
CRYPTOLOGY : CRYPTOGRAPHY + CRYPTANALYSIS

Cryptology = science of secrecy.
How :
encipher a plaintext into a ciphertext to protect its secrecy.
The recipient deciphers the ciphertext to recover the plaintext.
A cryptanalyst shouldn’t complete a successful cryptanalysis.
Attacks [6] :

• known ciphertext : access only to the ciphertext

• known plaintexts/ciphertexts : known pairs
(plaintext,ciphertext) ; search for the key

• chosen plaintext : known cipher, chosen cleartexts ;
search for the key

Short history

J. Stern [8] : 3 ages :

• craft age : hieroglyph, bible, ..., renaissance,!WW2

• technical age : complex cipher machines

• paradoxical age : PKC

Evolves through maths’ history, computing and cryptanalysis :

• manual

• electro-mechanical

• by computer

Polybius’s square

Polybius, Ancient Greece : communication with torches

1 2 3 4 5
1 a b c d e
2 f g h ij k
3 l m n o p
4 q r s t u
5 v w x y z

TEXT changed in 44,15,53,44. Characteristics

• encoding letters by numbers

• shorten the alphabet’s size
encode a character x over alphabet A in y finite word over B.
Polybius square : {a, . . . , z}! {1, . . . , 5}2.

History – ancient Greece

500 BC : scytale of Sparta’s generals

Secret key : diameter of the stick

History – Caesar

Change each char by a char 3 positions farther
A becomes d, B becomes e. . .
The plaintext TOUTE LA GAULE becomes wrxwh od jdxoh.

Why enciphering?

• Yesterday :
I for strategic purposes

(the enemy shouldn’t be able to read messages)
I by the church
I diplomacy

• Today, with our numerical environment
I confidentiality
I integrity
I authentication

Goals of cryptology

Increasing number of goals :

• secrecy : an enemy shouldn’t gain access to information

• authentication : provides evidence that the message
comes from its claimed sender

• signature : same as auth but for a third party

• minimality : encipher only what is needed.

• traceability : keep the logs for a given time

• privacy : the right to be let alone

The tools

• Information Theory : perfect cipher

• Complexity : most of the ciphers just ensure computational
security

• Computer science : all make use of algorithms

• Mathematics : number theory, probability, statistics,
algebra, algebraic geometry,...

Ciphers Classification

variable
length

(stream ciphers)

bloc ciphers

secret key public key

cipher

transposition product

polyalphabetical
homophone
polygramme

substitution

simple (monoalphabetical)

Symmetrical ciphers

Made of [1] :

• plaintext alphabet : AM

• ciphertext alphabet : AC

• keys alphabet : AK

• encipher ; application E : A?
K ⇥A?

M ! A?
C ;

• decipher ; application D : A?
K ⇥A?

C ! A?
M

E and D are such that 8K 2 A?
K, 8M 2 A?

M :

D(K ,E(K ,M)) = M

Monoalphabetical ciphers
Monoalphabetical cipher : bijection between letters from AM
and AC . If both alphabets are identical : permutation.

Example : Caesar. {a,. . . ,z}⌘{A,. . . ,Z} ⌘ {0, . . . , 25} = Z26
Caesar cipher is additive.
Encipher : 8x 2 Z26, x 7! x + 3 mod 26
Decipher : 8y 2 Z26, y 7! y � 3 mod 26

The + can be changed in ⇥ to get a multiplicative cipher (the
'(26) acceptables values are s.t. gcd(t , 26) = 1, t - 26).

Affine ciphers combine 26 + ciphers and 12 ⇥ :
given s and t 2 N, encipher with : x 7! (x + s) · t mod 26.
The key is the pair (s, t)

There are 26.12=312 possible affine ciphers. Far from the
26 !=403291461126605635584000000 possible ones.

Ciphers defined by keyword

To get all possible monoalphabetical ciphers by :

• a keyword like, for instance CRYPTANALYSIS ;

• a key letter like e.
Remove multiple occurrences of the same letter in the keyword
-here CRYPTANLSI- then

a b c d e f g h i j k l m n o p q r s t u v w x y z
V W X Z C R Y P T A N L S I B E D F G H J K M O Q U

Cryptanalysis

Shannon : a small proportion of letters provides more
information than the remaining 2/3 of the text.

