main benefits of the autoencoder is
to improve the classification accuracy on the same dataset
used in our original work (see Table 1) and to compute the
latent space.
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TABLE 1
Comparison of Accuracy of Mitosis and DNA detection using either

Douglas-Rachford or Autoencoder algorithm

Mitosis G1/S
Douglas Rachford Accuracy % 91.83 88.34

Autorencoder Accuracy % 98.17 95.8

Fig. 5. Latent space train on the first dataset using chemical datas
selection: Mitosis (blue) and G1/S cells (orange).

Table 1 shows that the autoencoder outperforms
Douglas-Rachford accuracy by 6.34% on the Mitosis, and
by 7.46% on the G1/S cells.

Figure 5 of the train latent space in the training set
demonstrates that Phase features allow the separation of
the different populations according to their localization
in the cell cycle. Interestingly, M phase cells (blue) form
a characteristic sub-population, allowing for accurate
calculation of the proportion of cells in mitosis, i.e.
the determination of the proliferation status of the cell
population monitored in Figure 6 of the test latent space .
This demonstrated that cells arrested in the M phase
by nocodazole block or in the early S phase by double
thymidine block, form homogeneous populations.

The Table 2 shows a lower than expected Mitotic index
(3%). For these mitotic cells the expected index is usually
close to 7% [40].
It should be kept in mind that the nocodazole-treated cells
used for training arrests cells in the M phase at a very

Fig. 6. Latent Space test using chemical datas selection: Mitosis (blue)
and G1/S cells (orange)

TABLE 2
Number of detected Mitotic and G1/S cells

Training cells 600 650 700 750 800
Testing cells 10,426 10,394 10,305 10,320 10,303
Mitotic cells 422 332 350 342 332
Mitotic Index 4.04 3.19 3.39 3.31 3.12
G1/S Cells 86 102 70 67 67

specific point as shown on Figure 2. Indeed, nocodazole
interferes with spindle formation which is required to
bring individual chromosomes together to form the
equatorial plate. The lack of kinetochores activates the
spindle assembly checkpoint, and arrests the cycle in the
prometaphase, that ultimately leads to apoptosis. Later
stages of mitosis are thus not found in a nocodazole-blocked
population: metaphase, anaphase, and telophase stages are
missing. Thus training for mitosis on a nocodazole-blocked
population will only identify early stages of mitosis. This
is confirmed by the dotplot presented in Figure 7, using 2
QPI features (Cell surface and Phase average). Nocodazole
arrested cells are in blue, and Control cells are in green.
The plot shows both Control and Nocodazole treated cells
and the Nocodazole cloud is located in the continuity of
the small isolated cloud seen in Control cells. Phenotypic
observation of these cells demonstrates that most of them
are mitotic cells. Thus, it is clear that Nocodazole-treated
cells do not exactly superimpose with Control mitotic cells.
This is the reason for the lower than expected Mitotic index
when using Nocodazole-treated cells as a training set.

Fig. 7. ”Mitotic versus Nocodazole-generated mitotic cells”: Cell sur-
face versus Phase average dotplot with both Control (green) and
Nocodazole-treated cells (blue). The Nocodazole mitotic cloud is further
out than the Control mitotic cloud.

As expected, some of the cells from the control
population presented feature values similar to those of the
2 blocked populations, since there are cells in the early
G1-S phase as well as cells in the M phase in the control
population.
We thus proposed to visually select cells undergoing mitosis
and to acquire their images every 3 minutes with time-lapse
imaging using the QPI camera. This allowed us to build a
robust bank of bona fide mitotic cells.
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Fig. 8. Latent Space on the training data set: Mitosis (blue)

Fig. 9. Latent space on the test set: Mitosis (blue)

4.3 Second experiment using biologist-supervised mi-
toses selection

Once this bank of mitotic cells was built, we followed
the same strategy as described above using our
autoencoder approach to identify mitotic cells. We
decided to focus on mitotic cells for two reasons: i)
mitoses, the percentage of which in a population is a
https://www.overleaf.com/project/60032669b0517552d480edb5convenient
marker of cell growth, are relatively quick events,
representing roughly 5% of the cell cycle duration for
this cell line, with very characteristic changes in phenotype;
ii) the G1-S phase is a process that evolves slowly, lasting for
more than 50% of the length of the cell cycle. In contrast to
mitosis, there is no clear-cut change in phenotype, making
it more difficult to unambiguously identify.
This experiment is illustrated by a pytorch code available at
https://github.com/Gustoaxel/Cell-Cycle

4.3.1 Results on the second dataset
Figure 8 and 9 show that the distribution in the latent space
of the training and test sets are similar and different to
Gaussian distributions. Note that the mitoses cluster is more
compact than the control cluster. The explanation for this
observation is likely the fact that mitotic cells undergo a
very abrupt and specific change of their morphology, while
non-mitotic cells undergo a slow and progressive evolution
of their phenotype.

Table 4 shows that the top 3 features are phase features
which means that they are more efficient than geometric

TABLE 3
Accuracy of detection of Mitoses

Autoencoder Mitosis
Accuracy % 98.6

TABLE 4
Selected features

Features Weights
Phase− avg(nm) 0.87

Phase− StdDev(nm) 0.83
Phase−median(nm) 0.77
Surface(micron2) 0.40

Optical− volume(micron3) 0.32
Phase−max(nm) 0.30

Surface− density(pg/micron2) 0.25
Dry −mass(pg) 0.19

features for classification.
As expected, we found a significantly higher proportion

of cells in mitosis compared to that found using the
nocodazole-blocked population, since all stages of the M
phase were present in the training set, as seen in Table 5
and Figure 10. More than 80,000 cells are plotted (Figure
10). The dense green zone close to the origins corresponds
to small cellular debris.

