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Abstract

Projected gradient descent has been proved efficient in many optimization and machine learning
problems. The weighted `1 ball has been shown effective in sparse system identification and
features selection. In this paper we propose three new efficient algorithms for projecting any
vector of finite length onto the weighted `1 ball. The first two algorithms have a linear worst case
complexity. The third one has a highly competitive performances in practice but the worst case
has a quadratic complexity. These new algorithms are efficient tools for machine learning methods
based on projected gradient descent such as compressed sensing, feature selection. We illustrate
this effectiveness by adapting an efficient compressed sensing algorithm to weighted projections.
We demonstrate the efficiency of our new algorithms on benchmarks using very large vectors. For
instance, it requires only 8 ms, on an Intel I7 3rd generation, for projecting vectors of size 107.

Keywords: Optimization, Gradient-based methods, variable selection

1. Introduction

Looking for sparsity appears in many machine learning applications, such as biomarker iden-
tification in biology [1, 2], or the recovery of sparse signals in compressed sensing [3, 4, 5]. For
example consider the problem of minimizing a common `2 reconstruction loss function. In addi-
tion consider constraining the number of non-zero components (`0 norm) of the learned vector to
be lower than a given sparsity value:

minimize
x∈Rd

‖Ax− b‖2 subject to ‖x‖0 < ε

A solution of this generic problem will use only a subset of size lower than ε of the components
of x leading to the best reconstruction error. This implies that solving this problem and varying
the ε value allows us to manage sparsity with a fine grain. Unfortunately, this problem is generally
strictly nonconvex and very difficult to solve [6]. Hence a common solution is to constrain the `1

norm of the vector instead [7, 8, 5, 4], or one of its modified versions [9, 10, 11, 12, 13]. More
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specifically, the weighted `1 ball has been proven to have strong properties for finding or recovering
sparse vectors [14, 9]. To this purpose, it is crucially important to have simple algorithms to work
with the weighted `1 ball during the optimization process. Several methods in machine learning are
based on projected gradient descent for their optimization part, for example by iterating between
gradient updates and `1 ball projections [15]. The goal of this paper is to help the application
of projected gradient descent methods for solving sparse machine learning problems by working
with the weighted `1 ball. Unfortunately, efficiently applying projected gradient descent requires
an efficient projection algorithm. For the basic `1 ball, many projection algorithms have been
proposed [16, 17, 18, 19, 20], but in the context of the weighted `1 ball, only few works have been
done [9].

In this paper, we propose three efficient projection algorithms by generalizing works made for
the basic (i.e. non weighted) `1 ball to its generalization, the weighted `1 ball. We start by giving
a proof of existence of the threshold value (λ∗) allowing efficient projection algorithms as for the
basic `1 ball [21]. Using this threshold, we propose three efficient algorithms. First, w-pivotF

(weighted pivot Filtered) iteratively approximates λ∗ using a pivot-based algorithm. It splits the
vector in two sub-vectors at each iteration and has quadratic worst case complexity, but is near
linear in practice. Second, w-bucket and w-bucketF , two algorithms based on a bucket decom-
position of the vector that efficiently detects components that will be zero in the projection. These
two ones have linear worst case complexity. We propose an experimental protocol using randomly
generated high dimensional (> 105) vectors to show the performances of our algorithms. We
then adapt the sparse vector recovery framework from [22] to the proposed projection algorithms
and show the efficiency and simplicity of the model. The paper starts with the definitions of the
projection onto the `1 and weighted `1 balls, and highlights the need of finding the λ∗ value. In
the projection section, the algorithm w-pivotF is first defined and the algorithms w-bucket and
w-bucketF are later defined. In the experiments section, an evaluation of the time performances
shows that the proposed algorithms are order of magnitude faster than current projection methods,
and then that they can be used to adapt existing machine-learning frameworks. Finally, the proofs
required for the proposed algorithms are given and followed by the conclusion.

2. Definitions of the Projections

`1 ball. Given a vector y = (y1, y2, . . . , yd) ∈ Rd and a real a > 0, we aim at computing its
projection PBa(y) onto the `1 ball Ba of radius a:

Ba =
{
x ∈ Rd| ‖x‖1 ≤ a

}
, (1)

where ‖x‖1 =
∑d

i=1 |xi|. The projection PBa(y) is defined by

PBa(y) = arg min
x∈Ba
‖x− y‖2 (2)

where ‖x‖2 is the Euclidean norm. As shown in [15] and revisited in [19], the projection onto the
`1 ball can be derived from the projection onto the simplex ∆a:

∆a=

{
x ∈ Rd |

d∑
i=1

xi = a and xi ≥ 0,∀i = 1, . . . , d

}
. (3)
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Let the sign function sign(v) defined as sign(v) = 1 if v > 0, sign(v) = −1 if v < 0 and
sign(v) = 0 otherwise, for any real value v ∈ R. The projection of y onto the `1 ball is given by
the following formula:

PBa(y) =

{
y if y ∈ Ba,
(sign(y1)x1, . . . , sign(yd)xd) otherwise, (4)

where x = P∆a(|y|) with |y| = (|y1|, |y2|..., |yd|), with |yi| the absolute value of yi, is the projec-
tion of |y| onto ∆a. An important property has been established to compute this projection. Let
y = (y1, y2, . . . , yd) ∈ Rd

≥0 It was shown [21] that there exists a unique τ = τy ∈ R such that

xi = max{yi − τ, 0},∀i = 1, . . . , d. (5)

The projection is almost equivalent to a thresholding operation. The main difficulty is to compute
quickly the threshold τy for any vector y. Let y↓() be a the decreasing sorted order. Let y↓(i) be the
ith largest value of y such that y↓(1) ≥ y↓(2) ≥ . . . ≥ y↓(d). It is interesting to note that (5) involves
that

∑d
i=i max{yi − τ, 0} = a. Let S∗ be the support of x, i.e., S∗ = {i|xi > 0}. Then,

a =
d∑
i=1

xi =
∑
i∈S∗

xi =
∑
i∈S∗

(yi − τ).

It follows that τy = (
∑

i∈S∗ yi−a)/|S∗|where |S∗| is the number of elements of S∗. The following
property allows us to compute the threshold τy. Let

%j(y) =

(
j∑
i=1

y↓(i) − a

)
/j (6)

for any j = 1, . . . , d. Then, it was shown that τy = %Ky(y) where

Ky = max{k ∈ {1, . . . , d} | %k(y) < y↓(k)}. (7)

Looking for Ky, or equivalently y↓(Ky), allows us to find immediately the threshold τy. The most
famous algorithm to compute the projection, which has been presented in [21], is based on (7).
It consists in sorting the values and then finding the maximum index i satisfying (7). A pos-
sible implementation is given in Algorithm 1. The worst case complexity of this algorithm is
O(d log d). Several other methods have been proposed [16, 17, 18, 19, 20], outperforming this
simple approach.

Weighted `1 ball. Given a vector y = (y1, y2, . . . , yd) ∈ Rd, a vector w = (w1, w2, . . . , wd) ∈ Rd,
wi > 0 1 for all i, and a real a > 0, we aim at computing its projection PBw,a(y) onto the w
weighted `1 ball Bw,a of radius a:

Bw,a =

{
x ∈ Rd|

d∑
i=1

wi|xi| ≤ a

}
, (8)

1We can consider wi > 0 instead of wi ≥ 0 without loss of generality since the associated entries of y will be
present in the projection, and do not influence the processing of the rest of the projection.
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Algorithm 1: Sort based algorithm [21]
Data: y, a
u← sort↓(y)

K ← max1≤k≤d{k|(
∑k

r=1 ur − a)/k < uk}
τ ← (

∑K
r=1 ur − a)/K

for i ∈ {1..d} do
xi ← max(yi − τ, 0)

The projection PBw,a(y) is defined by

PBw,a(y) = arg min
x∈Bw,a

‖x− y‖2 (9)

where ‖x‖2 is the Euclidean norm.
As for the classical `1 ball, the weighted projection operator can be derived from the weighted

simplex ∆w,a projection [9]:

∆w,a=

{
x ∈ Rd |

d∑
i=1

wixi = a and xi ≥ 0,∀i = 1, . . . , d

}
. (10)

The projection of y onto the weighted `1 ball is given by the following formula:

PBw,a(y) =

{
y if y ∈ Bw,a,
(sign(y1)x1, . . . , sign(yd)xd) otherwise, (11)

where x = P∆w,a(|y|) with |y| = (|y1|, |y2|..., |yd|) is the projection of |y| onto ∆w,a. Once again,
the fast computation of the projection x = P∆w,a(y) for any vector y is of utmost importance.

Let the vector y = (y1, y2, . . . , yd) ∈ Rd, the vector w = (w1, w2, . . . , wd) ∈ Rd, wi ≥ 0 for
all i, and a real a > 0, if y 6∈ ∆w,a, then there exists a unique λ = λy ∈ R such that

xi = max{yi − wiλ, 0},∀i = 1, . . . , d. (12)

The proof is given in the proof section of this paper, and is used to derive three projection
algorithms. These algorithms are generalizations of the current state-of-the-art algorithms for `1

ball projection [19, 20]. The main difficulty is to compute quickly the threshold λy for any vector
y. Let z ∈ Rd be the vector such that

zi =
yi
wi
,∀i = 1, . . . , d. (13)

Let z↑(), y↑() and w↑() be the increasing sorted order with respect to z. Let z↑(i) be the ith value
of z such that z↑(1) ≤ z↑(2) ≤ . . . ≤ z↑(d). Let y↑(i) (resp. w↑(i)) be the jth entry of y such that
z↑(i) = yj/wj . y↑() is a permutation of y with respect to the order of z↑(). It is interesting to note
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that equation (12) implies that
∑d

i=i max{yi − wiλ, 0} = a. Let S∗ be the support of x, i.e.,
S∗ = {i|xi > 0}. Then,

a =
d∑
i=1

wixi =
∑
i∈S∗

wixi =
∑
i∈S∗

wi(yi − wiλ).