By applying a frequency analysis on the letters then of bigrams,
... in the ciphertext.

Conclusion

Monoalphabetical ciphers aren’t robust against a frequency
analysis.

We need ciphers for which the statistical distribution of the
letters tend to be a uniform one.

1.st attempt : use a crypto transformation which associates a
set of distinct letters in the ciphertext to the plaintext letters.

We get what is called polyalphabetical ciphers

Vigenère’s cipher (1586)

In a polyalphabetical cipher, plaintext characters are
transformed by means of a key K = k0, . . . , kj�1 which defines j
distinct functions f0, . . . , fj�1 s.t.

8i , 0 < j n fkl : AM 7! AC , 8l , 0 l < j
ci = fki mod j(mi)

Idea : use j distinct monoalphabetical ciphers.

Vigenère’s square
abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ NOPQRSTUVWXYZABCDEFGHIJKLM
BCDEFGHIJKLMNOPQRSTUVWXYZA OPQRSTUVWXYZABCDEFGHIJKLMN
CDEFGHIJKLMNOPQRSTUVWXYZAB PQRSTUVWXYZABCDEFGHIJKLMNO
DEFGHIJKLMNOPQRSTUVWXYZABC QRSTUVWXYZABCDEFGHIJKLMNOP
EFGHIJKLMNOPQRSTUVWXYZABCD RSTUVWXYZABCDEFGHIJKLMNOPQ
FGHIJKLMNOPQRSTUVWXYZABCDE STUVWXYZABCDEFGHIJKLMNOPQR
GHIJKLMNOPQRSTUVWXYZABCDEF TUVWXYZABCDEFGHIJKLMNOPQRS
HIJKLMNOPQRSTUVWXYZABCDEFG UVWXYZABCDEFGHIJKLMNOPQRST
IJKLMNOPQRSTUVWXYZABCDEFGH VWXYZABCDEFGHIJKLMNOPQRSTU
JKLMNOPQRSTUVWXYZABCDEFGHI WXYZABCDEFGHIJKLMNOPQRSTUV
KLMNOPQRSTUVWXYZABCDEFGHIJ XYZABCDEFGHIJKLMNOPQRSTUVW
LMNOPQRSTUVWXYZABCDEFGHIJK YZABCDEFGHIJKLMNOPQRSTUVWX
MNOPQRSTUVWXYZABCDEFGHIJKL ZABCDEFGHIJKLMNOPQRSTUVWXY

polyalphabetique KSYSSGTUUTZXVKMZ
VENUSVENUSVENUSV

Cryptanalysis...

... becomes more difficult : we tend to a uniform distribution.

But, if we re-arrange the ciphertext in a matrix with as many
columns as the key length, all the letters in the same column
come from the same monoalphabetical cipher.

Cryptanalysis works as follows :
(1) find the key length
(2) apply the previous methods

2 tests to find the key length : Kasiski and Friedman.

Transposition

Implements a permutation of the plaintext letters AC = AM .

8i , 0 i < 0 f : AM ! AM
⌘ : Zn ! Zn
ci = f (mi) = m⌘(i)

Simple array transposition

Given a passphrase, we define a numerical key :
T R A N S P O S I T I O N S I M P L E
18 14 1 8 15 12 10 16 3 19 4 11 9 17 5 7 13 6 2

We encipher, «le chiffrement est l’opération qui consiste à
transformer un texte clair, ou libellé, en un autre texte
inintelligible appelé texte chiffré ou chiffré» [4].
18 14 1 8 15 12 10 16 3 19 4 11 9 17 5 7 13 6 2
l e c h i f f r e m e n t e s t l o p
é r a t i o n q u i c o n s i s t e à
t r a n s f o r m e r u n t e x t e c
l a i r o u l i b e l l é e n u n a u
t r e t e x t e i n i n t e l l i g i
b l e a p p e l é t e x t e c h i f f
r é o u c r y p t o g r a m m e

Vernam cipher (1917)
Is the one-time pad a «perfect» cipher ?