Fig. 10. ”Mitotic cells in an exponentially growing population”: Cell sur-
face versus Phase average dotplot, showing both mitotic (blue) and non-
mitotic cells.

TABLE 5
Number of detected mitotic cells of the second dataset

Testing cells 5,000 10,000 20,000 40,000 80,000
Mitotic cells 356 723 1,450 2,841 6,123
Mitotic index 7.1 7.2 7.3 7.1 7.7

TABLE 6
Number of detected mitotic cells on the third dataset

Testing cells 5,000 10,000 20,000 40,000 50,000
Mitotic cells 366 767 1,362 2,756 3,449
Mitotic index 7.3 7.7 6.8 6.9 6.9
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4.3.2 Results on the third dataset
This mitotic bank, or sub-portions of it, yielded the same
proportion of mitotic cells when used as training on dif-
ferent control populations. The averaged mitotic index was
7.3% in Table 5, in good agreement with the mitotic index
calculated for exponentially growing HeLa cell populations
by manual counting [40]. This demonstrates the robustness
of the approach. Table 6 was obtained with the same training
set, but on a dataset produced with the same cell line on
another day. The averaged mitotic index obtained was 7.1%,
very similar to that of Table 5.
This demonstrates that as long as the same exact acquisition
settings are used (exposure, magnification, ...), the learned
autoencoder can be used on multiple new acquisitions with-
out any significant changes in the calculated mitotic index.

5 DISCUSSION

Exponentially growing cell populations grow because cells
undergo mitosis. The mitotic index is defined as the per-
centage of cells undergoing mitosis in a cell population.
There are many ways to determine the mitotic index, but
only QPI allows non-invasive monitoring of the mitotic
index. Using the strategy reported here, it is now feasible
to screen chemical banks on live cell populations using
high-throughput microscopy. The effect of these chemicals
on the population growth/differentiation/cell death will be
reflected by changes in their mitotic indexes. This should
be of great interest for pharmacological studies to identify
biologically active compounds.
This work demonstrates that Quantitative Phase Imaging
is a very powerful and non-invasive way for biologists
to monitor live cell populations with a relatively standard
imaging station consisting of an automated microscope in a
CO2 thermostated and water-saturated incubation chamber.
Classically, biologists interested in following cell popula-
tions under live conditions have had to rely on either ”vi-
tal” labeling, as with the DNA intercalating agent Hoechst
33342, or exogenously expressed proteins tagged with a
fluorescent domain. However, it is well known that ”vital”
dyes are quick to alter cell physiology, as seen with Hoechst
33342 mentioned above [41]. Similarly, while very useful,
fluorescent fusion proteins result in many possible artifacts
and toxicity, and thus cannot be considered physiological.
[42]
The camera used in this study does not capture classical
photonic images, but rather records interferograms of the
live cells by measuring regular white light phase gradients
created when going through biological samples. From these
interferograms, several cell features are extracted. Since each
cell type has its own phenotype, it is necessary to first
build a mitotic reference data set for each cell type ana-
lyzed. Mathematical treatment of the cell features provides
a very accurate supervised classification of existing sub-
populations. This means that without any treatment of the
cells, biologists are now able to calculate the proportion of
cells going through mitosis, in a way reminiscent of the
widely used FACS systems. In contrast to FACS analyses,
the cells remain untouched in culture during the whole
process, which can theoretically last as long as needed. In
other words, all questions dealing with cell growth and

phenotypic changes in cell populations exposed to any treat-
ment of interest can now be reliably addressed in real time
since normal cell physiology will not be affected by anything
else but the tested products. While our approach should
theoretically be usable with other QPI methodologies, we do
not have access to these other systems. The only sure way
to validate our concept to these other QPI methodologies
would be to try it. Toxicity testing and drug development
should be made more straightforward with this approach.
In addition, screening costs will be kept as low as possible
due to the absence of any treatment or manipulation other
than computerized treatment of descriptors extracted from
interferogram analyses, and mitotic index calculation with
our new autoencoder algorithm.
Deep learning networks are of particular interest for classi-
fication analysis. Variational autoencoders are of increasing
interest. Herein we show how a new supervised auto-
encoder can be of particular interest for cell monitoring.

6 CONCLUSION

In this paper we point out the following contributions:

• We shows that we now have a way to monitor
live cell populations in a completely non-invasive
manner thanks to the association of QPI technology
with mathematical treatment of the QPI produced
interferograms.

• As reported earlier [43], we confirm here that
while convenient to produce training sets, chemical
blockade of the cell cycle with nocodazole will
only detect early stages of the M phase, which
is too restrictive for the preparation of datasets
representative of the whole mitotic process. Training
on naturally occurring mitoses is thus necessary for
the algorithm to accurately classify all mitotic events.

• Combining a hand made efficient mitosis reference
and a new supervised autoencoder we obtained
a very high accuracy classification of 98.6%. This
result in an accurate Mitotic index estimation (7%)
(more reliable as compared to chemical blocking)
compared to state of the art results reported in the
literature.

• A straightforward application, among others, will
be live real-time high-throughput pharmacological
screening of molecule banks. In addition to its easy
implementation, this approach records changes in
populations throughout the experiment, for example
in response to changes in culture conditions. The
proportion of mitoses in cell populations exposed
to the tested chemicals will be a reliable reflection
of any effect of the screened molecules on cellular
proliferation.
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