Algorithmics

Bruno MARTIN,
University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/mathmods.html

- Analysis of algorithms
- Introduction to recursive functions
- Some classical data structures
- Sorting
- Searching
- Hashing
- Graph algorithms
- Untractable problems

 Some information

10 lectures: this building

Every monday except maybee the week starting apr. 23 'till apr. 29
10h-11h00 lecture
11h15-12h15 exercises
Office hours: monday afternoon (please drop a mail)
Mail: mailto:Bruno.Martin@unice.fr
Web: http://deptinfo.unice.fr/~bmartin/mathmods.html
Assignments: one? two? tests and one final exam.

 Programming details: Ruby desuka?

Ruby desu: http://www.ruby-lang.org/en/
Install (1.9.3): http://www.ruby-lang.org/en/downloads/
Learn:
http://www.ruby-lang.org/en/documentation/quickstart/
More interactive: http://tryruby.org/
One-page doc: http://ruby.on-page.net/
Your first homework: install it and learn it by yourself

Given a problem :
how do we find an efficient algorithm for its solution?
Once we have found an algorithm :
how can we compare this algorithm with other algorithms that solve the same problem ?
how should we judge the efficiency of an algorithm ?
These questions interest both:
programmers
computer scientists

Our interest: behavior of the complexity as the size increases $(n \rightarrow \infty)$: the asymptotic complexity
Determines the size of problems algorithmically solvable
When an algorithm processes data of size n in time $c_{1} \times n^{2}+c_{2}$
(c_{1}, c_{2} constants) then its time complexity is :
$O\left(n^{2}\right)$ i.e. is in order of n^{2} i.e. is proportional to n^{2}
A function $g(n)$ is said to be $O(f(n))$ if :
there exists constants $c_{0}>0$ and n_{0} such that $g(n) \leq c_{0} \times f(n)$
for all $n>n_{0}$

Performance Analysis of an Algorithm

The O notation gives an "upper bound" to the complexity.
It guides designers in the search of the "best" algorithm
The goal of the study of complexity is: if you provide an algorithm with an "upper bound" complexity, and if you can demonstrate that your problem has a "lower bound" complexity and that they match, then you can stop searching a better algorithm and focus on the implementation

You often provide an "upper bound" by counting and analyzing the frequencies of the statements of the algorithm

Providing a "lower bound" complexity is very difficult. One needs to consider an abstract model - Turing machines - and determine which fundamental operations must be performed by any algorithm to solve the problem

This notation O is meaningful for large values of n
The O notation says nothing about the time complexity when :
n happens to be less than n_{0}
and c_{0} is hiding a large amount of "overhead"
For small values of n :
you'd prefer an algorithm in $O\left(n^{2}\right)$ time complexity
rather than one in $O(n)$ but with a big constant c_{0}
$10 n^{2}$ is faster than $500 n$ for $n<50$ and slower if $n>50$
Constants often hide implementation details - initialisations -

We are interested in the average case : the amount of time a program takes on a typical input data

And in the worst case : the amout of time a program takes on the worst possible input configuration

Many programs are extremely sensitive to their input data and performance might fluctuate wildly depending on the input

When studying an algorithm it is interesting to evaluate the average and the worst case

But the average case might be a mathematical fiction that is not representative of the actual data

The worst case might be a bizarre construction that would never occur in practice (consider LP for instance)

Moore's original statement that transistor counts had doubled every year can be found in "Cramming more components onto integrated circuits", Electronics Magazine 19 April 1965:
The complexity for minimum component costs has increased at a rate of roughly a factor of two per year ... Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer.

The O notation is extremely useful for classifying algorithms by performances. Suppose you have seven algorithms with the following time complexity:

$\log n$	$\sqrt{(} n)$	n	$n \log n$	n^{2}	n^{3}	2^{n}
3	3	10	30	100	1,000	1024
6	10	100	600	10,000	$1,000,000$	10^{30}
9	31	1,000	9,000	$1,000,000$	10^{9}	∞
13	100	10,000	130,000	10^{8}	10^{12}	∞
16	316	100,000	$1,600,000$	10^{10}	10^{15}	∞
19	1,000	$1,000,000$	$19,000,000$	10^{12}	10^{18}	∞

Even with the Moore law, some algorithms are still intractable

CPU Transistor Counts 1971-2008 \& Moore's Law

in terms of:

- number of transistors per integrated circuit
- cost per transistors
- computing performance per unit cost
- power consumption
- HD storage cost per bit
- ...

