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Abstract. Thyroid Nodules are more and more widespread, with the frequency of thyroid
cancers increasing accordingly. In routine practice, the clinician’s goal is to determine if
a nodule is malignant or suspicious, and thus requires surgery. However, nearly 33% of
thyroid nodules fall into the ’indeterminate’ classification segment, often leading to inap-
propriate surgery.
In this paper, we propose an accurate method to predict the malignancy of thyroid nod-
ules using a categorical thyroid nodules dataset. The diagnosis is achieved through com-
putational intelligence using a new supervised autoencoder neural network. A proof-of-
concept Graphical User Interface was developed to demonstrate the medical usefulness of
the latent space of the trained network.
Results show that the Supervised auto encoder Neural Network provides a diagnosis with
a high accuracy of 85% and outperforms classical classification methods on all evaluation
metrics. Aside from the accuracy itself, our computational intelligence method provides
three medically interesting benefits: i) a prediction confidence score and consistent feature
ranking, ii) an interpretative latent space, and iii) a flexibility for controlling errors of type
I or errors of type II. All of those benefits are valuable from the clinician’s point of view.

1 Study objectives
1.1 Medical requirements

Thyroid nodules (TN) are widespread in the human population, and their frequency is expected
to continue to increase [1, 2, 3, 4]. In routine practice, the aim is to identify benign nodules that
may benefit from surveillance, and malignant or suspicious nodules for which surgery may be
required. However, despite optimal diagnostic management, approximately 33 % of all TNs
fall into the grey area of the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC)
cytological classification, where the diagnosis of benignity or malignancy remains uncertain.
Thus, there is an urgent requirement to find an accurate method to improve the diagnosis of the
nature of Indeterminate Thyroid Nodules (ITN), in order to reduce the number of inappropriate
surgical procedures.
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1.2 Dataset
In this study, we use a database compiled by Dr. G. D’Andréa, comprised of mostly categorical
clinical and cytological data [5]. It contains data ranging from 2010 to 2020, originating from
four french hospitals. We use three sources of nodule information: clinical, echography and
cytology data. The in-house dataset used in this study contains 1337 nodules from 1290 patients:
Nodules are frequently multiple, and do not all share the same ultrasonographic and cytological
characteristics within a patient - thus we want to predict the risk of malignancy for a nodule, not
a patient. Each nodule is described through 159 mostly categorical features (clinical, from an
echography, from a cytology, from surgery or from an extemporaneous biopsy...) [5]. Of the
initial features, we picked 12 features of higher medical importance reported in the literature
[1, 2, 3, 4]: the TI-RADS score, the cytological category according to TBSRTC, the cytological
sub-classification according to Valderrabano et al. [4], the nodule’s size in echography, the
presence of colloid in the cytologic sample, clinical hyperthyroidism, the Hashimoto’s thyroiditis,
the patient’s age and gender, clinical hypothyroidism, the existence of a thyroidopathy of any
kind, and the cellularity of the cytologic sample.
All of these features are categorical, with two to six possible values, except for the age and the
echography size. For these two numerical features, we use categorical bins with medically sound
ranges. In our dataset, 144 nodules had a missing value for at least one feature. We addressed this
classical problem by filling those values with the mean over all nodules for the corresponding
feature.

2 Computational Intelligence using a Supervised Autoencoder Neural Network
Neural Networks have proven their effectiveness in bioinformatics for classification and feature
selection [7, 8, 9]. Classical stacked autoencoders [10] were used recently in metabolomic
studies. Their biggest strength is their ability to learn a representation of the data, typically in a
space of lower dimension than the input space. As such, they are often used for dimensionality
reduction [11], and have applications in the medical field as data denoisers and relevant feature
selectors [10]. A widely used type of autoencoders is the Variational Autoencoder (VAE). The
VAE adds the assumption that the encoded data follows a prior, a gaussian distribution, and thus
combines the reconstruction loss with a distance function (between the gaussian prior and the
actual learned distribution) [12].

2.1 Supervised Autoencoder Neural Network
In this study, we use a supervised autoencoder (SAE) neural network, introduced in 2021 by
Barlaud and Guyard in [13], where we relax the parametric distribution assumption present in
classical VAEs. In its place, we use labels present in the data (in our case, the malignancy of a
nodule) and a classification loss to encourage the latent space to fit the actual distribution of the
data. See [13, 14]. Figure 1 depicts the main constituent blocks of our proposed approach. Note
that we added a ”soft max” block to our autoencoder to compute the classification loss.
LetX be the matrix (m×d) of the dataset (m nodules, d features), and Y the labels in {0, . . . , k},
with k the number of classes. Let Z be the encoded latent vectors, X̂ the reconstructed data and
W the weights of the neural network. Note that the dimension of the latent space k corresponds
to the number of classes. In this study, k = 2.

We compute the weights W of the autoencoder by minimizing the following criterion :

Loss(W ) = Cλ1,λ2(Z, Y ) + ψ(X̂ −X) s.t. ∥W∥11 ≤ ρ. (1)

Cλ1,λ2(Z, Y ) =

{
λ1C(Z, Y ) if Y = 0
λ2C(Z, Y ) if Y = 1

(2)
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Figure 1: Supervised Autoencoder Neural Network Architecture.