A and B share a true random sequence of n bits : the secret
key K .
A enciphers M of n bits in C = M � K .
B deciphers C by M = K � C.

Example
M = 0011, K = 0101
C = 0011� 0101 = 0110
M = K � C.

Non-reusability : for every new message, we need a new key.

Why a new key?
... To avoid revealing information on the � of plaintexts.

Eve can sniff C = {M}K and C0 = {M 0}K and computes :

C � C0 = (M � K)� (M 0 � K) = M �M 0

Given enough ciphertexts, she’s able to recover a plaintext by a
frequency analysis and with the help of a dictionnary [2].

If we respect the above requirements, Vernam cipher
guarantees the condition of perfect secrecy.

Condition (perfect secrecy)

Pr(M = m | C = c) = Pr(M = m)

Intercepting C doesn’t reveal any information to the cryptanalyst

Why is it secure?

Vernam ciphers provides perfect secrecy.
We have three classes of information :

• plaintexts M with proba. distribution Pr(M)/
P

M Pr(M) = 1

• ciphertexts C with proba. distribution Pr(C)/
P

C Pr(C)=1

• keys with proba. distribution Pr(K) s.t.
P

K p(K) = 1
Pr(M | C) = proba that M has been sent knowing that C was
received (C is the corresponding ciphertext of M). The perfect
secrecy condition is defined as

Pr(M | C) = Pr(M)

The interception of the ciphertext does not provide any
information to the crypto-analyst.

Conclusion

Perfect secrecy but difficult to achieve

• generate truly random sequences

• huge keylength

• store them and share them with the recipients
example of use : «red phone».

Product and iterated ciphers
Improvement : combine substitutions and transpositions

A cipher is iterated if the ciphertext is obtained from repeated
applications of a round function to the plaintext
At each round, we combine a round key with the plaintext.

Definition

In an iterated cipher with r rounds, the ciphertext is computed
by repeated applications of a round function g to the plaintext :

Ci = g(Ci�1,Ki) i = 1, . . . , r

C0 the plaintext, Ki round key and Cr the ciphertext.
Deciphering is achieved by inverting the previous equation. For
a fixed Ki , g must be invertible.
Special case, Feistel ciphers.

Feistel ciphers
A Feistel cipher with block size 2n and r rounds is defined by :

g : {0, 1}n ⇥ {0, 1}n ⇥ {0, 1}m ! {0, 1}n ⇥ {0, 1}n

X ,Y ,Z 7! (Y ,F (Y ,Z)� X)

g function of 2n ⇥m bits into 2n bits and � denoting the n bit XOR
Operation mode

Given a plaintext P = (PL,PR) and r round keys K1, . . . ,Kr , the
ciphertext (CL,CR) is obtained after r rounds.
Let CL

0 = PL and CR
0 = PR and we compute for i = 1, . . . , r

(CL
i ,C

R
i) = (CR

i�1,F (CR
i�1,Ki)� CL

i�1)

with Ci = (CL
i ,C

R
i) and CR

r = CL and CL
r = CR

The round keys K1, . . . ,Kr , are obtained by a key scheduling
algorithm on a master key K .

Block ciphers modes of operation

Modes of operation pictured

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

ECB : electronic codebook mode

The one previously used ; given a plaintext, each block xi is
enciphered with the key K , and provides the ciphertext y1y2 . . .

eK
. . . , x2, x1 . . . , y2, y1

CBC : cipher block chaining mode

Each ciphertext yi is XORed with next plaintext xi+1

IV=y0

x1

eK

y1

x2

eK

y2

CBC – Deciphering

y1

x1

IV=y0

y2

x2

dK dK

OFB (output feedback mode) and
CFB (cipher feedback mode)

Encipher each plaintext block by successive XORing with keys
coming from the application of a secret key cipher :

• OFB : sequence of keys comes from the repeated
enciphering started on an initial value IV. We let z0=IV and
we compute the sequence z1z2 . . . by zi = eK (zi�1). The
plaintext is then enciphered by yi = xi � zi

• CFB : We start with y0=IV and the next key is obtained by
enciphering the previous ciphertext zi = eK (yi�1).
Otherwise, everything works like in OFB mode.

