Méthode "logique" multivaluée de René Thomas et logique temporelle

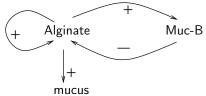
Gilles Bernot

University of Nice sophia antipolis, I3S laboratory, France

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- 1. Models and formal logic
- 2. Thomas' models for gene networks
- 3. Gene networks and temporal logic
- 4. Models for checking biological hypotheses
- 5. Extracting experiments from models
- 6. Model Simplifications


Mathematical models: what for ?

- Models as "Data Base" to store biological knowledge
- Models as design tools for synthetic biology
- Models as logical analysis tools of causality chains
- Models as guidelines for the choice of experiments

For the 2 or 3 last purposes, models can deviate far from biological descriptions while remaining very useful: "Kleenex" models...

Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations Difficulty to measure the strength of a given regulation Example of "competitor" circuits

・ロット 全部 マート・ キョン

Multistationarity ? Homeostasy ?

Many underlying models \approx 700 qualitative behaviours

Mathematical Models and Simulation

1. Rigorously encode sensible knowledge, into ODEs for instance

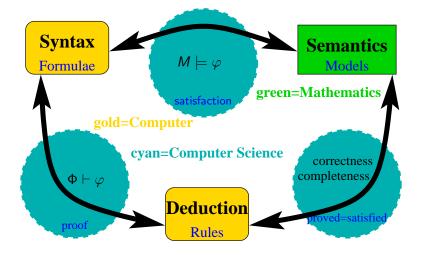
- 2. A few parameters are approximatively known
 - Some parameters are limited to some intervals
 - Many parameters are a priori unknown
- 3. Perform lot of simulations, compare results with known behaviours, and propose some credible values of the unknown parameters which produce robust acceptable behaviours
- 4. Perform additional simulations reflecting novel situations
- 5. If they predict interesting behaviours, propose new biological experiments

ション ふゆ くち くち くち くち

6. Simplify the model and try to go further

Mathematical Models and Validation

"Brute force" simulations are not the only way to use a computer. There are computer aided environments which help:

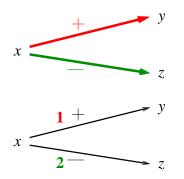

- designing simplified models that can be anatically solved
- avoiding models that can be "tuned" ad libitum
- validating models with a reasonable number of experiments

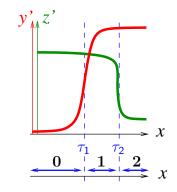
ション ふゆ くち くち くち くち

- defining only models that could be experimentally refuted
- proving refutability w.r.t. experimental capabilities
- establishing a *methodology*: models \leftrightarrow experiments

Operability and **observability** issues (Observability Group, Epigenomics Project)

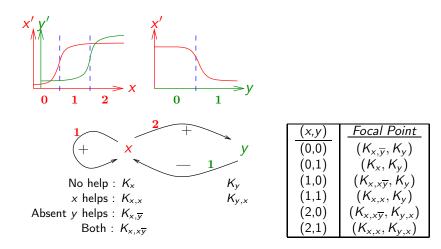
Formal Logic: syntax/semantics/deduction

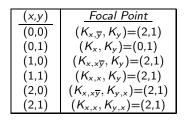

| ◆ □ ▶ → @ ▶ ★ ∃ ▶ → ∃ ● の < @



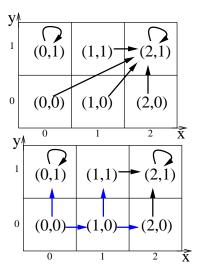
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. Models and formal logic
- 2. Thomas' models for gene networks
- 3. Gene networks and temporal logic
- 4. Models for checking biological hypotheses
- 5. Extracting experiments from models
- 6. Model Simplifications


Multivalued Regulatory Graphs


э

Regulatory Networks (R. Thomas)

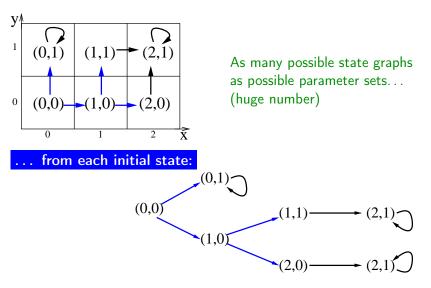


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

"desynchronization" by units of Manhattan distance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example on paper sheets...



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. Models and formal logic
- 2. Thomas' models for gene networks
- 3. Gene networks and temporal logic
- 4. Models for checking biological hypotheses
- 5. Extracting experiments from models
- 6. Model Simplifications

Time has a tree structure...