It follows that

λ =

∑
i∈S∗ wiyi − a∑

i∈S∗ w
2
i

(14)

The following property compute the threshold λj .

%j(w, y) =

∑d
i=j w↑(i)y↑(i) − a∑d

i=j w
2
↑(i)

(15)

for any j = 1, . . . , d. Then, we have shown in the proof section that λy = %Ky(w, y) where

Ky = max{k ∈ {1, . . . , d} | %k(w, y) < z↑(k)}. (16)

Looking for Ky, or equivalently y↑(Ky), gives us immediately the threshold λ.
A direct algorithm to compute this projection, which is a generalization of [21], is based on

(16), and is given in Algorithm 2. This algorithm starts by sorting the values according to z, and
then searches for the Ky index. Note that once z sorted, finding Ky is easily done by starting from
the largest value. That is why Algorithm 2 does not need more steps as in [9, 10].

Algorithm 2: Weighted generalization of the sort based algorithm.
Data: y, w, a
Output: x = PBw,a(y)
zu ← { yi

wi
|∀i ∈ {1..d}}

↑() ← Permutation↑ (zu)
z ← {zu↑(i)|∀i ∈ {1..d}}

J ← max1≤J≤d{arg max j :
−a+

∑d
i=j+1 w↑(i)y↑(i)∑d
i=j+1 w

2
↑(i)

> zj}

λ∗ ← −a+
∑d

j=J+1 w↑(j)y↑(j)∑d
j=J+1 w

2
↑(j)

for i ∈ {1..d} do
xi ← sign(yi) max(yi − wiλ∗, 0)

The ordered weighted `1 norm [12] is another type of norm with some interesting statistical
properties such as clustering. Such norm is outside the scope of the paper since is consider w to be
ordered. The main goal of this paper is to avoid any sorting algorithms to be applied to the vector.
If the data are sorted, finding J becomes trivial.
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3. Efficient Projection

Many works have focused on designing efficient algorithms for finding PBa(y) given y ∈ Rd

and a ∈ R [16, 18, 17, 19, 20]. In this section, given y, w, and a, we propose to generalize some
of these efficient algorithms to find the projection onto the weighted `1 ball Ba,w. Specifically,
we generalize the methods from [19, 20] that we respectively name pivotF and bucketF . Both
of these methods are looking for the τ value such that the projection PBa(y) = x is defined by
equation (5).

For the weighted ball, we are looking for the λ value such that the projection PBa,w(y) = x
is given by equations (11) and (12). As for the basic `1 ball, the weighted `1 ball algorithms are
looking for K and y↑(K) from equation (16). Let z = y

w
. If z is sorted in increasing order, then

finding λ can be easily done by iteratively processing %i(w, y), with i = d, ..., 1 until %i(w, y) >
(zi), as shown in Algorithm 2. A projection algorithm using as a first iteration a sort has already
been proposed [9]. But most of the time z is not sorted, and sorting z is the exact operation that we
want to avoid because of its time complexity, and that often, we are looking for sparse solutions,
thus only a subset of the values of y will remain relevant. This section is split into two parts. The
first one is a generalization of the algorithm pivotF [19]. The second one is a generalization of the
algorithm bucketF [20].

3.1. w-pivotF Algorithm
In this section we propose a generalization of the pivotF algorithm. The proposed algorithm is

composed of three points that we name pivot, lower bound extraction and online filtering, and are
described in the next paragraphs. The idea of the algorithm is the following; at each iteration, the
vector is split into two sub-vectors, using a pivot value, and determine which sub-vector contains
y↑(K) (pivot part). In the mean time, a fine grain lower bound is defined as a pivot for an efficient
splitting (lower bound part). Finally, the algorithm discards on the fly values that are provably not
part of S∗ (online filtering part).

Pivot It is often considered that for regular amount of data, the quicksort algorithm is the
fastest sort [23]. The quicksort algorithm splits the data into two partitions by using a pivot value.
Values smaller than the pivot go into the first partition, others in the second. The process is then
applied recursively to both partitions. In the context of the basic simplex projection, using a pivot
like algorithm led to some of the most efficient algorithms [18, 15, 16, 19]. From equation (14),
we can notice that the λ value only requires the knowledge about elements of the set S∗, but not
that this set is ordered. Such a remark gives a hint in why partitioning instead of sorting could be
beneficial. Consider p ∈ [z↑(1), z↑(d)], note that to get z↑(1) and z↑(d) only one pass over the vector
z is required. One can partition z into zlow and zhigh by putting the elements smaller (resp larger)
than p from z. Consider that the size of zhigh is j (i.e. it contains j entries), then we can easily
compute %j(w, y). If %j(w, y) ≥ p, then λ ≥ p. If this condition is true, this implies that we
can stop the processing of zlow because z↑(Ky) ∈ zhigh. If the condition is false, if %j(w, y) ≤ p,
then λ ≤ p, then we know that {i|zi ∈ zhigh} ⊆ S∗. Using this knowledge, we can continue the
processing of zlow.

Lower bound as pivot The choice for the pivot is of utmost importance for the global running
time, we can easily show that the worst case complexity is O(d2). As for the basic simplex,
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one could seek for the median pivot [18]. From a complexity point of view, this could be an
improvement, but our goal is not to partition equitably the data, but to efficiently find λ. Instead,
we will seek for a pivot which is a lower bound of λ.

Let V be any sub-sequence of the component indices of vector y. Let pV be a pivot value
defined with respect to V .

pV =
−a+

∑
i∈V wiyi∑

i∈V w
2
i

(17)

Proposition 1 Let V be any sub-sequence of the component indices of vector y. Using pV as a
pivot allows to directly discard elements of zlow.

Proof. If we use pV as a threshold value, and by definition of a lower bound, we have:

a ≤
∑

i∈{1..d}

wi max(yi − wipV , 0) (18)

The proof can be found at the end of this paper.
If zi ∈ zlow, it implies that max(yi−wipV , 0) = 0, which also implies that max(yi−wiλ, 0) =

0. Consider the algorithm iterating between the following step: Step 1) Set p = pzhigh . Step 2)
remove elements of zhigh which are smaller than p. This algorithm will converge to a state where
no element can be removed anymore. This state implies that the resulting vector zhigh is S∗.

Online Filtering Another optimization of this algorithm is the following, the pivot value does
not need to wait until the end of step 2) before being updated, but can be updated after every
element of zhigh is read. Such an interactive update requires us to divide the algorithm in two
parts.

The first part is the first pass over y, where we do not have any knowledge about y. Let initialize
V = {1} and the pivot by pV = w1y1−a

w2
1

. Consider that we are processing the jth element of y,
which implies that we have already processed all the elements in [1, j − 1]. From these elements,
we have built a sub-sequence V , and an associated pivot pV . If we have zi ≤ pV , then, as before,
we can discard this element. Otherwise, if zi > pV , then we can add i to V because zi is potentially
larger than λ. Once V is updated, we can update pV incrementally without waiting for the pass to
be over, and then process the (j + 1)th element of y.

For the second part, we have hopefully already discarded several elements of y, and more
importantly, we have a set V containing elements that are potentially larger than λ. In addition, we
have the associated pivot pV , which is processed with respect to all the elements in V . Consider
that we pass over the elements of zi ∈ V , if zi ≤ pV , then we can remove zi from V , and update
pV accordingly. Note that just like for the first part, this can be done incrementally. When no more
element can be removed from V , the algorithm finished and V = S∗. A possible implementation
is given in Algorithm 3.

In the same fashion as [19], we have incorporated a refinement. During the first iteration,
while processing the ith element, when the current pivot value is smaller than the one defined by
the current value p′ = wiyi−a

w2
i

, then p′ will become the new basis. To do that, an additional set v′

is required and a cleanup step which ensures that V contains all the elements zi larger than pV
before the second part of the algorithm. Note that the proposed algorithm works on the permuted
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space of z without using z for the calculation of J and λ, which is a major difference with the
non-weighted version.

Algorithm 3: w-pivotF

Data: y, w, a
v ← {y1} # a set containing only y1

ṽ ← ∅ # an empty set
λ′ ← w1y1−a

w2
1

for n ∈ {2..d} do
if yn

wn
> λ′ then

λ′ ← wnyn−a+
∑

i∈v w↑(i)y↑(i)
w2

n+
∑

i∈v w
2
↑(i)

if wnyn−a
w2

n
< λ′ then

Insert n in set v
else

Insert v in set ṽ
v ← {yn}
λ′ ← wnyn−a

w2
n

if ṽ 6= ∅ then
for n ∈ ṽ do

if yn
wn

> λ′ then
Insert n in set v
λ′ ← −a+

∑
i∈v w↑(i)y↑(i)∑
i∈v w

2
↑(i)

while |v| changes do
for n ∈ v do

if yn
wn

< λ′ then
Remove n from set v
λ′ ← −a+

∑
i∈v w↑(i)y↑(i)∑
i∈v w

2
↑(i)

λ∗ ← λ′

for i ∈ {1..|y|} do
xi ← max(yi − wiλ∗, 0)

3.2. w-bucketF Algorithm
In this section, we present the w-bucketF algorithm, which is a generalization of the linear

time simplex projection bucketF [20]. w-bucketF fundamental idea is to recursively split vector
z into B ≥ 2 ordered sub-vectors (say buckets) z̃kb with b = 1, . . . , B and k = 1, . . . , k̄, while
looking for z↑(K). We say that the sub-vectors are ordered in the sense that all elements of z̃kb are
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y, w

z̃1
1

z̃1
2

z̃1
3

z̃1
4

z̃1
5

z̃1
6

z̃2
1

z̃2
2

z̃2
3

z̃2
4

z̃2
5

z̃2
6

...

z̃k̄1

z̃k̄2

z̃k̄3

z̃k̄4

z̃k̄5

z̃k̄6

Figure 1: Principle of ”bucket filtering”. The vector y is split into 6 buckets. The buckets in green must be kept to
compute the threshold λy . The buckets in red are not involved in the computation of λy . The bucket in blue must be
explored in order to identify its elements which participate to λy . Hence, the splitting process is repeated recursively
until all the values of y involved in the computation of λy are identified.

smaller than the ones of z̃kb+1 for all b = 1, . . . , B − 1. The depth, or number of recursive splitting
is k̄. In the description of w-pivotF , from the two sub-vectors zlow and zhigh, only one of them
was re-used at the next iteration. In the w-bucketF algorithm, only one of theB buckets will be re-
used at the next iteration. Such a fine grain gives us three possible states for the buckets, < z↑(K),
> z↑(K), ?z↑(K). Only one bucket will be in the uncertainty state (?z↑(K)), this is the bucket that
will be re-used. Figure 1 shows a toy example of the application of this process.

