Glossary on Tree

2-Trees

Bruno MARTIN,

University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/mathmods.html

A tree is a nonempty collection of connected elements: the nodes
One of the elements is distinguished: the root
The nodes below (above) a node are its descendants (ancestors)
Each node has exactly one ancestor : its parent
The nodes directly below a node are its children
A node with no children is called a leaf or a terminal node or an external node

A node with children is a nonterminal node or an internal node

Trees

Trees are intimately connected with recursion : a tree is either a single element or a root element connected to a set of trees.

Extensive use in computer science:

- to represent the syntactic structure of source programs
- to decribe arithmetic expressions in programs.

Of common use for both sorting and searching because the running time of searching an element among N can be logarithmic.

A path from n_{1} to n_{k} is the sequence n_{1}, \ldots, n_{k} such that n_{i} is the parent of $n_{i+1}\left(n_{1}\right.$ an ancestor of n_{k} and n_{k} a descendant of $\left.n_{1}\right)$

The length of a path equals the number of nodes in the path -1
The height of a node is the length of a longest path from the node to a leaf

The height of a tree is the height of the root
The depth of a node is the length of the unique path from the root to that node

Binary trees

A binary tree is an ordered tree with three types of nodes :
leaves, unary nodes and binary nodes
A binary tree is strictly binary if its internal nodes have exactly two children

A strictly binary tree is full when nodes completely fill every level, except possibly the last one

Glossary

Properties on Trees

[1] A tree with N nodes has $N-1$ edges

- Each node except the root has a unique parent connected by one edge
[2] A strictly binary tree with I internal nodes has $E=I+1$ leaves
- By induction for $I=0$: a strictly binary tree with no internal nodes has one leaf: the root
- For $I>0$, a tree with I internal nodes has k internal nodes in its left subtree and $I-k-1$ nodes in its right subtree. Since $0<k<I-1$ by induction hypothesis: the left subtree has $k+1$ leaves and the right $I-k \ldots$

For a binary tree with N nodes we have

$$
\log _{2}(N) \leq h e i g h t \leq N-1
$$

Consider all the binary trees of height h :

- The one with the minimum number of nodes is the tree reduced to a path from the root where each parent has only a child : $h=N-1$; so for a binary tree $h \leq N-1$
- The one with the maximum number of nodes is the binary tree with all levels filled with nodes:
- 2^{0} on the root level, 2^{1} on the first level, 2^{i} on level $i^{\text {st }}$ and 2^{h} on the last level
- $N=\sum_{i=0}^{h} 2^{i}=2^{h+1}-1$ nodes
- $N<2^{h+1} \Rightarrow \log _{2}(N) \leq h$

Trees

Representing Binary Trees

A data structure for a binary tree is done with 2 ruby classes:

- one for the tree
- one for the nodes with two links per node (left + right) and a field for the information about the node's value For leaves the two links are nil.

```
class BinaryTree
    class Node
        attr_reader :left, :right, :value
        def initialize()
            @left, @right, @value = nil, nil, nil
        end
    end
    attr_reader : root
    def initialize
        @root = nil
    end
end
```


Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br \quad 2-Trees

Traversing Binary Trees

Problem: How to traverse a tree i.e. how to systematically visit every node. 4 ways to proceed according to the order in which the root and the two children are visited
Suppose your tree is an arithmetic expression

- preorder traversal:

visit the root,
visit the left subtree,
visit the right subtree
you visit the expression in the prefix manner

- inorder traversal:

visit the left subtree,
visit the root,
visit the right subtree
you visit the expresion in an infix manner

Traversing Binary Trees

- postorder traversal:

visit the left subtree,
visit the right subtree,
visit the root
you visit the expresion in a postfix manner

- level-order traversal:

visit the levels from top to bottom,
in each level visit the nodes from left to
right
Notice: The implementation of first three traversals is done by recursion. The last traversal is not recursive at all : it is not a stack based but a queue based strategy
Bruno MARTIN, University of Nice-Sophia Antipolis mailto: Br 2 2-Trees \quad ar

Example of Binary Tree Traversing

```
+
/\
    2 *
        /\
    3+
        /\
        10 5
```

Traverse the previous tree in preorder, inorder and postorder, print the information contained in the node

```
Implementation of Preorder Traversal
```

```
def preOrder(node)
    puts node.value
    if node.left != nil
        preOrder(node.left)
    end
    if node.right != nil
        preOrder(node.right)
    end
end
```

print "Post-Order Traversal of tree\n" postOrder(@root)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 2 -Trees

Implementation of Inorder Traversal

def inOrder (node)
if node.left != nil inOrder (node.left)
end
p node.value
if node.right != nil inOrder(node.right) end
end
print "In-Order Traversal of tree\n"
inOrder(@root)

```
Binary Search Trees
```

```
def postOrderNode
    if @left != nil
        @left.postOrderNode
    end
    if @right != nil
        @right.postOrderNode
    end
    p node.value
end
def postOrder
        return if @root.nil?
        @root.postOrderNode
    end
```

def postOrderNode @left. postOrderNode if @left @right.postOrderNode if @right print(@value, " ")

end

Recursive calls

```
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 2-Trees
Implementation of Searching in a Binary Tree
def SearchNode?(key)
    if @value == key
        puts "FOUND"
        elsif @value < key
            if @right != nil
                @right.SearchNode?(key) def Search?(key)
                    else return "NOT FOUND" return if @root.nil?
                    end
        elsif @left != nil
                            @root.SearchNode?(key)
end
            @left.SearchNode?(key)
        else return "NOT FOUND"
    end
end
```


Example of Insertion on Binary Tree

A binary tree is built by inserting node one by one at the good position
We insert A, S, E, A, R, C, H, I, N, G in a binary tree

Insertion Tree Part

```
```

def insert(value)

```
```

def insert(value)
if @root.nil?
if @root.nil?
@root = Node.new(value)
@root = Node.new(value)
else
else
@root.insertNode(value)
@root.insertNode(value)
end
end
end

```
```

end

```
```

Bruno MARTIN, University of Nice-Sophia Antipolis mailto:Br 2 -Trees \quad are
Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br \quad 2-Trees

Insertion Node Part

```
def insertNode( value )
    if value >= @value then # insert right
        if @right.nil?
            @right = Node.new( value )
        else
            @right.insertNode( value )
        end
    else # insert left
        if @left.nil?
            @left = Node.new( value )
        else
            @left.insertNode( value )
        end
    end
end
```

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br \quad 2-Trees

The shape of the trees

The shape of the tree and the number of steps to build it depends on the order in which the keys have been inserted
With keys in increasing order,
the right subtree of the root
is reduced to a single path
Inserting A B C D
With keys in decreasing order,
the left subtree of the root
is reduced to a single path

Strongly depends on the shape of the tree

- When we insert the N nodes in order
- The tree is reduced to a single path of length $N-1$
- We must then examine $i-1$ nodes before inserting node i
- The insertion takes N comparisons $(O(N))$
- The unsuccessful search takes N comparisons $(O(N))$
- When the tree is balanced
- The unsuccessful search takes $\log (N)$ comparisons (because of the tree height)
- We must examine $\log (i-1)$ nodes before inserting node i
- The insertion takes $\log (N)$ comparisons
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 2-Trees \quad ac.

Balanced Trees

For binary tree searching, there is a general technique that enables
us to guarantee that the worst case will not occur
This technique is called Balancing and is used as the basis for several different "balanced-tree" algorithms:

- The AVL Tree (Adelson Velskii and Landis)
- Top-Down 2-3-4 Trees
- Red-Black Trees
- B-tree (an extension of 2-3-4 trees)