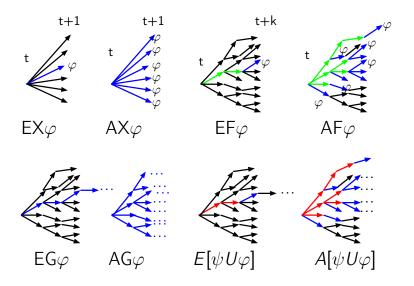
▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三回 - のQで

CTL = Computation Tree Logic

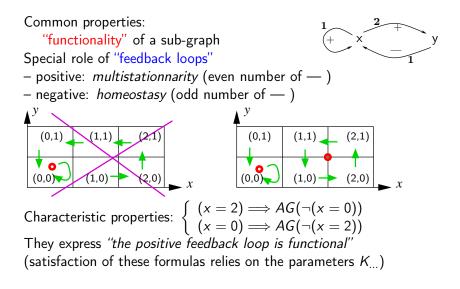
Atoms = comparaisons : (x=2) (y>0) ...

Logical connectives: $(\varphi_1 \land \varphi_2) \quad (\varphi_1 \implies \varphi_2) \quad \cdots$

Temporal modalities: made of 2 characters


first character	second character	
A = for All path choices	X = ne X t state	
	F = for some F uture state	
E = there Exist a choice	G = for all future states (Globally)	
	$U = \mathbf{U}$ ntil	

AX(y = 1): the concentration level of y belongs to the interval 1 in all states directly following the considered initial state.


EG(x = 0): there exists at least one path from the considered initial state where x always belongs to its lower interval.

(日) (日) (日) (日) (日) (日) (日)

Semantics of Temporal Connectives

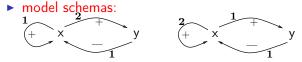
CTL to encode Biological Properties

Model Checking

Efficiently computes all the states of a state graph which satisfy a given formula: { $\eta \mid M \models_{\eta} \varphi$ }.

Efficiently select the models which globally satisfy a given formula.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

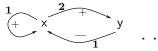

- 1. Models and formal logic
- 2. Thomas' models for gene networks
- 3. Gene networks and temporal logic
- 4. Models for checking biological hypotheses
- 5. Extracting experiments from models
- 6. Model Simplifications

Computer Aided Elaboration of Models

From biological knowledge and/or biological hypotheses, it comes:

properties:

"Without stimulus, if gene x has its basal expression level, then it remains at this level."


Formal logic and formal models allow us to:

- verify hypotheses and check consistency
- elaborate more precise models incrementally
- suggest new biological experiments to efficiently reduce the number of potential models

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

The Two Questions

$$\Phi = \{\varphi_1, \varphi_2, \cdots, \varphi_n, H\}$$
 and $\mathcal{M} =$

 $K_{\mathbf{x}} \cdots K_{\mathbf{x},\mathbf{x}} \cdots K_{\mathbf{x},\mathbf{xy}} \cdots$

1. Is it possible that Φ and \mathcal{M} ?

Consistency of knowledge and hypotheses. Means to select models belonging to the schemas that satisfy Φ . (\exists ? $M \in \mathcal{M} \mid M \models \Phi$)

2. If so, is it true in vivo that Φ and \mathcal{M} ?

Compatibility of one of the selected models with the biological object. Require to propose experiments to validate or refute the selected model(s).

\rightarrow Computer aided *proofs* and *validations*

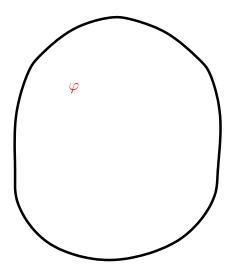
Theoretical Models \leftrightarrow **Experiments**

CTL formulas are satisfied (or refuted) w.r.t. a set of paths from a given initial state

- ► They can be tested against the possible paths of the theoretical models (M ⊨_{Model Checking} φ)
- They can be tested against the biological experiments (Biological_Object ⊨_{Experiment} φ)

CTL is a bridge between theoretical models and biological objects

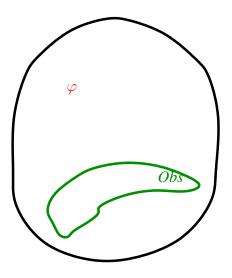
ション ふゆ くち くち くち くち


・ロト ・ 日 ・ モー・ モー・ うへぐ

- 1. Models and formal logic
- 2. Thomas' models for gene networks
- 3. Gene networks and temporal logic
- 4. Models for checking biological hypotheses
- 5. Extracting experiments from models
- 6. Model Simplifications

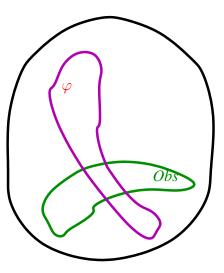
Generation of biological experiments (1)

Set of all the formulas:


 $\varphi = \mathsf{hypothesis}$

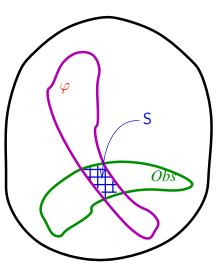
Generation of biological experiments (2)