We define here the different components of the w-bucketF algorithm. For any level k+ 1 ≥ 1,
consider the interval Ik+1 defined by

Ik+1 = [min z̃kbk ,max z̃kbk ] (19)

with min z̃kb (resp. max z̃kb ) the minimum (resp. maximum) element of sub-vector z̃kb .
Consider a partition of Ik+1 into B ordered sub-intervals Ik+1

1 ,. . . , Ik+1
B . Let hk+1 : Ik+1 7→

{1, . . . , B} be the bucketing function such that hk+1(v) = b when the real value v belongs to Ik+1
b .

The bucket z̃kbk is split into B ordered sub-vectors z̃k+1
b such that

1. Sk+1
b = {i ∈ Skbk : hk+1(zi) = b},

2. z̃k+1
b = (zi)i∈Sk+1

b
,

3. max z̃k+1
b < min z̃k+1

b+1 for all b = 1, . . . , B − 1,

with the convention S0
b0

= {1, . . . , d}. We get
∣∣SkB∣∣ ≥ 1 at any level k ≥ 1 because of the

definition of Ik+1. The fact that max z̃k+1
b < min z̃k+1

b+1 follows from the fact that equal values of z
necessarily belongs to the same bucket.

For any k > 0,

Ck
b =

k−1∑
k′=1

∑
b′>bk′

∑
i∈Sk′

b′

wiyi +
∑
b′≥b

∑
i∈Sk

b′

wiyi (20)
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W k
b =

k−1∑
k′=1

∑
b′>bk′

∑
i∈Sk′

b′

w2
i +

∑
b′≥b

∑
i∈Sk

b′

w2
i (21)

Nk
b =

k−1∑
k′=1

∑
b′>bk′

∑
i∈Sk′

b′

1 +
∑
b′≥b

∑
i∈Sk

b′

1 (22)

are cumulative sums of all the buckets discarded because we know they belong to S∗ from previous
iterations, and all the larger or equal buckets of the iteration k. Both of these values will be used
for incrementally processing %j(w, y), equation (15). More precisely, we define:

%Nk
b
(w, y) = (Ck

b − a)/W k
b . (23)

Let b be the largest value such that z̃kb is not empty. If %Nk
b
(w, y) ≥ min z̃kb , then bk = b and we

can discard all the buckets with b′ < b and continue to the next iteration, since λ ≥ %Nk
b
(w, y).

Otherwise, if %Nk
b
(w, y) < min z̃kb , then Skb ⊆ S∗ and we can continue processing the other

buckets. Let bk be the largest value such that z̃kbk is not empty and %Nk
bk

(w, y) ≥ min z̃kbk . We know

that for all b > bk, Skb ⊆ S∗, and that for all b < bk, ∀v ∈ z̃kb , v < %Nk
bk

(w, y) ≤ λ. Thus we can

safely go to the next iteration, considering only z̃kbk . Note that if y ∈ ∆a, then such a bk value does
not exist, and at the first iteration we can stop.

From the definition of Ik (19), we can show that the size of the bucket z̃kbk is strictly decreasing.
Let k̄ be the iteration where z↑(K) is the minimum value of a bucket z̃k̄bk̄ . Let b′ be the largest value,
strictly lower than bk̄, such that z̃k̄b′ is not empty. We have:

max z̃k̄b′ < %N k̄
bk̄

(w, y) ∧min z̃k̄bk̄ ≥ %N k̄
bk̄

(w, y). (24)

Such a condition, from equation (16), implies that %N k̄
bk̄

(w, y) = λ. The complexity of the w-

bucketF algorithm is highly dependent of the bucketing function hk, and using equation (19), we
can easily show that the worst case complexity is bound byO(d2). Following the same idea as [20],
we can use a bucketing function based on the numbers encoding in nowadays computers. Such
a function, at each iteration, choose to partition the numbers with respect to their kth byte, in the
same fashion as the Radix sort [23]. Using such a bucketing function loose the property of equation
(19), but the advantage is that the complexity becomes linear O(d + B). An implementation is
given in Algorithm 4.