Where λ1 and λ2 are the weights of errors of type I and type II respectively and ρ a parameter
which controls the sparsity. We use the weighted Cross Entropy Loss for the classification loss C.
We use the robust Smooth ℓ1 (Huber) Loss as the reconstruction loss ψ.

2.2 Statistical evaluation
The supervised autoencoder and its training and evaluation routines were programmed using
the PyTorch package. We used the NetBIO SAE, a linear fully connected network, which has
an input layer of d = 12 neurons, 1 hidden layer of 96 neurons followed by a ReLU activation
function, and a latent layer of dimension 2 (the number of classes). The decoder is symmetrical
to the encoder. Since the original data is heterogeneous, we scale the data to zero mean and unit
variance. We train the supervised autoencoder following a 4-fold cross validation process, as
well as several randomness seeds. Table 1 shows that the model obtains competitive-to-superior
performance metrics compared to the classical methods (Partial Least Squares Discriminant
Analysis, LASSO, and Random Forests). As a reminder, the F1 score is the harmonic mean
of precision and recall, incorporating information about both the false positives and negatives;
and the AUC is the area under the ROC curve, representing the discriminative power of a
classification model. The autoencoder outperforms all of the classical methods in terms of
accuracy and F1 score by at least 2.4 %. Note that all standard deviations are very similar.

Optimisation of false-positive versus false-negative detection is often in a trade-off. From a
medical point of view, false positives will have to undergo additional tests or even an unnecessary
surgery, while false negatives will see their treatment delayed, which can have a severe impact
on their health. Thus a false negative test poses greater risks for the patient, and most testing
applications are set up to minimise the occurrence of false-negative results. Note that the SAE
has the best performances for the false negatives detection. As mentioned earlier, the SAE
also allows us to weigh more severely false negatives than false positives using the λ1 versus
λ2 classification loss weights. Table 1 shows that this SAE-FN variant provides a significant
decrease of the false negatives.

Using the DeepLIFT method, implemented in the captum python package, we can determine
feature importances for the supervised autoencoder. Table 2 shows the feature rankings, and
displays the second advantage of using the supervised autoencoder over classical methods:
Features are selected more strongly, i.e. the SAE needs less features to make its prediction:
the importances already become relatively negligible for the fifth feature (hyperthyroidism at
0.02). Features are also ranked very consistently across runs; both of these qualities help with
interpretability, which is crucial for clinical use.
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Method PLSDA LASSO RF SAE SAE-FN
Accuracy 83.24± 1.46 83.11± 1.36 83.30± 1.62 85.19 ± 1.50 84.81 ±1.46

AUC 82.25± 1.74 82.15± 1.69 82.36± 2.18 82.99 ± 1.73 81.49 ±1.90
F1 score 81.38± 1.72 81.21± 1.67 81.20± 2.03 84.02 ± 1.66 82.62 ±1.56
% of FP 4.79 5.08 6.89 5.31 9.05
% of FN 11.08 11.08 13.47 10.17 7.48

Table 1: Mean Autoencoder performance metrics over 3 seeds and 4 folds of cross validation. Comparison with
classical classification methods.

Feature PLSDA LASSO RF SAE
TI-RADS 1 0.85 0.65 0.97

Cyto-Bethesda 0.88 1 1 0.73
Cyto-subclassif 0.34 0.33 0.42 0.44

Echo Size 0.14 0.14 0.18 0.12
Age 0.20 0.17 Colloid: 0.05 Hyperthyroidism: 0.02

Table 2: Feature rankings by the autoencoder (Means over 3 seeds and 4 folds). Comparison with classical methods.

3 Prognosis in the latent space of the supervised autoencoder with a confidence score
The third and main advantage of the autoencoder is the projection of the data in the latent space
by the encoder: as our latent space is of dimension 2 (two target classes), it can very easily be
represented, and gives accurate and visually explained predictions. As we can see in Fig. 2,
the two classes are distinctly clustered in the latent space. Note that among classical methods,
only the PLSDA offers any projection capabilities, and even then, does not cluster data in any
meaningful way [14].

The softmax used on the latent space (see Fig 1) gives us a confidence score on the predicted
label. This characteristic is only offered by the supervised autoencoder: none of the classical
methods provide a sense of how confident the prediction was.

To leverage these advantages, a user-friendly graphical user interface (GUI) was developed,
enabling physicians to visualize the impact of each feature on the prediction. A screenshot of it
can be seen in figure 2. By modifying input data and observing real-time changes in projection
and classification, clinicians can gain insight into the network’s confidence and reasoning behind
predictions. The code for reproducing all results is made freely available on Github1.

In this example, we can see that the test patient has been classified in class 1 with a confidence
score of 0.843.

