Master Mathmods, march 4, 2012

Complexity and recursivity

Order of magnitude

Prove the following:
(1) If $\alpha, \beta \geq 1$ are two real-valued constants, then $\log _{\alpha}(n)=\Theta\left(\log _{\beta}(n)\right)$
(2) $u=v+O(f)$ iff $v=u+O(f)$

Iterative complexity

Estimate the complexity of the following programs. We assume instructions I1, I2, I3 in $O(1)$.

```
for i in 1..n-1
    for j in i+1..n
        for k in i..j
            I1
        end
    end
end
```

```
i,j = 1,1
while i < n
    i+=1
    I1
    while j < n and Condition
        j+=1
        I2
    end
    I3
end
```


Recursive complexity

We consider the next two algorithms' complexity for computing the product of two large integers. Let U and V two integers of size $2 n$ in basis β such that $U=A \beta^{n}+B$ and $V=C \beta^{n}+D$.

- We first use the equality $(A \beta+B)(C \beta+D)=A \cdot C \beta+\beta(A \cdot D+B \cdot C)+B . D$. Instead of multiplying two integers of size $2 n$, we have to compute four products of integers of size n, three shifts (multiplication by β) and three additions. We assume that the complexity of the last two arithmetic operations is $O(n)$ and that $T(1)=k$. First write the recurrence relation between $T(2 . n)$, the time complexity for multiplying two integers of size n and $T(n)$. Solve this recurrence relation.
- Same question when using the equality $(A \beta+B)(C \beta+D)=A \cdot C \beta 2+((A-B) \cdot(D-C)+A \cdot C+$ $B . D) \beta+B . D$. First, count the number of basic arithmetical operations and assume also $T(1)=k$. The latter equality is known as Toom-Cook multiplication

Limits of the recurrence-solving theorem

Show that the theorem for solving recurrence relations does not apply to $T(n)=2 T(n / 2)+n \cdot \log (n)$. Do you know any other means for solving this recurrence?

