
Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Algorithmics

Bruno MARTIN,
University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr

http://deptinfo.unice.fr/~bmartin/mathmods.html

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Some information

10 lectures: this building
Every monday except maybee the week starting apr.23 ’till apr.29

10h-11h00 lecture

11h15-12h15 exercises

Office hours: monday afternoon (please drop a mail)
Mail: mailto:Bruno.Martin@unice.fr
Web: http://deptinfo.unice.fr/~bmartin/mathmods.html
Assignments: one? two? tests and one final exam.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Analysis of algorithms

Introduction to recursive functions

Some classical data structures

Sorting

Searching

Hashing

Graph algorithms

Untractable problems

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Programming details: Ruby desuka?

Ruby desu: http://www.ruby-lang.org/en/

Install (1.9.3): http://www.ruby-lang.org/en/downloads/

Learn:
http://www.ruby-lang.org/en/documentation/quickstart/

More interactive: http://tryruby.org/

One-page doc: http://ruby.on-page.net/

Your first homework: install it and learn it by yourself

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Analysis of Algorithms

Given a problem :

how do we find an efficient algorithm for its solution ?

Once we have found an algorithm :

how can we compare this algorithm with other algorithms
that solve the same problem ?

how should we judge the efficiency of an algorithm ?

These questions interest both :

programmers

computer scientists

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Evaluating Algorithms

Algorithms can be evaluated by a variety of criteria :

input/output, disk access, energy consumption...

The most often we are interested in their growth :

in time and in space

when solving larger and larger instances of the problem

The input’s size (usually n) is one of the main parameters

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Time and Space Complexity

Associate with a problem a size (an integer n) :

which is a measure of the quantity of input data (via an
adequate coding)

size of a matrix,
size of a file,
degree of a polynomial,
number of nodes in a graph, ...

The time needed by the execution of an algorithm is expressed as a
function of this size and is called the time complexity
The space needed by the execution of an algorithm is expressed as
a function of this size and is called the space complexity

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Asymptotic Complexity

Our interest: behavior of the complexity as the size increases
(n → ∞) : the asymptotic complexity
Determines the size of problems algorithmically solvable

When an algorithm processes data of size n in time c1 × n2 + c2

(c1, c2 constants) then its time complexity is :
O(n2) i.e. is in order of n2 i.e. is proportional to n2

A function g(n) is said to be O(f (n)) if :
there exists constants c0 > 0 and n0 such that g(n) ≤ c0 × f (n)
for all n > n0

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Other Orders of Magnitude

A function g(n) is said to be Ω(f (n)) if :
there exists constants c > 0 and n0 such that for all n > n0

0 ≤ c × f (n) ≤ g(n)

A function g(n) is said to be Θ(f (n)) if :
there exists constants c1, c2 > 0 and n0 such that for all n > n0

0 ≤ c1 × f (n) ≤ g(n) ≤ c2 × f (n)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Importance of the Constants

This notation O is meaningful for large values of n
The O notation says nothing about the time complexity when :

n happens to be less than n0

and c0 is hiding a large amount of ”overhead”

For small values of n :

you’d prefer an algorithm in O(n2) time complexity

rather than one in O(n) but with a big constant c0

10n2 is faster than 500n for n < 50 and slower if n > 50
Constants often hide implementation details - initialisations -

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Performance Analysis of an Algorithm

The O notation gives an ”upper bound” to the complexity.
It guides designers in the search of the ”best” algorithm

The goal of the study of complexity is : if you provide an

algorithm with an ”upper bound” complexity, and if you can

demonstrate that your problem has a ”lower bound”
complexity and that they match, then you can stop searching a
better algorithm and focus on the implementation

You often provide an ”upper bound” by counting and analyzing
the frequencies of the statements of the algorithm

Providing a ”lower bound” complexity is very difficult. One
needs to consider an abstract model - Turing machines - and
determine which fundamental operations must be performed by
any algorithm to solve the problem

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Complexity in the Best, Average and Worst Case

We are interested in the average case : the amount of time a
program takes on a typical input data

And in the worst case : the amout of time a program takes on the
worst possible input configuration

Many programs are extremely sensitive to their input data and
performance might fluctuate wildly depending on the input

When studying an algorithm it is interesting to evaluate the
average and the worst case

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

But the average case might be a mathematical fiction that is not
representative of the actual data

The worst case might be a bizarre construction that would never
occur in practice (consider LP for instance)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Classifying Algorithm by Performances

The O notation is extremely useful for classifying algorithms by
performances. Suppose you have seven algorithms with the
following time complexity:

log n
�

(n) n n log n n2 n3 2n

3 3 10 30 100 1,000 1024
6 10 100 600 10,000 1,000,000 1030

9 31 1,000 9,000 1,000,000 109 ∞
13 100 10,000 130,000 108 1012 ∞
16 316 100,000 1,600,000 1010 1015 ∞
19 1,000 1,000,000 19,000,000 1012 1018 ∞

Even with the Moore law, some algorithms are still intractable

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Moore’s Law

Moore’s original statement that transistor counts had doubled
every year can be found in ”Cramming more components onto
integrated circuits”, Electronics Magazine 19 April 1965:
The complexity for minimum component costs has increased at a

rate of roughly a factor of two per year ... Certainly over the short

term this rate can be expected to continue, if not to increase.

