
Stack

Queue

Graphs

3-Stack-Queue and Graphs

Bruno MARTIN,
University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr

http://deptinfo.unice.fr/~bmartin/mathmods.html

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Stack data structure

Based on the LIFO principle.
Used for removing recursive calls
Basic operations:

push: adds a element on the top
of the stack

pop: removes and returns the
top element

PopPush

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Stack implementation

Basic operations:

push: adds a element on the top
of the stack

pop: removes and returns the
top element

already in ruby

stack = Stack.new

stack.push(3)

stack.push(100)

stack.count

stack.pop()

class Stack
def initialize
@the_stack = []
end

def push(item)
@the_stack.push item

end

def pop
@the_stack.pop

end

def count
@the_stack.length

end
end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Queue data structure

Based on the FIFO principle.
Used for tree/graph traversal
Basic operations:

enqueue: adds a element on the
top of the queue

dequeue: removes and returns
the bottom element

enqueue

dequeue

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Stack implementation

Basic operations:

enqueue: adds a element on the
top of the queue

dequeue: removes and returns
the bottom element

already in ruby

queue = Queue.new

queue.enqueue(2)

queue.enqueue(3)

queue.dequeue

class Queue
def initialize
@the_queue = []
end
def enqueue(item)

@the_queue.push item
end
def dequeue

@the_queue.shift
end
def count

@the_queue.length
end
def empty?

return @the_queue.length == 0
end

end
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Graphs

Many problems are naturally formulated in terms of objects and
relationships among them : airline route map, electric circuits,
job scheduling,... Graphs model such situations
On such different types of graphs, we address different questions:

“Which is the fastest (cheapest) way to get from one city to another?”

The Shortest Paths Problem

“Is every element of an electric circuit connected with the others?”

The Connectivity Problem

“When should each task be performed ?”

The Topological Sorting

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Basics definitions of Graphs

A graph G = (V ,E) is a collection of vertices V and edges E

An edge is a pair of vertices (s, t). And t is adjacent to s

A path from v1 to vn is a list of vertices v1, v2,...,vn so that
successive vertices are connected by edges

A simple path is a path in which no vertex is repeated

A cycle is a path where the first and the last vertex are the
same

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Directed or Non-directed Graphs ?

A graph is directed (a digraph) when the pair of vertices is
ordered s → t, s is the source and t is the target
Some concepts are intuitively better defined on digraphs some
others on non-directed graphs
All the concepts may be applied on any graphs provided that you
make the appropriate transformation:

You transform a digraph into a non-directed graph by
removing the orientation of the edges

You transform a non-directed graph into a digraph by
considering two directed edges for each non-directed edge

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Basics definitions of Graphs

A graph is connected if there is a non-directed path from every
vertex to every other vertex in the graph
A directed graph is strongly connected if there is a directed path
from every vertex to every other vertex in the graph
A spanning tree of a graph is the subgraph that contains all the
vertices but only enough of the edges to form a tree
We can attach informations to the vertices and the edges of a
graph. An information can be a label (labeled graph) or a value
of any given data type (valuated graph)
A graph with all edges present is complete

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Representing a Graph with an Adjacency Matrix

The adjacency matrix A is a matrix V × V of booleans (resp.
label) where A[i][j] is TRUE (reps. a legal label) if there is an
edge from vertex i to j
Advantage:

The time required to access an element of an adjacency
matrix is independent of the size V and E : constant time

Adjacency Matrix representation for graph is choosen for
algorithm which frequently need to know whether a given
edge is present

Drawback:

It requires V 2 storage even if the graph is sparse

Read or examine the matrix would require O(V 2) time which
would preclude O(E) algorithms for manipulating graphs
with E edges

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Representing a Graph with adjacency lists

The adjacency list of vertex i is the list of all adjacent vertices
G is an array of V elements where G [i] is a pointer to the
adjacency list of the vertex i
Advantage: It requires a storage proportional to V + E
Drawback: It needs at most O(E) time to determine whether
there is an edge from vertex i to j
The appropriate choice of data depends on the operations
that will be applied to the vertices and edges of the graph

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

The graph G

A graph G = ({A,B ,C ,D,E ,F ,G ,H, I , J,K , L,M},
{(A,F), (A,B), (A,G), (C ,A), (D,F),
(E ,D), (F ,E), (G ,C), (G ,E), (G , J),
(H,G),
(H, I), (I ,H), (J,K), (J, L),
(J,M), (L,G), (L,M), (M, L)})

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

The graph G

gem install rgl

irb

>> require ’rgl/adjacency’

>> GG=RGL::DirectedAdjacencyGraph[

0,5 ,0,1 ,0,6 ,2,0 ,3,5 ,4,3

,5,4 ,6,2 ,6,4 ,6,9 ,7,6 ,7,8

,8,7 ,9,10 ,9,11 ,9,12 ,11,6

,11,12 ,12,11]

>>require ’rgl/dot’

>> GG.write_to_graphic_file(’jpg’) => "graph.jpg"