CFB enciphering

IV=y0 eK

x1

y1

eK

x2

y2

CFB deciphering

IV=y0 eK eK

y1

x1

y2

x2

CTR Mode

The key stream is obtained by an iterative encryption of a
counter value (CTR).

This operation mode is very useful. It allows the design of a
stream cipher (though not perfectly secure) and
pre-computation of the stream.

MAC-MDC

For Message Authentication Code (Modification Detection
Code), or message fingerprint (MAC=MDC+IV6= 0).

Possible with CBC and CFB.
We start with IV=0. We build the ciphertext y1 . . . yn with the key
K in CBC mode. MAC is the last block yn.
Alice sends the message x1 . . . xn and the MAC yn.
Upon reception of x1 . . . xn, Bob builds y1 . . . yn by using the
secret key K and verifies that yn is the same than the received
MAC.

Public Keys

Invented recently by Diffie and Hellman [3].
We stand today on the brink of a revolution in crypto-
graphy.

Bright idea : asymmetrical ; enciphering 6= deciphering.
Encipher by means of a public key.
Decipher by means of a private key.
Useful to solve the key distribution problem!
Kerckhoff principle (1883) still useful

The security of an algorithm must not depend upon the
secrecy of the algorithm but only upon the secrecy of
the key.

http://en.wikipedia.org/wiki/Kerckhoffs%27s_principle

What kind of security?

Relies on computational security.

It means that the cryptanalyst must deploy more computational
efforts to recover the plaintext than its life expectancy.

This gives challenges for breaking RSA keys :

• of 140 digits (463 bits in 1999) 2000 mips year

• of 155 digits (512 bits in 1999) 8000 mips year

• of 232 digits (768 bits in 2010)
http://infoscience.epfl.ch/record/173017/files/hetero.pdf
https://en.wikipedia.org/wiki/RSA_numbers

One-way function
Let M and C be two sets and f : M ! C and f (M) is the image
of M by f . f is one-way if

1. 8x 2 M, the computation of f (x) is easy
(f poly-time computable) and

2. it is hard to find, for most of the y 2 f (M) an x 2 M such
that f (x) = y
(this problem must be difficult [5, 7, 1]).

With only point 2., the deciphering problem is as hard as the
cyptanalysis problem.

We need to add another notion for allowing decipherment and
render the cryptanalyst’s life as hard as possible.

! Trapdoor.

Trapdoor one-way function

f : M ! C is a trapdoor function if it is one-way. Computing in
the reverse direction is easy provided we have a private
information, the trapdoor, which allows constructing g s.t.
g � f = Id .

It is easy to compute the image by f but computationally hard to
invert f without knowing g.

Constructing pairs (f , g) must be easy.
The publication of f should not reveal anything on g.

Idea : use two 6= algorithms, f to encipher and g to decipher.

1.st PKC

1978 : RSA ; Rivest Shamir et Adleman were

• seeking a contradiction in the idea of public key

• successful to find the contrary and obtained the Turing
award in 2002 !

http://amturing.acm.org/lectures.cfm

Rivest, Shamir, Adleman (1978)

Relies on the hardness to factor an integer and on the
hardness of deciding whether an integer is a prime.
For instance, is 1829 prime?
No : given 31 and 59, their product equals 1829, but finding the factors is hard since we do not know either how

many factors we need.

Or, is 7919 composite?
No, but the primality certificate is hard to exhibit.

Some maths

Euler totient function of n 2 N : '(n) : counts how many
integers from [[1, n]] are prime with n. '(1) = 1 and if p is prime,
'(p) = p � 1.

'(n) = card{j 2 {1, . . . , n} : gcd(j , n) = 1}

Computation : factor n in n =
Q

p|n,p prime p↵p then,
'(n) =

Q
p|n,p prime(p

↵p � p↵p�1) = n
Q

p|n(1�
1
p).