Over the longer term, the rate of increase is a bit more uncertain,

although there is no reason to believe it will not remain nearly

constant for at least 10 years. That means by 1975, the number of

components per integrated circuit for minimum cost will be 65,000.

I believe that such a large circuit can be built on a single wafer.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Moore’s Law

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Other Formulations

in terms of:

number of transistors per integrated circuit

cost per transistors

computing performance per unit cost

power consumption

HD storage cost per bit

...

Have a look at http://en.wikipedia.org/wiki/Moore’s_law

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Classification of Algorithms Complexity

1 constant: all the instructions of a program are executed once
or at most only a few times

log n logarithmic: solve a problem by splitting it into smaller pieces

n linear: a small amount of processing is done on each element

n log n quasilinear: solve a problem by splitting it in smaller
subproblems, solving them independently and then combining
the solution

n2 quadratic: process all pairs of data items (perhaps in a
double-nested loop)

n3 cubic: process all triples of data items (perhaps in a
triple-nested loop)

2n exponential: a brute-force solution to a problem

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Conclusion by Examples of Time Complexities

Suppose that the time complexities are really 1000n, 100n log n,
10n2, n3 and 2n then:

2n would be the best for problem of size 2 ≤ n ≤ 9

10n2 would be the best for problem of size 10 ≤ n ≤ 58

100n log n the best for problem of size 59 ≤ n ≤ 1024

1000n the best for problem of size 1024 < n

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Recursive Functions

Recursive functions are quite common in mathematics
In CS, a recursive function is one that calls itself
If a recursive function calls itself in any branch : the definition is
circular and the program won’t stop
The function must have a termination condition to stop calling
itself

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Should we Use Recursive Functions ?

Recursive expression of programs is often more simple and natural
to write than its iterative counterpart
For example, simple mathematic recurrence relations can be
expressed easily in simple recursive programs
The recurrence relation of the factorial function is

N! = N.(N − 1)! for N ≥ 1 with 0! = 1

The recurrence relation of the fibonacci numbers is

UN = UN−1 + UN−2 for N > 1 with U0 = U1 = 1

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Recursive Implementation of Factorial –1st–

def factorial(n)

if n == 0

1

else

n * factorial(n-1)

end

end

The recursive expression of the factorial function is efficient
To compute the factorial of n you need n + 1 recursive calls to the
factorial function
It has a linear number of recursive calls.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Recursive Implementation of Factorial –2nd–

class Integer

def factoorial

if self == 0

1

else

self * (self-1).factoorial

end

end

end

Call with

number.factorial

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Recursive Implementation of Fibonacci

def fib(n)

if n <= 2

1

else

fib(n-1)+fib(n-2)

end

end

The recursive expression of the fibonacci numbers is simple and
natural
Do you think it is efficient ?

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Executing fib(5)

fib(5)

/ \

fib(4) fib(3)

/ \ / \

fib(3) fib(2) fib(2) fib(1)

/ \ | | |

fib(2) fib(1) 1 1 1

| |

1 1

The recursive calls indicate that fib(3) and fib(2) should be
computed repeatedly and you need fib(5)-1 recursive calls.
(Don’t count the leaves).
But in fact you certainly would use the computation of fib(3)
to compute fib(4) and decrease the number of function calls

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Executing the Fibonacci Function fib(5)

Stop of the rec. calls when the corresp. value for fib is 1
(leaves in the execution tree). the number of 1’s = fib(N).

Thus, the rec. algo. decomposes fib(N)= 1 + . . .+ 1 and
does fib(N)− 1 sums.

Proposition

There are fib(N)− 1 recursive calls for computing fib(N).

Thus an exponential-time algorithm for the fibonacci numbers

since fib(N) = 1√
5

�
1+

√
5

2

�N
when N → ∞

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Iterative Implementation of Fibonacci

def fibonacciter(n)

t1,t2,t = 1,1,1

for i in 3..n

t =t1 + t2

t2 =t1

t1 =t

end

puts(t)

end

This is a linear-time program to compute the fibonacci numbers

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Divide-and-Conquer Methods

You can sometimes split your input into two halves and apply the
algorithm recursively on each half
It is the divide-and-conquer method
Divide-And-Conquer methods normally lead to more efficient
algorithms when the input is divided without overlap
Recursive fibonacci algorithm lead to excessive recomputation
because of overlap

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Complexity

Theorem

Let a ≥ 1 and b > 1 two constant integers, f (n) a function and

T (n) inductively defined:

T (n) = a.T (n/b) + f (n).

An asymptotic bound on T (n) is:

1 T (n) = Θ(nlogb(a)) if f (n) = O(nlogb(a−ε)) for � > 0 constant

2 T (n) = Θ(nlogb(a) log(n)) for f (n) = Θ(nlogb(a))

3 T (n) = Θ(f (n)) for f (n) = Ω(nlogb(a+ε)) and if

a.f (n/b) ≤ c .f (n) for a constant c < 1 and n sufficiently

large.

Or use Mathematica RSolve function.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

Outline

Introduction to the analysis of algorithms

Introduction to recursive functions

Conclusion about Recursive Programs

Recursion should not be used blindly or it might become not
practical like for the recursive fibonacci algorithm
Don’t forget that the recursion depth is stored in the execution
stack
You must understand clearly the behaviour of your recursive
function. But recursion stay a natural and simple way to express
algorithms

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlAlgorithmics

