
Trees

2-Trees

Bruno MARTIN,
University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr

http://deptinfo.unice.fr/~bmartin/mathmods.html

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Trees

Trees are intimately connected with recursion : a tree is either a
single element or a root element connected to a set of trees.

Extensive use in computer science:

to represent the syntactic structure of source programs

to decribe arithmetic expressions in programs.

Of common use for both sorting and searching because the
running time of searching an element among N can be
logarithmic.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Glossary on Tree

A tree is a nonempty collection of connected elements: the nodes

One of the elements is distinguished: the root

The nodes below (above) a node are its descendants (ancestors)

Each node has exactly one ancestor : its parent

The nodes directly below a node are its children

A node with no children is called a leaf or a terminal node or an
external node

A node with children is a nonterminal node or an internal node

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Glossary on pathes

A path from n
1

to nk is the sequence n
1

, ..., nk such that ni is the
parent of ni+1

(n
1

an ancestor of nk and nk a descendant of n
1

)

The length of a path equals the number of nodes in the path -1

The height of a node is the length of a longest path from the
node to a leaf

The height of a tree is the height of the root

The depth of a node is the length of the unique path from the
root to that node

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Example of length and height of paths

O ^ ^

/ | \ | depth of X |

/ | \ | is 1 |

^ N O X v ^ |

| /\ | | | path of | tree

height | / \ | | | length 1 | height

of N | O O O O v | is 3

is 2 | | |

| | |

v O v

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Glossary

There is exactly one path between the root and some node

(otherwise it is a graph)

Any node is the root of a subtree

The nodes in a tree are divided into levels : nodes with same depth

In an ordered (oriented) tree the children of each node are ordered
from left-to-right

A n-ary tree is a tree where the internal nodes have at most n
children

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Binary trees

A binary tree is an ordered tree with three types of nodes :
leaves, unary nodes and binary nodes

A binary tree is strictly binary if its internal nodes have exactly

two children

A strictly binary tree is full when nodes completely fill every level,
except possibly the last one

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Properties on Trees

[1] A tree with N nodes has N � 1 edges

Each node except the root has a unique parent connected by
one edge

[2] A strictly binary tree with I internal nodes has E = I + 1 leaves

By induction for I = 0: a strictly binary tree with no internal
nodes has one leaf: the root

For I > 0, a tree with I internal nodes has k internal nodes in
its left subtree and I � k � 1 nodes in its right subtree. Since
0 < k < I � 1 by induction hypothesis : the left subtree has
k + 1 leaves and the right I � k ...

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Properties on Trees

For a binary tree with N nodes we have

log
2

(N) height N � 1

Consider all the binary trees of height h:

The one with the minimum number of nodes is the tree
reduced to a path from the root where each parent has only a
child : h = N � 1; so for a binary tree h N � 1

The one with the maximum number of nodes is the binary
tree with all levels filled with nodes:

20 on the root level, 21 on the first level, 2i on level i st and 2h

on the last level
N =

Ph
i=0

2i = 2h+1 � 1 nodes
N < 2h+1) log

2

(N) h

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Representing Binary Trees

A data structure for a binary tree is done with 2 ruby classes:

one for the tree

one for the nodes with two links per node (left + right)
and a field for the information about the node’s value

For leaves the two links are nil.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

A Ruby Tree

class BinaryTree

class Node

attr_reader :left, :right, :value

def initialize()

@left, @right, @value = nil, nil, nil

end

end

attr_reader : root

def initialize

@root = nil

end

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Traversing Binary Trees

Problem: How to traverse a tree i.e. how to systematically visit
every node. 4 ways to proceed according to the order in which the
root and the two children are visited
Suppose your tree is an arithmetic expression

preorder traversal:

visit the root,

visit the left subtree,

visit the right subtree

you visit the expression in the prefix manner

inorder traversal:

visit the left subtree,

visit the root,

visit the right subtree

you visit the expresion in an infix manner

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Traversing Binary Trees

postorder traversal:

visit the left subtree,

visit the right subtree,

visit the root

you visit the expresion in a postfix manner

level-order traversal:

visit the levels from top to bottom,

in each level visit the nodes from left to

right

Notice: The implementation of first three traversals is done by
recursion. The last traversal is not recursive at all : it is not a
stack based but a queue based strategy