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

The Adjacency Matrix of the graph G

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

A 0 0 0 1 0 0 0 0 0 0 0 0 0 0

B 1 1 0 0 0 0 0 0 0 0 0 0 0 0

C 2 0 0 0 0 0 0 1 0 0 0 0 0 0

D 3 0 0 0 0 1 0 0 0 0 0 0 0 0

E 4 0 0 0 0 0 1 1 0 0 0 0 0 0

F 5 1 0 0 1 0 0 0 0 0 0 0 0 0

G 6 1 0 0 0 0 0 0 1 0 0 0 1 0

H 7 0 0 0 0 0 0 0 0 1 0 0 0 0

I 8 0 0 0 0 0 0 0 1 0 0 0 0 0

J 9 0 0 0 0 0 0 1 0 0 0 0 0 0

K 10 0 0 0 0 0 0 0 0 0 1 0 0 0

L 11 0 0 0 0 0 0 0 0 0 1 0 0 1

M 12 0 0 0 0 0 0 0 0 0 1 0 1 0

If there is an edge from i (horizontal) to j (vertical) then set
M [i][j] to 1 else set it to 0

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

The Adjacency List of the graph G

A → B → F → G →
B →
C → A →
D → F →
E → D →
F → E →
G → C → E → J →
H → G → I →
I → H →
J → K → L → M →
K →
L → G → M →
M → L →

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Graph traversals

Problem: How to traverse the graph i.e. systematically visit every
vertices?

As for trees, 2 ways to proceed. Start on an initial vertex, (root):

DFS Depth first search: starts at the root and explores as far as
possible along each branch before backtracking. Much like
preorder traversal of a tree

BFS Breadth first search: starts at the root and explores all the
neighboring nodes. Then for each of those nearest nodes, it
explores their unexplored neighbor nodes, and so forth. Much
like level-order traversal of a tree

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

The Depth-First Search Algorithm

Problem Find a natural way to systematically visit every vertex
and every edge of a directed graph :

Start from one vertex

Step forward all along one path (without passing through a
vertex already visited)

When you are stuck, turn back until you can step forward an
unvisited vertex

Recursivity offers you the backtrack for free

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

The Depth-first Search algorithm

Initially mark all vertices as unvisited

Select one vertex v in G as the start vertex

Mark v as being visited

Run Depth-First Search recursively on each unvisited vertex
adjacent to v

Once all vertices that can be reached from v have been visited
the Depth-First Search of v terminates

If some vertices remain unvisited, select one of them as a new
start vertex

Repeat this process until all vertices have been visited

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Depth-First Search

dfs(v)

visit(v)

for each neighbor w of v

if w is unvisited

dfs(w)

add edge vw to tree T

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Ruby implementation

require ’rgl/adjacency’
class Graphe < RGL::AdjacencyGraph

def dfs
$visited = Array.new(G.max+1)
G.each_vertex{ |i| $visited[i]=false }
def mydfs(n)
$visited[n] = true
puts n
G.each_adjacent(n){ |x|

mydfs(x) if $visited[x]==false }
end
puts "from which node?"
v=gets
G.mydfs(v.to_i)
end

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Usage

>> require "dfs.rb"
>> G=Graphe[1,2 ,2,3 ,1,6 ,6,4 ,2,4 ,4,5]
>> G.dfs
2 1 6 4 5 3

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Running time of DFS

The graph has E edges and V vertices

Adjacency list All the calls to DFS take O(V + E) time

DFS is called once by vertex O(V)
Going down the adjacency list of all vertices is
proportional to the sums of the lengths of those
lists i.e. O(E)

Adjacency matrix DFS takes O(V 2) time

DFS is called once by vertex V
Going down the adjacency list of one vertex
costs exactly V and we do it for each vertex so
O(V 2)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Iterative Depth-First Search

DFS invoked on a graph is exactly equivalent to traversing a tree
that spans the graph we call it tree traversal
The recursion of DFS can be removed by using a stack
A vertex can be unvisited, unvisited and in the stack, or visited, in
this case it is not in the stack
We must avoid putting a vertex twice on the stack

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Iterative DFS

dfs(s)

initialize S to be a stack with one element s

while S not empty

take a node u from S

if explored[u]=false then

set explored[u]= true

for each edge (u,v) adjacent to u

add v to S

end

end

end

Execution seen at http://www.cs.umd.edu/class/sum2005/
cmsc451/dfsimplementation.pdf

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

The Breadth-First Search algorithm

Problem: It is another systematic way of visiting the vertices of a
digraph G (V ,E). Start from a vertex, step forward all vertices
adjacent to it, then step forward all vertices adjacent to its sons,...

The Breadth-First Search algorithm is quite the same algorithm
as the iterative DFS, you simply replace the stack with a queue

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

(Iterative) BFS

bfs(s)

initialize Q to be a queue with one element s

while Q not empty

take a node u from Q

if explored[u]=false then

set explored[u]= true

for each edge (u,v) adjacent to u

add v to Q

end

end

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

Stack

Queue

Graphs

Ruby implementation of BFS
def bfs

$explored = Array.new(G.max+1)
G.each_vertex{ |i| $explored[i]=false }
def bfs_from(s)
q=Queue.new
q.enqueue s
until q.empty?

u=q.dequeue
if not $explored[u]

$explored[u]=true
puts u
G.each_adjacent(u) { |v| q.enqueue v}

end
end

end
v = gets
G.bfs_from(v.to_i)

end
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html3-Stack-Queue and Graphs

