Stack implementation

class Stack

. . def initialize
3-Stack-Queue and Graphs Basic operations: @the_stack = [J]

@ push: adds a element on the top end
of the stack

Bruno MARTIN,
University of Nice - Sophia Antipolis

def push(item)

@ pop: removes and returns the Othe_stack.push item

top element
mailto:Bruno.Martin@unice.fr R end
http://deptinfo.unice.fr/~bmartin/mathmods.html already in ruby dof
€l pop
stack = Stack.new O@the_stack.pop
stack.push(3) end
stack.push(100)
stack.count deétiounz K length
e_stack.leng
stack.pop() end
end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Queue

Stack data structure Queue data structure

o [[

Based on the L.”:O pr|nC|.pIe. F’m (pop Based on the FIFO principle.

Used for removing recursive calls — Used for tree/ ht |

Basic operations: | Bse. ortree gr:-ap raversa
I asic operations:

@ push: adds a element on the top | _ | h
] @ enqueue: adds a element on the
of the stack ——

top of the queue
@ pop: removes and returns the

@ dequeue: removes and returns
top element

the bottom element

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bxr 3-Stack-Queue and Graphs Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Queue
Graphs

Stack implementation Basics definitions of Graphs

class Queue
def initialize
@the_queue = []

Basic operations: end e A graph G = (V,E) is a collection of vertices V' and edges E
@ enqueue: adds a element on the def enqueue(item) @ An edge is a pair of vertices (s, t). And t is adjacent to s
@the_queue.push item . . .
top of the queue ond d P e A path from v; to v, is a list of vertices vi, va,...,v, so that
© dequeue: removes and returns def dequeue successive vertices are connected by edges
the bottom element @the_queue.shift @ A simple path is a path in which no vertex is repeated
i end . .
already in ruby @ A cycle is a path where the first and the last vertex are the
def count
queue = Queue.new @the_queue.length same
queue . enqueue (2) end
queue . enqueue (3) def empty?
return Q@the_queue.length
queue.dequeue end

end
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Graphs Graphs

Directed or Non-directed Graphs 7

Many problems are naturally formulated in terms of objects and
relationships among them : airline route map, electric circuits,
job scheduling,... Graphs model such situations

On such different types of graphs, we address different questions:

A graph is directed (a digraph) when the pair of vertices is
ordered s — t, s is the source and t is the target

Some concepts are intuitively better defined on digraphs some
others on non-directed graphs

All the concepts may be applied on any graphs provided that you
The Shortest Paths Problem make the appropriate transformation:

“Which is the fastest (cheapest) way to get from one city to another?”

“Is every element of an electric circuit connected with the others?” @ You transform a digraph into a non-directed graph by
removing the orientation of the edges

The Connectivity Problem @ You transform a non-directed graph into a digraph by

“When should each task be performed ?" considering two directed edges for each non-directed edge

The Topological Sorting

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bxr 3-Stack-Queue and Graphs Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Graphs

Basics definitions of Graphs

A graph is connected if there is a non-directed path from every
vertex to every other vertex in the graph

A directed graph is strongly connected if there is a directed path
from every vertex to every other vertex in the graph

A spanning tree of a graph is the subgraph that contains all the
vertices but only enough of the edges to form a tree

We can attach informations to the vertices and the edges of a
graph. An information can be a label (labeled graph) or a value
of any given data type (valuated graph)

A graph with all edges present is complete

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Graphs

Graphs

Representing a Graph with adjacency lists

The adjacency list of vertex i is the list of all adjacent vertices
G is an array of V elements where G[i] is a pointer to the
adjacency list of the vertex i

Advantage: It requires a storage proportional to V + E
Drawback: It needs at most O(E) time to determine whether
there is an edge from vertex i to j

The appropriate choice of data depends on the operations
that will be applied to the vertices and edges of the graph

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Graphs

Representing a Graph with an Adjacency Matrix

The adjacency matrix A is a matrix V x V of booleans (resp.
label) where A[i][j] is TRUE (reps. a legal label) if there is an
edge from vertex i to j

Advantage:

@ The time required to access an element of an adjacency
matrix is independent of the size V and E: constant time

@ Adjacency Matrix representation for graph is choosen for
algorithm which frequently need to know whether a given
edge is present

Drawback:
o It requires V/? storage even if the graph is sparse

@ Read or examine the matrix would require O(V2) time which
would preclude O(E) algorithms for manipulating graphs
with E edges

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bxr 3-Stack-Queue and Graphs

The graph G

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Graphs

The graph G The Adjacency List of the graph G

|A=[B]=IF]-[Gl-n
Em

E—>—>D
E%m

E—>—>D

Gl CHEn
H[6]-l]=n
]—>—>D

=K =[LMbn
E—m
L{G]eM]=n

E—> —>D

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

gem install rgl
irb

>> require ’rgl/adjacency’

>> GG=RGL: :DirectedAdjacencyGraph[

0,5 ,0,1,0,6 ,2,0 ,3,5 ,4,3

,5,4 ,6,2 ,6,4 ,6,9 ,7,6 ,7,8

,8,7 ,9,10 ,9,11 ,9,12 ,11,6
,11,12 ,12,11]

>>require ’rgl/dot’

>> GG.write_to_graphic_file(’jpg’)