Filtering The advantage of algorithm w-pivotF is to discard values that are known to be al-
ready dominated by an incrementally updated lower bound of λ. In w-bucketF , we can easily use
the exact same lower bound, by keeping its process in parallel of the processing of the buckets.
Moreover, thanks to the bucketization, we can also have another lower bound. When we are pro-
cessing bucket b at iteration k, then %Nk

b+1
(w, y) is another, pretty good lower bound of λ. Note

that this value should be directly available, because it was required to process the previous bucket.
Finally, the filtering consists in removing values that are lower than one of our lower bounds.
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Algorithm 4: w-bucket
Data: y, w, a
ỹ0
b0
← y

C0
b0
← −a

W 0
b0
← 0

1 for k ∈ {1..dlogb(D)e} do
for b ∈ {1..B} do

Skb ← {i ∈ Sk−1
bk−1
| hk−1(yi) = b}

ỹkb ← (yi)i∈Sk
b

2 for b ∈ {B..1} do
bk ← b
if %Nk

b+1
(w, y) > max(ỹkb ) then

break loop 1
if %Nk

b
(w, y) ≥ min(ỹkb ) then

break loop 2

λ← %Nk
bk

(y)

for i ∈ {1..|y|} do
xi ← max(yi − wiλ, 0)

4. Experimental evaluation

In these experiments, we reproduced the experiments from [20] by defining random vectors of
size varying between 105 and 107, using either uniform or Gaussian distributions. We generated
500 vectors for each experiment and ran each algorithm independently, and extracted their mean
times. We show here the performances of the proposed algorithms, w-pivotF , and w-bucket and
w-bucketF against the existing algorithm w-sort [9] Algorithm 1, implemented using an efficient
quick-sort procedure. The difference between w-bucket and w-bucketF is the use or not of the
filtering improvement. All the algorithms are implemented in C, and run on a I7 3rd generation.
All source codes are available online2.

Uniform We start our experiments with Figure 4 and Figure 5 which is a filtered plot containing
only the w-bucketF and w-pivotF algorithms. This figure shows that when a uniform random
distribution is used for vector y, the time needed for projecting the vector grows linearly for all
methods as a function of the vector size. Moreover, the proposed algorithms seem to perform
order of magnitude faster than w-sort, which is already a faster algorithm than the state of the art.
The second plot of Figure 4 shows the impact of the radius for the projection time. It is interesting
to note that while all proposed methods outperform the sorting scheme, when the radius becomes
too large, the cost of filtering become larger than the gain it can bring, because less values are
discarded.

2https://github.com/memo-p/weighted projection
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Gaussian Figure 7 (left) shows that the time seems to grow linearly with d, the size of vector y.
Moreover, the w-bucketF and w-pivotF algorithms perform better as shown in Figure 8. Figure 7
(right) shows that first, when the radius is small or unit, the filtering algorithms are the most
efficient, but the more the radius grows, the less they are, and the classical bucket become the best
one. Such a result may imply that in function of the radius size, one should choose to use the
filtering or not in the w-bucket algorithms. Figures 6 shows the different results for the filtered
algorithms only, since their running times are order of magnitude faster. As we can see, they
behave similarly in most of the cases, which may imply that the larger cuts in the search are
induced by the filtering scheme, rather than the splitting scheme.

Discussion Differences in terms of running time between w-bucketF and w-pivotF are rela-
tively small in practice. From a theoretical point of view, both of these algorithms take advantage
of the filtering. We made the choice of designing these two algorithms because they represent
some of the current best state of the art algorithms for the `1 ball. From our point of view, only the
w-bucketF algorithm should be implemented because of its time efficiency and its linear worst-
case complexity compared to the quadratic worst-case complexity of w-pivotF .

5. Variables Selection

In signal reconstruction and variables selection, the non-smooth `p (0 < p < 1) regularization
has proven efficient in finding sparse solutions. Consider the problem of minimizing a quadratic
reconstruction error subject to the `p regularization, ‖x‖p = (

∑d
i=1 |xi|p)

1
p .

minimize
x∈Rd

1

2
‖Ax− b‖2

2 + λ‖x‖p (25)

where A ∈ Rn×m, b ∈ Rm, and λ ∈≥0 is the penalty parameter.
A popular method to solve this problem is to use the iteratively reweighted `1 minimization

(IRL1) [14, 24, 25, 26]. An application of IRL1 to problem (25) can be

xk+1 ∈ arg min
x∈Rd

1

2
‖Ax− b‖2

2 subject to ‖W kx‖1 < rk (26)

with the weight W k = diag(wk), and wk is defined by the previous iterates by

wki =
1

(|xki |+ ε)1−p , i = 1, . . . ,m. (27)

where ε ∈ R>0.
Using the weighted `1 ball projection algorithms proposed in this paper, solving (26) can be

done easily. We propose to use the following algorithm, based on [22], we start with x0 ∈ Rm

randomly defined. We set p = 1, which is equivalent to solving the LASSO problem. Then, we
smoothly decrease p, and iteratively solve an IRL1 problem such as (26) with a fixed p. A possi-
ble implementation of this algorithm is in Algorithm 5. We call this algorithm Smooth Iterative
Reweighted `1 ball Projections (SIRL1).