4 Discussion and conclusion
Beyond its performances, our computational intelligence method using a supervised autoencoder
allowed us to create a graphical representation of the malignity prediction of one TN, as a
projection of the data into a latent space : having only two dimensions, this latent space makes
it easy for clinicians to represent, visualize, and interpret the prediction. Our model also gives
a confidence score on the predicted label, which allows estimations of the degree of reliability
of the prediction. The proposed method was medically validated by a coauthor clinician at the
Otorhinolaryngology and Head and Neck surgery department, Nice University Hospital.

In addition, it is now freely available on Github under the MIT License, which avoids any extra

1https://github.com/CyprienGille/Diagnostic-SAE-GUI
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Figure 2: Graphical User Interface for feature testing.

cost related to the use of these tools, thereby seeking to reduce the medico-economic impact of
the management of ITNs. To further improve the accuracy of our computational intelligence
method in the future, we propose to add metabolomic data [6].

In this study, we showed that using a supervised autoencoder on categorical medical data pro-
duced a prognosis on the malignancy of thyroid nodules that was perfectly suited for a physician’s
use. The autoencoder offered features that were not available with classical classification meth-
ods, and that are greatly relevant from the medical practitioner’s point of view: strong feature
selection, output of a confidence score, and a visually meaningful 2-dimensional latent space.
Finally, the flexibility of the SAE to weigh more severely false negatives than false positives
allows the clinician to control the false negative rate. A medical perspective would be to keep
two SAEs, trained minimising either the FPR or the FNR. The practician would then run the
SAE twice for the same patient: If there is agreement on the classification of the nodule by the
two networks, then the malignancy risk prediction will be very trustworthy.

Ethics approval
The authors confirm that this retrospective study has been approved by the institutional ethics
committees of the University Hospital of Nice and the University Hospital of Toulouse.
In addition, this study met the requirements of the French reference method 04 of the ”commission
nationale de l’informatique et des libertés” and was declared under the numbers 2204177v0,
and F20210608133203. https://www.health-data-hub.fr/projets/amelioration-du-diagnostic-et-
de-la-prise-en-charge-chirurgicale-des-nodules-thyroidiens.

The authors declare that they have no competing interests.

Availability of the data and code.
The datasets generated and/or analysed during the present study are available in the Diagnostic-
SAE-GUI repository, at
https://github.com/CyprienGille/Diagnostic-SAE-GUI/tree/main/data.

References
[1] Bongiovanni M, Bellevicine C, Troncone G, Sykiotis GP. Approach to cytological indetermi-

nate thyroid nodules. Gland Surg. 2019; 8: S98-S104.

5

https://github.com/CyprienGille/Diagnostic-SAE-GUI/tree/main/data


Proceedings of the 18th Conference on Computational Intelligence
Methods for Bioinformatics & Biostatistics (CIBB 2023)

[2] Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015
American Thyroid Association Management Guidelines for Adult Patients with Thyroid
Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines
Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016 Jan; 26(1):
1-133.

[3] Cibas ES and Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology.
Thyroid. 2017; 27: 1341-6.

[4] Valderrabano P, Khazai L, Thompson ZJ, Sharpe SC, Tarasova VD, Otto KJ, et al. Cancer
Risk Associated with Nuclear Atypia in Cytologically Indeterminate Thyroid Nodules: A
Systematic Review and Meta-Analysis. Thyroid. 2018; 28: 210-9.
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(Octobre 2021).

[6] Kell DB. Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol.
2004 Jun;7(3):296-307.

[7] Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2017 Sep
1;18(5):851-69.

[8] Leclercq M, Vittrant B, Martin-Magniette ML, Scott Boyer MP, Perin O, Bergeron A, et al.
Large-Scale Automatic Feature Selection for Biomarker Discovery in High-Dimensional
OMICs Data. Front Genet. 2019 May 16;10:452.

[9] Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ. Deep Learning
for Health Informatics. IEEE J Biomed Health Inform. 2017 Jan;21(1):4-21.

[10] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked Denoising Autoen-
coders: Learning Useful Representations in a Deep Network with a Local Denoising Crite-
rion. J Mach Learn Res. 2010; 11: 3371-3408.

[11] Hinton GE, Zemel RS. Autoencoders, minimum description length and Helmholtz free
energy. Advances in neural information processing systems. 1994; 6: 3-10.

[12] Kingma D, Welling M. Auto-encoding variational bayes. In: International Conference on
Learning Representation (2014).

[13] Barlaud M and Guyard F. Learning a sparse generative non-parametric supervised autoen-
coder, In: Proceedings of the International Conference on Acoustics, Speech and Signal
Processing, TORONTO, Canada, (June 2021).

[14] Chardin D, Gille C , Humbert O, Pourcher T, Barlaud M. Fellow IEEE.: Efficient Diagnosis
with confidence score using a new Supervised Autoencoder with structural constraints for
clinical metabolomic studies. BMC Bioinformatics. 2022 September 23;361.

6


	Study objectives
	Medical requirements
	Dataset

	Computational Intelligence using a Supervised Autoencoder Neural Network
	Supervised Autoencoder Neural Network
	Statistical evaluation

	Prognosis in the latent space of the supervised autoencoder with a confidence score
	Discussion and conclusion