Example : '(12) = (4� 2)(3� 1) = 12(1� 1
2)(1�

1
3) = 4

Theorem (Fermat-Euler)

m'(n) ⌘ 1 mod n if gcd(m, n) = 1

Compute ab mod n
hbk , bk�1, . . . b0i binary representation of b : b =

Pk
i=0 bi2i .

Modular Exponentiation (a, b, n)
c, d 0, 1 ;
Let hbk , bk�1, . . . b0i the binary representation of b
For i k to 0 step -1 do

d (d .d) mod n ;
if bi = 1 then

d (d .a) mod n ;
return d

1 def expMod (a , b , n) :
2 d = 1
3 f o r i i n b in (b) [2 :] :
4 d = (d*d) % n
5 i f i == ’ 1 ’ : d = (d*a) % n
6 r e t u r n (d)
7

By hand

1773 mod 100. 73 = h1001001i

i bi 172i 172i
mod 100 value

0 1 17 17 mod 100 17
1 0 172 289 mod 100 89
2 0 232 7921 mod 100 21
3 1 1302 441 mod 100 41
4 0 92 1681 mod 100 81
5 0 812 6561 mod 100 61
6 1 442 3721 mod 100 21

and 1773 mod 100 = 17.1723
.1726

= 17.41.21 mod 100 = 37.

RSA cipher

1. choose p, q primes relatively large approx. 10100

2. compute n = pq and publish n
3. compute '(n) = (p � 1)(q � 1)
4. publish e st gcd(e,'(n)) = 1 (PK, encipher)
5. compute d st d .e ⌘ 1 mod '(n) (private key, decipher)

Encipher : E : M 7! Me mod n.
Decipher : D : C 7! Cd mod n (d is the trapdoor).
Implementations : software, hardware or mixed.
On dedicated hardware, RSA is 1000 times slower than DES.

Attack on the parameters
Cycles : Eve observes c = me mod n ; he tries to find out ⌫ st.

ce⌫ ⌘ c mod n, e⌫ ⌘ 1 mod '(n)

Allowing to find m ⌘ ce⌫�1
mod n

Since ce⌫ ⌘ c mod n, ce⌫�1 ⌘ 1 mod n and, by
Euler-Fermat, one gets e⌫ � 1 ⌘ 0 mod '(n), e⌫ ⌘ 1
mod '(n). Since c = me mod n and de ⌘ 1 mod '(n), we can
take the value d = e⌫�1 to decipher..
Example : Alice publishes her public parameters e et n, 17 and
143. Eve sniffs c = 19 a message to Alice and computes :

i 2 3 4
cei 84 28 19

Eve just has to read m for i = 3, thus 28.

Attack when '(n) is known
Given (n,'(n)) allows to find the factorization of n [5].

We let :
⇢

n = pq
'(n) = (p � 1)(q � 1) and q = n

p :

'(n)� (p � 1)
✓

n
p
� 1

◆
= 0, p2 + p ('(n)� n � 1) + n = 0

equation of order two with solutions p and q.
Thus, computing '(n) is as hard as factoring n.

Example

n = p.q = 133 and '(n) = 108. '(n)� (p � 1)
⇣

n
p � 1

⌘
= 0

, p2 + p ('(n)� n � 1) + n = p2 + p(108�133�1) + 133 =
0, p2 � 26.p + 133 = 0 with
� = (�26)2 � (4.133) = 144 = 122 and of solutions
p = 26±12

2 = {19, 7}.

Sieve of Eratosthenes

Divide n by all odd numbers between 3 and b
p

nc.
Efficient for n < 1012 and known since ancient times.
Sieve of Eratosthenes runs in time O(

p
n).

It’s not polynomial ! The time-complexity is not polynomial in the
length of the input. It is pseudo polynomial.
In addition, in the case of RSA, the modulus n has no small
prime factors.

Security

RSA is as secure as factoring n is hard.
Time complexity of some good factoring algorithms :

quadratic sieve O(e((1+o(1))
p
log n log log n))

elliptic curves O(e((1+o(1))
p

2 log p log log p))

algebraic sieve O(e((1,92+o(1))(log n)1/3(log log n)2/3))

(p : smallest prime factor of n).