12



Algorithm 5: Smooth Iterative Reweighted `1 ball Projections
Data: x0 ∈ Rm, A ∈ Rn×m, b ∈ Rm

p← 1
while p > 0 do

while IRLS-p hasn’t converged do
wki = 1

(|xki |+ε)1−p , i = 1, . . . , n.

xk+1 ∈
minimize

x∈Rd

1

2
‖Ax− b‖2

2

subject to‖W kx‖1 < rk

Decrease smoothly p

Reconstruction results. We show in the section the reconstruction efficiency of the SIRL1, which
is a direct application of having an efficient projection onto the weighted L1 ball. We reproduce
here part of the experimental protocol of [14]. We compare the reconstruction error and the sparsity
against the state of the art LASSO algorithm and the projection based (PC) version of [14]. In
this experiment, n is the number of rows, m the number of columns and k the real number of
non-zero components of the solution. First, table 1 shows some results on the reconstruction of
sparse vectors with sparsity of 5, 15, 30 non-zero values over 100 values. As we can see, the
reconstruction accuracy and the sparsity is rapidly found with even a small number of different p.
Moreover, because of the smoothness induced by p, even if the number of iterations is larger in
(a=5,#p = 5) compared to (a=5,#p = 3), the running time is slower.

A look at the impact of the smoothness between the values of p is given in Table 2. We can
see that less than 3 iterations over p may be too small, and that more than 5 in this example seem
to be useless. But one must be careful with the smoothness, we tried to push the smoothness to
100 iterations over p, the results are in Fig 2. As we can see, the number of iterations between
p = 0.2 and p = 0.8 is high, while the L0 norm is not impacted. We were able to see this kind
of results in different settings we set, with larger n, m and k. Finaly, the radius is one of the most
important parameter of this algorithm, it’s impact can be seen on table 3. As it is expected, a radius
smaller than the number of non-zero components has a bad impact on the reconstruction, but it is
interesting to see that less iterations seem to be required to solve these problems than for larger
values of the radius. Finally, the results we obtained are coherent with the results obtained in [22],
which validates the inverted model we used.

6. Conclusion

Data and feature sizes are ever increasing in nowadays problems. In this paper we proposed 3
efficient projection algorithms with different complexities, including linear time, for working with
very large problems.
Differences in terms of running time between w-bucketF and w-pivotF are relatively small in
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Algorithm `0 `1 Reconstruction Time (s) # iterations a
Lasso 5 5.00 1.00 0.0029 11 5.00
PC 5 4.86 4.82 1.1295 3880 5.00
#p = 3 5 5.22 0.00 0.2542 2107 5.00
#p = 5 5 5.22 0.00 0.1844 2176 5.00
Lasso 151 15.00 0.01 0.0163 159 15.00
PC 256 14.80 0.00 0.9570 307 15.00
#p = 3 15 14.80 0.01 0.3580 4909 15.00
#p = 5 15 14.80 0.00 0.3790 5201 15.00
Lasso 146 30.00 0.05 0.0223 240 30.00
PC 256 27.73 0.00 0.0477 352 30.00
#p = 3 30 27.73 0.00 0.1563 2053 30.00
#p = 5 30 27.73 0.00 0.5103 7131 30.00

Table 1: Reconstruction and Sparsity for various State of the art algorithms and two instances of SIRL1 noted #p = 3
(for three iterations of p) and #p = 5 (for five iterations of p). (n=100, m=256).

`0 `1 Reconstruction Time (s) # iterations a #p
156 15.00 0.00 0.0580 655 15.00 1

15 14.76 0.15 0.0600 796 15.00 2
15 14.80 0.01 0.3429 4909 15.00 3
15 14.80 0.00 0.3770 5201 15.00 5
15 14.80 0.00 0.4386 5929 15.00 6
15 14.80 0.00 1.1664 11197 15.00 10

5 5.00 1.00 0.0050 14 5.00 1
5 5.03 0.91 0.6068 3032 5.00 2
5 5.22 0.00 0.1810 2107 5.00 3
5 5.22 0.00 0.1766 2176 5.00 5
5 5.22 0.00 0.2325 2227 5.00 6
5 5.22 0.00 0.1939 2446 5.00 10

Table 2: Impact of the smoothness of Q (i.e. #p) on the reconstruction sparsity using a = 15 and a = 5 (n=100,
m=256).

`0 `0 Reconstruction Time (s) # iterations Radius
8 11.58 13.18 0.0328 316 7.50
9 12.05 11.69 0.0265 247 8.62

10 13.13 8.73 0.1676 1072 9.75
11 13.33 7.61 0.0452 459 10.88
12 13.82 3.34 0.2793 2251 12.00
14 14.50 1.95 0.0318 306 13.12
15 14.69 1.02 0.0427 528 14.25
15 14.80 0.00 0.3668 5411 15.38
17 14.80 0.00 0.4542 5607 16.50
19 14.80 0.00 0.4216 5829 17.62
20 14.80 0.00 0.4015 5601 18.75
20 14.80 0.00 0.4011 5754 19.88

Table 3: Impact of the radius on the reconstruction sparsity. (n=100, m=256, k=15, #p = 4)

practice. From a theoretical point of view, both of these algorithms take advantage of the filtering.
We made the choice of designing these two algorithms because they represent some of the current
best state of the art algorithms for the projection on the `1 ball.
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Figure 2: Relationship between the number of iterations (#iteration), p value, and the norms (n=100, m=256, k=15).