Graphs Graphs

The Adjacency Matrix of the graph G Graph traversals

Problem: How to traverse the graph i.e. systematically visit every

A B C D E F G H] J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12 1 ?
A0 0 0 1 0 0 0 0 0 0 0 0 0 0 vertices!
B1 1 0 0 0 0 0 0 0 0 0 0 0 0
IS N O O O I IO O O O O T B B As for trees, 2 ways to proceed. Start on an initial vertex, (root):
E4 0 0 0 0 0 1 1 0 0 0 0 0 0 .
Fs [1]|o|o|1|o|lof|ofofloflo|lo]|o]o DFS Depth first search: starts at the root and explores as far as
G6 1 0 0 0 0 0 0 1 0 0 0 1 0 . . .
H7 [oo |o|oflofo|o|o|1|o]o| oo ossible along each branch before backtracking. Much like
P g g
18 0 0 0 0 0 0 0 1 0 0 0 0 0
Jolof|olo|o|o|lo|1]oflof|o|o]|o]o preorder traversal of a tree
K 10 0 0 0 0 0 0 0 0 0 1 0 0 0 i
L1L | 0] 0| 0 | 0 |00} 0}0}0)1)0 |01 BFS Breadth first search: starts at the root and explores all the
M12 {o]ojojofofofjofoJo|1]o|[1]o0) .]
neighboring nodes. Then for each of those nearest nodes, it
If there is an edge from i (horizontal) to j (vertical) then set explores their unexplored neighbor nodes, and so forth. Much
MIi][j] to 1 else set it to 0 like level-order traversal of a tree

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bxr 3-Stack-Queue and Graphs Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Graphs

The Depth-First Search Algorithm

Problem Find a natural way to systematically visit every vertex
and every edge of a directed graph :

@ Start from one vertex

@ Step forward all along one path (without passing through a
vertex already visited)

@ When you are stuck, turn back until you can step forward an
unvisited vertex

@ Recursivity offers you the backtrack for free

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Graphs

Depth-First Search

dfs(v)
visit(v)
for each neighbor w of v
if w is unvisited
dfs(w)
add edge vw to tree T
end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Graphs

The Depth-first Search algorithm

Initially mark all vertices as unvisited
Select one vertex v in G as the start vertex

Mark v as being visited

e 6 o o

Run Depth-First Search recursively on each unvisited vertex
adjacent to v

@ Once all vertices that can be reached from v have been visited
the Depth-First Search of v terminates

@ If some vertices remain unvisited, select one of them as a new
start vertex

@ Repeat this process until all vertices have been visited

Ruby implementation

require ’rgl/adjacency’
class Graphe < RGL::AdjacencyGraph
def dfs
$visited = Array.new(G.max+1)
G.each_vertex{ |i| $visited[i]l=false }
def mydfs(n)
$visited[n] = true
puts n
G.each_adjacent(n){ |xl|
mydfs(x) if $visited[x]==false }

end

puts "from which node?"
v=gets

G.mydfs(v.to_1i)

end

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bxr 3-Stack-Queue and Graphs

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Graphs

Iterative Depth-First Search

>> require "dfs.rb"
>> G=Graphe[1,2 ,2,3 ,1,6 ,6,4 ,2,4 ,4,5]

>> G.dfs ° °
216453

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Graphs

DFS invoked on a graph is exactly equivalent to traversing a tree
that spans the graph we call it tree traversal

The recursion of DFS can be removed by using a stack

A vertex can be unvisited, unvisited and in the stack, or visited, in
this case it is not in the stack

We must avoid putting a vertex twice on the stack

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Graphs

[terative DFS

Running time of DFS

The graph has E edges and V vertices
Adjacency list All the calls to DFS take O(V + E) time
o DFS is called once by vertex O(V)
@ Going down the adjacency list of all vertices is
proportional to the sums of the lengths of those
lists i.e. O(E)
Adjacency matrix DFS takes O(V/?) time
o DFS is called once by vertex V
@ Going down the adjacency list of one vertex

costs exactly V' and we do it for each vertex so
Oo(Vv?)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bxr 3-Stack-Queue and Graphs

dfs(s)
initialize S to be a stack with one element s
while S not empty
take a node u from S
if explored[u]l=false then
set explored[ul= true
for each edge (u,v) adjacent to u
add v to S
end
end
end

Execution seen at http://www.cs.umd.edu/class/sum2005/
cmsc451/dfsimplementation.pdf

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Graphs

The Breadth-First Search algorithm

Problem: It is another systematic way of visiting the vertices of a
digraph G(V, E). Start from a vertex, step forward all vertices
adjacent to it, then step forward all vertices adjacent to its sons,..

The Breadth-First Search algorithm is quite the same algorithm
as the iterative DFS, you simply replace the stack with a queue

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

Graphs

(Iterative) BFS

bfs(s)
initialize Q to be a queue with one element s
while Q not empty
take a node u from Q
if explored[u]l=false then
set explored[ul]l= true
for each edge (u,v) adjacent to u
add v to Q
end
end
end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bxr 3-Stack-Queue and Graphs

Graphs

Ruby implementation of BFS

def bfs
$explored = Array.new(G.max+1)
G.each_vertex{ |i| $explored[il=false }
def bfs_from(s)
q=Queue.new
q.enqueue s
until q.empty?
u=q.dequeue
if not $explored[u]
$explored[ul=true
puts u
G.each_adjacent(u) { |vl| q.enqueue v}
end
end
end
v = gets
G.bfs_from(v.to_i)
end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 3-Stack-Queue and Graphs