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Example of Binary Tree Traversing

+

/ \

2 *

/ \

3 +

/ \

10 5

Traverse the previous tree in preorder, inorder and postorder, print
the information contained in the node

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Implementation of Preorder Traversal

def preOrder(node)

puts node.value

if node.left != nil

preOrder(node.left)

end

if node.right != nil

preOrder(node.right)

end

end

print "Post-Order Traversal of tree\n"

postOrder(@root)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Implementation of Inorder Traversal

def inOrder(node)

if node.left != nil

inOrder(node.left)

end

p node.value

if node.right != nil

inOrder(node.right)

end

end

print "In-Order Traversal of tree\n"

inOrder(@root)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Implementation of Postorder Traversal

def postOrderNode def postOrderNode

if @left != nil @left.postOrderNode if @left

@left.postOrderNode @right.postOrderNode if @right

end print(@value, " ")

if @right != nil end

@right.postOrderNode

end

p node.value

end

def postOrder

return if @root.nil?

@root.postOrderNode

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Recursive calls

When a recursive call is executed, the ”current environment” is
saved in the execution stack and restored at the exit of the
procedure

The amount of memory taken by the execution stack during

the traversal of the tree is proportionnal to the height of that
tree though the memory management is hidden to the programmer
) the analysis of the height of the tree is important for the
performance of the program

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Binary Search Trees

For searching we associate a key value to each internal node
For any node, all nodes with smaller keys are in the left subtree

All nodes with larger keys are in the right subtree

To find a node with a given key key we run a recursive search

from the root node with the searched key

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Implementation of Searching in a Binary Tree

def SearchNode?(key)

if @value == key

puts "FOUND"

elsif @value < key

if @right != nil

@right.SearchNode?(key)

else return "NOT FOUND"

end

elsif @left != nil

@left.SearchNode?(key)

else return "NOT FOUND"

end

end

def Search?(key)

return if @root.nil?

@root.SearchNode?(key)

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Example of Insertion on Binary Tree

A binary tree is built by inserting node one by one at the good
position
We insert A, S, E, A, R, C, H, I, N, G in a binary tree

A A A A A A

/ \ / \ / \ / \ / \ / \

S S S S S

/ \ / \ / \ / \

E E E E ...

/ \ / \ / \ / \

A A R A R

/ \ / \ / \ / \ / \

C

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Insertion Node Part

def insertNode(value)

if value >= @value then # insert right

if @right.nil?

@right = Node.new(value)

else

@right.insertNode(value)

end

else # insert left

if @left.nil?

@left = Node.new(value)

else

@left.insertNode(value)

end

end

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Insertion Tree Part

def insert(value)

if @root.nil?

@root = Node.new(value)

else

@root.insertNode(value)

end

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

The shape of the trees

The shape of the tree and the number of steps to build it
depends on the order in which the keys have been inserted

With keys in increasing order, A

the right subtree of the root / \

is reduced to a single path B

/ \

Inserting A B C D => C

D / \

/ \ D

With keys in decreasing order, C / \

the left subtree of the root / \

is reduced to a single path B

/ \

Inserting D C B A => A

/ \

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Performance of Insertion and Searching on Binary Tree

Strongly depends on the shape of the tree

When we insert the N nodes in order
The tree is reduced to a single path of length N � 1
We must then examine i � 1 nodes before inserting node i
The insertion takes N comparisons (O(N))
The unsuccessful search takes N comparisons (O(N))

When the tree is balanced
The unsuccessful search takes log(N) comparisons (because
of the tree height)
We must examine log(i � 1) nodes before inserting node i
The insertion takes log(N) comparisons

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

Trees

Balanced Trees

For binary tree searching, there is a general technique that enables
us to guarantee that the worst case will not occur
This technique is called Balancing and is used as the basis for
several di↵erent “balanced-tree” algorithms:

The AVL Tree (Adelson Velskii and Landis)

Top-Down 2-3-4 Trees

Red-Black Trees

B-tree (an extension of 2-3-4 trees)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/

~

bmartin/mathmods.html2-Trees