Have a look at http://en.wikipedia.org/wiki/Moore's_law

Classification of Algorithms Complexity

1 constant: all the instructions of a program are executed once or at most only a few times
$\log n$ logarithmic: solve a problem by splitting it into smaller pieces
n linear: a small amount of processing is done on each element
$n \log n$ quasilinear: solve a problem by splitting it in smaller subproblems, solving them independently and then combining the solution
n^{2} quadratic: process all pairs of data items (perhaps in a double-nested loop)
n^{3} cubic: process all triples of data items (perhaps in a triple-nested loop)
2^{n} exponential: a brute-force solution to a problem

Suppose that the time complexities are really $1000 n, 100 n \log n$, $10 n^{2}, n^{3}$ and 2^{n} then:
2^{n} would be the best for problem of size $2 \leq n \leq 9$
$10 n^{2}$ would be the best for problem of size $10 \leq n \leq 58$
$100 n \log n$ the best for problem of size $59 \leq n \leq 1024$
$1000 n$ the best for problem of size $1024<n$

Recursive functions are quite common in mathematics In CS, a recursive function is one that calls itself If a recursive function calls itself in any branch : the definition is circular and the program won't stop
The function must have a termination condition to stop calling itself

Recursive expression of programs is often more simple and natural to write than its iterative counterpart
For example, simple mathematic recurrence relations can be expressed easily in simple recursive programs
The recurrence relation of the factorial function is

$$
N!=N .(N-1)!\text { for } N \geq 1 \text { with } 0!=1
$$

The recurrence relation of the fibonacci numbers is

$$
U_{N}=U_{N-1}+U_{N-2} \text { for } N>1 \text { with } U_{0}=U_{1}=1
$$

```
class Integer
def factoorial
        if self == 0
            1
        else
            self * (self-1).factoorial
        end
    end
end
```

Call with
number.factorial

```
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Algorithmics
```


ntroduction to the analysis of algorithms Introduction to recurrive functions
 Recursive Implementation of Factorial -1st-

```
def factorial(n)
    if n == 0
        1
    else
        n * factorial(n-1)
    end
end
```

The recursive expression of the factorial function is efficient To compute the factorial of n you need $n+1$ recursive calls to the factorial function
It has a linear number of recursive calls.

```
def fib(n)
    if n <= 2
        1
        else
        fib(n-1)+fib(n-2)
    end
end
```

The recursive expression of the fibonacci numbers is simple and natural
Do you think it is efficient?

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br Algorithmics

The recursive calls indicate that $f i b(3)$ and $f i b$ (2) should be computed repeatedly and you need fib(5)-1 recursive calls. (Don't count the leaves).
But in fact you certainly would use the computation of fib(3) to compute $\mathrm{fib}(4)$ and decrease the number of function calls
Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br Algorithmics

```
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Algorithmics
- Stop of the rec. calls when the corresp. value for fib is 1 (leaves in the execution tree). the number of 1 's \(=\mathrm{fib}(N)\).
- Thus, the rec. algo. decomposes \(\operatorname{fib}(N)=1+\ldots+1\) and does \(\operatorname{fib}(N)-1\) sums.

\section*{Proposition}

There are \(f i b(N)-1\) recursive calls for computing \(f i b(N)\)
Thus an exponential-time algorithm for the fibonacci numbers since \(\operatorname{fib}(N)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{N}\) when \(N \rightarrow \infty\)
def fibonacciter (n)
    \(\mathrm{t} 1, \mathrm{t} 2, \mathrm{t}=1,1,1\)
    for i in 3..n
        \(\mathrm{t}=\mathrm{t} 1\) + t2
        \(\mathrm{t} 2=\mathrm{t} 1\)
        t1 =t
    end
    puts (t)
end

This is a linear-time program to compute the fibonacci numbers

You can sometimes split your input into two halves and apply the algorithm recursively on each half
It is the divide-and-conquer method
Divide-And-Conquer methods normally lead to more efficient algorithms when the input is divided without overlap
Recursive fibonacci algorithm lead to excessive recomputation because of overlap

Recursion should not be used blindly or it might become not practical like for the recursive fibonacci algorithm
Don't forget that the recursion depth is stored in the execution stack
You must understand clearly the behaviour of your recursive function. But recursion stay a natural and simple way to express algorithms```