From our point of view, only the w-bucketF algorithm should be implemented because of its time
efficiency and its linear worst-case complexity compared to the quadratic worst-case complexity
of the w-pivotF algorithm.

Experiments show that the proposed algorithms project very large non-sparse vectors in a small
amount of time, such as 8 ms for vectors of size 107, and seem to be robust to the randomness of
the vector. We showed how to directly use them in basic sparse-vector reconstruction frameworks
and obtain state of the art results. Finally, we empirically proved that they should be used as a
basis for projected gradient descent frameworks working with `1 balls, weighted or not.

7. Proofs

Notation Let y = (y1, y2, . . . , yd) ∈ Rd be a vector. Let a real a > 0 be a radius. ∆w,a is the
weighted simplex. Let x = PBa(y) be the projection of vector y onto the `1 ball Ba of radius a. z
is a vector where each element zi = yi

wi
. λ∗ is the threshold used to compute the projection onto

the weighted ball xi ← sign(yi) max(yi − wiλ∗, 0)
Proof of existence of λ∗. The projection onto the weighted simplex can be formulated as:

arg min
x

1

2
‖x− y‖2

2

subject to wᵀx = a

xi ≥ 0,∀i ∈ {0..d}

Whose Lagrange dual is: arg min
x

1
2
‖x− y‖2

2 +λ(wᵀx−a)−µᵀx Using the Kuhn-Tucker theorem
[27], we can show that necessary and sufficient conditions for x to be a optimum are xi − yi =
µi − wiλ, µi ≥ 0, and µixi = 0 and wᵀx = a. If we define x and µ to be respectively xi =
max(yi −wiλ, 0), µi = max(wiλ− yi, 0) then, the conditions are respected. From this definition,
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it follows that xi ≥ 0 for all i. Let C(λ) =
∑

iwi max(yi − wiλ, 0) =
∑

iwixi. Our goal is to
find the value of λ∗ such that C(λ∗) = a.

0 10 20 30 40 50
0

10

20

30

40

C(
)

Figure 3: Example of C function. Looking for a projection onto a = 10 is equivalent to looking for C(λ) = 10. Each
blue vertical line is the position of a zi value.

We know that the C function cannot be negative and can reach any positive value, that C is
piece-wise linear, and that the pieces of linearity are delimited by the values of z = { yi

wi
|∀i ∈

{0..d}}. Moreover, C is non-increasing.
Suppose z sorted in increasing order, thus z1 ≤ z2 ≤ ... ≤ zd, let ↑ () denote the permutation

of y and w to z such that y↑(1)

w↑(1)
≤ y↑(2)

w↑(2)
≤ ... ≤ y↑(d)

w↑(d)
. The values at the vertices of C are

C(zi) =
d∑
j=1

wj max(yj −
wjy↑(i)
w↑(i)

, 0)

C(zi) =
d∑

j=i+1

w↑(j)(y↑(j) −
w↑(j)y↑(i)
w↑(i)

)

C(zi) =
d∑

j=i+1

w↑(j)y↑(j) −
d∑

j=i+1

w2
↑(j)y↑(i)

w↑(i)

Since C(λ∗) = a, then for any zi < λ∗, xi = 0 and C(zi) > a. Thus xi = 0 for i ∈ {1..J},
with:

J := max

{
j

∣∣∣∣−a+
∑d

i=j+1 w↑(i)y↑(i)∑d
i=j+1 w

2
↑(i)

> z↑(j)

}
(28)
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Using J ,we can finally get λ∗.

C(λ∗) =
d∑

j=J+1

w↑(j)y↑(j) −
d∑

j=J+1

w2
↑(j)λ

∗ = a

−λ∗
d∑

j=J+1

w2
↑(j) = −

d∑
j=J+1

w↑(j)y↑(j) + a

λ∗ =
−a+

∑d
j=J+1 w↑(j)y↑(j)∑d
j=J+1w

2
↑(j)

This proof shows that once z is sorted, finding J and λ∗ can be done in worst case linear time, as
for the non-weighted version. Only one iteration gives J .

Proof that each subset is a lower-bound pivot Consider V to be any sub-sequence of y. We
can compute the following pivot:

pV =
−a+

∑
i∈V wiyi∑

i∈V w
2
i

Then we have:

a = −pV
∑
i∈V

w2
i +

∑
i∈V

wiyi

a =
∑
i∈V

wi(yi − wipV )

a ≤
∑

i∈{1..d}

wi max(yi − wipV , 0)
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from 105 to 107, with a = 4. Right: Projection time comparison, while the radius a changes from 1 to 512, with
d = 105.
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radius a changes from 1 to 512, with d = 105.

20


	Introduction
	Definitions of the Projections
	Efficient Projection
	w-pivotF Algorithm
	w-bucketF Algorithm

	Experimental evaluation
	Variables Selection
	Conclusion
	Proofs