Man in the middle
In the transmission of the public keys :

• Bob (client) asks Alice (server) for her public parameters

• Alice sends eS, nS to Bob

• Melchior intercepts eS, nS ; replaces by its values eM , nM

• Bob enciphers by using eM , nM and sends c

• Melchior intercepts c and deciphers it into secret

• Melchior enciphers secret with Alice’s parameters eS, nS
and transmits to Alice. . .

Serveur ClientMelchior
eS,nS eM,nM Serveur

ClienteS,nS eM,nM

secreteM mod nMsecreteS mod nS

Bob should have checked that the data were coming from Alice
(lack of authentication).

Another hard problem

The discrete log problem.
Find the discrete log of y in basis g :

Instance : g, y elements of a finite group G.

Question : find x st gx ⌘ y in G
or, for a big prime p, g a generator of G = Z?

p, gx ⌘ y mod p
and x = logg(y) mod p � 1.

Example

Let G = Z?
7 a cyclic group. For the discrete logarithm in basis 2,

only 1, 2 and 4 have a discrete log. In basis g=3, we have :

number y 1 2 3 4 5 6
logarithm 6 2 1 4 5 3

For instance for number = 1 and log = 6. This means that
log3 1 = 6, which can be checked with 36 mod 7 = 1.

Computing the discrete log

Becomes hard when the cardinal of G grows.
Algo for computing the discrete log : Shanks applies to every
finite group G. Its time complexity is O(

p
|G| log |G|) and its

space complexity is O(
p
|G|).

Idea : construct two lists of the powers of g :

• baby steps : {gi : i = 0..d
p

ne � 1} with n = |G|

• giant steps
n

y
⇣

g�d
p

nej
⌘
: j = 0..d

p
ne

o
.

Then find a common term to the two lists. Then,

gi0 = y(g�j0d
p

ne) and m = i0 + j0d
p

ne

1 from sympy impor t *
2 g , n , r , y=3 ,113 ,11 ,57
3 B= [(i , pow(g , i , n)) f o r i i n range (r)]
4 L = [(j , y * gcdex (pow(g , j * r , n) ,n) [0] \% n) f o r j i n range (

r +1)]
5 B=sor ted (B, key=lambda x : x [1])
6 L=sor ted (L , key=lambda x : x [1])
7 p r i n t (B, L)

[(0, 1), (1, 3), (8, 7), (2, 9), (5, 17), (9, 21), (3, 27), (7, 40), (6, 51), (10, 63), (4, 81)]

[(8, 2), (9, 3), (6, 26), (1, 29), (11, 35), (3, 37), (7, 39), (5, 55), (0, 57), (10, 61), (2, 100), (4, 112)]

1 1+ r *9

100

Example
In Z⇥

113 =< 3 > of order n = 112 ;
p

n = r = 11. We search the
discrete log of y = 57 in basis g = 3 :
Unordered list of baby steps by (exponent, value) :

B = {(0, 1), (1, 3), (2, 9), (3, 27), (4, 81),
(5, 17), (6, 51), (7, 40), (8, 7), (9, 21), (10, 63)}

Unordered list of giant steps by (exponent, value)

L = {(0, 57), (1, 29), (2, 100), (3, 37), (4, 112), (5, 55), (6, 26),
(7, 39), (8, 2), (9, 3), (10, 61), (11, 35)}

3 is common to both lists. It has been generated for i0 = 1 in
the list B and for j0 = 9 in the list L.
The value of the discrete log is x = i0 + r .j0 = 100. Verification :
we compute gx mod 113 = 57.

Other objectives of PKC
• secrecy

• authentication : proof of origin authenticity

• identification : electronic proof of its own identity

• integrity : guarantee that there was no modification

• non repudiation : A service that provides proof of the integrity
and origin of data.

Other cryptographic techniques are required

• signature : the way to associate the sender to a message

• certificate : guarantees the relation (identity, PK)

• trusted third party : authority who delivers certificates

• timestamps : append timestamps to grant uniqueness of the
message.

Signatures

Notion introduced in the Diffie and Hellman seminal paper [3].

Goal of the signatures : prove the sender’s identity and provide
integrity of the message. The signature depends upon the
sender’s identity and on the message contents.