Set of all the formulas:


 $\varphi = hypothesis$ Obs = possible experiments

Generation of biological experiments (3)

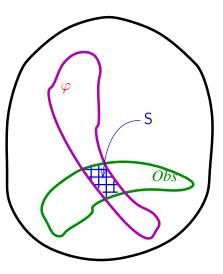
Set of all the formulas:


 $\varphi =$ hypothesis Obs = possible experiments $Th(\varphi) = \varphi$ inferences

Generation of biological experiments (4)

Set of all the formulas:

 φ = hypothesis Obs = possible experiments $Th(\varphi) = \varphi$ inferences S = sensible experiments


Generation of biological experiments (5)

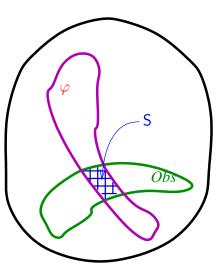
Set of all the formulas:

 φ = hypothesis Obs = possible experiments $Th(\varphi) = \varphi$ inferences S = sensible experiments

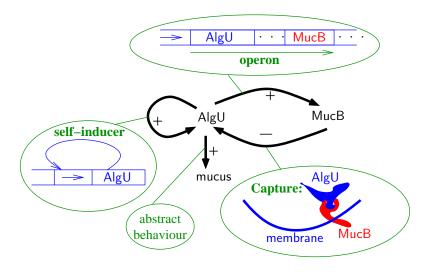
Refutability:

$$\mathsf{S} \Longrightarrow \varphi$$
 ?

Generation of biological experiments

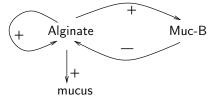

Set of all the formulas:

 φ = hypothesis Obs = possible experiments $Th(\varphi) = \varphi$ inferences S = sensible experiments


Refutability:

 $\mathsf{S} \Longrightarrow \varphi$?

Best refutations: Choice of experiments in S ? \dots optimisations



Example: Mucus Production in *P. aeruginosa*

How to validate a multistationnarity

 \mathcal{M} : (unknown thresholds)

$$\Phi: \begin{cases} (Alginate = 2) \implies AG(Alginate = 2) & (hypothesis) \\ (Alginate = 0) \implies AG(Alginate < 2) & (knowledge) \end{cases}$$

Assume that only *mucus* can be observed: Lemma: $AG(Alginate = 2) \iff AFAG(mucus = 1)$ (... formal proof by computer ...)

 $\rightarrow | \text{To validate: } (Alginate = 2) \Longrightarrow AFAG(mucus = 1)$

$(Alginate = 2) \implies AFAG(mucus = 1)$

Karl Popper:

$A \Longrightarrow B$	true	false
true	true	false
false	true	true

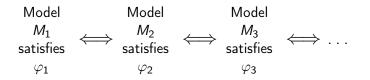
to validate = to try to refute *thus A=false is useless* experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state Alginate = 2. If the state is not directly controlable we need to prove lemmas:

(something reachable) \implies (Alginate = 2)

General form of a test:

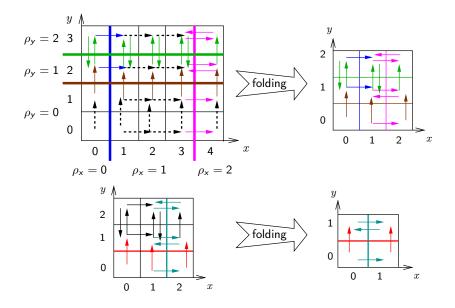
(something <u>reachable</u>) \implies (something <u>observable</u>)



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 - のへで

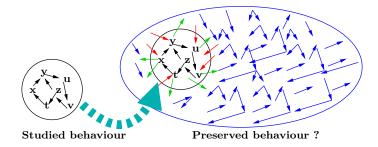
- 1. Models and formal logic
- 2. Thomas' models for gene networks
- 3. Gene networks and temporal logic
- 4. Models for checking biological hypotheses
- 5. Extracting experiments from models
- 6. Model Simplifications

Hypothesis driven model simplifications


Successive simplified views of the studied biological object:

Example: gene removal often preserves the number of attraction basins [Naldi&al.2011]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ


Simplifications via level folding

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q ()

Simplifications via subgraphs

Embeddings of Regulatory Networks:

Necessary and sufficient condition on the *local* dynamics of the "input frontier"

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

... Also fusion of genes, etc.

Take Home Messages

Formalize the hypotheses that motivate the biological research

Behavioural *properties* (Φ) are as much important as *models* (\mathcal{M})

Symbolic parameter identification is essential

Modelling is significant only with respect to the considered experimental *reachability* and *observability* (for refutability)

Formal proofs can suggest wet experiments

Mathematical models are not reality: let's use this freedom ! (simplified views of a biological object)

"Kleenex" models help understanding main behaviours