Must counter two kinds of frauds

• message modification

• change the origin of the message (sender’s identity)

Requirements for sig(M)

• easy to compute by the sender for every message M

• the recipient must be able to check the signature

• a third party must be able to check the signature

• the signature must be hard to forge

• the sender should not be able to say that his signature was
forged

General mechanism for signatures

• a private algorithm for signing denoted sig which, given a
fixed key SK , returns a signature S for the plaintext M ;

sigSK (M) = S

• a verification algorithm ver which, given a fixed key PK
and for every pair plaintext/signature (M,S) checks if the
signature corresponds to the plaintext.

verPK (M,S) =

⇢
true if S = sigSK (M)
false if S 6= sigSK (M)

Signing with RSA

Bob wants to send a signed message M to Alice. They have
their respective RSA parameters :

Private Public
Alice dA nA, eA
Bob dB nB, eB

Signing algorithm :

sigSK (M) = MdB mod nB = S

Verification algorithm :

verPK (M,S) = true, SeB mod nB ⌘ M

RSA allows secrecy + authentication

How can Bob send an authenticated secret message to Alice?

Private Public
Alice DA(C) = CdA mod nA EA(M) = MeA mod nA
Bob DB(C) = CdB mod nB EB(M) = MeB mod nB

Bob sends
C = EA(DB(M))

which is deciphered by Alice :

EB(DA(C))

provided that M < nB < nA.

El Gamal Signature

Let p be a prime for which the discrete log problem is hard in Z?
p and

let ↵ be a generator of Z?
p.

The message M 2 Z?
p and its signature is made of the pair

(M,S) 2 Z?
p ⇥ (Z?

p ⇥ Zp�1). The set of keys is

K = {(p,↵, a,�) : � = ↵a mod p}

Private Public
a p,↵,�

Randomly choose k 2 Z?
p�1 ; keep it secret ; k is st gcd(k , p � 1) = 1.

Signing algorithm :
sigK (M, k) = (�, �)

for � = ↵k mod p �/a� + k� ⌘ M mod (p � 1)

Example
Let p = 467 and a = 127. We check that gcd(a, p � 1) = 1. Let
↵ = 2 be a generator of Z⇥

p . We compute

� = ↵a mod p = 2127 mod 467 = 132

If Bob wants to sign the message M = 100 for the random
value k = 213 which verifies gcd(k , p � 1) = 1, he computes
the multiplicative inverse k�1 mod p � 1 by the Extended
Euclidean algo which gives k�1 = 431. Then,

� = ↵k mod p = 2213 mod 467 = 29

and

� = (M�a�)k�1 mod (p�1) = (100�127.29).431 mod 466 = 51

Verification
Given M, � 2 Z?

p and � 2 Zp�1, we define

verK (M, �, �) = true, ���� ⌘ ↵M mod p

If the signature is correct, the verification algorithm validates
the signature since :

���� ⌘ ↵a�↵k� mod p ⌘ ↵M mod p

since a� + k� ⌘ M mod (p � 1).

Exemple : We verify the signature (100, 29, 51) :

verK (M, �, �) = true, ���� ⌘ ↵M(p), 132292951 ⌘ 2100(p) ⌘ 189

which is correct

G. Brassard.
Cryptologie contemporaine.
Logique, mathématiques, informatique. Masson, 1993.

E Dawson and L Nielsen.
Automated cryptanalysis of xor plaintext strings.
Cryptologia, XX(2) :165–181, May 1996.

W. Diffie and M.E. Hellman.
New directions in cryptography.
IEEE Trans. on Inform. Theory, 22(6) :644–654, 1976.

D. Kahn.
La guerre des codes secrets.
InterEditions, 1980.

N. Koblitz.
A course in number theory and cryptography.
Graduate texts in mathematics. Springer Verlag, 1987.

R.L. Rivest.
Cryptography.
In Handbook of Theoretical Computer Science, volume A, chapter 13. Elsevier, 1990.

A. Salomaa.
Public Key Cryptography.
EATCS monographs. Springer Verlag, 1990.

J. Stern.
La science du secret.
Odile Jacob, 1998.

