3-Stack-Queue and Graphs

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Based on the LIFO principle. Used for removing recursive calls Basic operations:

- push: adds a element on the top of the stack
- pop: removes and returns the top element

Stack implementation

Basic operations:

• push: adds a element on the top of the stack

Stack Queue

• pop: removes and returns the top element

already in ruby

stack = Stack.new
stack.push(3)
stack.push(100)
stack.count
stack.pop()

class Stack
 def initialize
 @the_stack = []
 end

def push(item)
 @the_stack.push item
end

def pop
 @the_stack.pop
end

def count @the_stack.length end end (□> (∅> (≧> (≧> ≧)) (€)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Queue

Queue data structure

Based on the FIFO principle.
Used for tree/graph traversal
Basic operations:

enqueue: adds a element on the top of the queue
dequeue: removes and returns the bottom element

Stack implementation

	class Queue
	def initialize
Pasia anarationa	<pre>@the_queue = []</pre>
Basic operations.	end
enqueue: adds a element on the	def enqueue(item)
top of the queue	<pre>@the_queue.push item</pre>
	end
• dequeue. removes and returns	def dequeue
the bottom element	@the_queue.shift
already in ruby	end
	def count
queue = Queue.new	@the_queue.length
queue.enqueue(2)	end
aueue.engueue(3)	def empty?
	return @the_queue.length
Jucuciaciaci	end
	end < = > < 큔 > < 돌 > < 돌 > 로 - 키익은

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Gra

Graphs

Many problems are naturally formulated in terms of objects and relationships among them : **airline route map**, **electric circuits**, **job scheduling**,... **Graphs** model such situations

On such different types of graphs, we address different questions:

"Which is the fastest (cheapest) way to get from one city to another?"

The Shortest Paths Problem

"Is every element of an electric circuit connected with the others?"

The Connectivity Problem

"When should each task be performed ?"

The Topological Sorting

・ロト・西ト・ヨト・ヨー うへの

- A graph G = (V, E) is a collection of vertices V and edges E
- An edge is a pair of vertices (s, t). And t is adjacent to s

Queue

- A **path** from v_1 to v_n is a list of vertices $v_1, v_2, ..., v_n$ so that successive vertices are connected by edges
- A simple path is a path in which no vertex is repeated
- A cycle is a path where the first and the last vertex are the same

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ● ゑ ● ���

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Queue Graphs

Directed or Non-directed Graphs ?

A graph is directed (a digraph) when the pair of vertices is ordered $s \rightarrow t$, s is the source and t is the target Some concepts are intuitively better defined on digraphs some others on non-directed graphs All the concepts may be applied on any graphs provided that we

All the concepts may be applied on **any graphs** provided that you make the **appropriate transformation**:

- You transform a digraph into a non-directed graph by removing the orientation of the edges
- You transform a non-directed graph into a digraph by considering two directed edges for each non-directed edge

Basics definitions of Graphs

A graph is **connected** if there is a non-directed path from every vertex to every other vertex in the graph A directed graph is **strongly connected** if there is a directed path from every vertex to every other vertex in the graph A **spanning tree** of a graph is the subgraph that contains all the vertices but only enough of the edges to form a tree We can attach informations to the vertices and the edges of a graph. An information can be a label (labeled graph) or a value of any given data type (valuated graph) A graph with all edges present is **complete**

Queue Graphs

Representing a Graph with adjacency lists

The **adjacency list** of vertex *i* is the list of all adjacent vertices G is an array of V elements where G[i] is a pointer to the adjacency list of the vertex i

Advantage: It requires a storage proportional to V + E**Drawback:** It needs at most O(E) time to determine whether there is an edge from vertex *i* to *j*

The appropriate choice of data depends on the operations that will be applied to the vertices and edges of the graph

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ のへで

3-Stack-Queue and Graphs Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br

The graph G

A graph $G = (\{A, B, C, D, E, F, G, H, I, J, K, L, M \},$ $\{(A, F), (A, B), (A, G), (C, A), (D, F), (C, A), (D, F), (C, A), (C, A), (C, F), (C, A), (C, F), (C, A), (C,$ (E, D), (F, E), (G, C), (G, E), (G, J),(H,G). (H, I), (I, H), (J, K), (J, L), $(J, M), (L, G), (L, M), (M, L)\}$

Graphs

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

• Read or examine the matrix would require $O(V^2)$ time which would **preclude** O(E) algorithms for manipulating graphs with *E* edges

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Representing a Graph with an Adjacency Matrix

The **adjacency matrix** A is a matrix $V \times V$ of booleans (resp. label) where A[i][i] is TRUE (reps. a legal label) if there is an edge from vertex *i* to *j*

Advantage:

- The time required to **access an element** of an adjacency matrix is independent of the size V and E: constant time
- Adjacency Matrix representation for graph is choosen for algorithm which frequently need to know whether a given edge is present

Drawback:

no MARTIN, University of Nice - Sophia Antipolis mailto:Br

• It requires V^2 storage even if the graph is sparse

3-Stack-Queue and Graphs

The Adjacency Matrix of the graph G

	Α	В	С	D	E	F	G	Н	1	J	K	L	М
	0	1	2	3	4	5	6	7	8	9	10	11	12
A 0	0	0	1	0	0	0	0	0	0	0	0	0	0
B 1	1	0	0	0	0	0	0	0	0	0	0	0	0
C 2	0	0	0	0	0	0	1	0	0	0	0	0	0
D 3	0	0	0	0	1	0	0	0	0	0	0	0	0
E 4	0	0	0	0	0	1	1	0	0	0	0	0	0
F 5	1	0	0	1	0	0	0	0	0	0	0	0	0
G 6	1	0	0	0	0	0	0	1	0	0	0	1	0
Η7	0	0	0	0	0	0	0	0	1	0	0	0	0
18	0	0	0	0	0	0	0	1	0	0	0	0	0
J 9	0	0	0	0	0	0	1	0	0	0	0	0	0
K 10	0	0	0	0	0	0	0	0	0	1	0	0	0
L 11	0	0	0	0	0	0	0	0	0	1	0	0	1
M 12	0	0	0	0	0	0	0	0	0	1	0	1	0

If there is an edge from i (horizontal) to j (vertical) then set M[i][j] to 1 else set it to 0

Graph traversals

Problem: How to **traverse** the graph i.e. systematically visit every vertices?

As for trees, 2 ways to proceed. Start on an initial vertex, (root):

- DFS Depth first search: starts at the root and explores as far as possible along each branch before backtracking. Much like preorder traversal of a tree
- BFS Breadth first search: starts at the root and explores all the neighboring nodes. Then for each of those nearest nodes, it explores their unexplored neighbor nodes, and so forth. Much like level-order traversal of a tree

The Depth-First Search Algorithm

Problem Find a natural way to systematically visit every vertex and every edge of a directed graph :

- Start from one vertex
- Step forward all along one path (without passing through a vertex already visited)
- When you are stuck, turn back until you can step forward an unvisited vertex
- Recursivity offers you the backtrack for free

dfs(v)
 visit(v)
 for each neighbor w of v
 if w is unvisited
 dfs(w)
 # add edge vw to tree T
 end

(ロト(声ト(き)(き) き)のへで Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Graphs The Depth-first Search algorithm

- Initially mark all vertices as unvisited
- Select one vertex v in G as the start vertex
- Mark v as being visited
- Run Depth-First Search recursively on each unvisited vertex adjacent to *v*
- Once all vertices that can be reached from *v* have been visited the Depth-First Search of *v* terminates
- If some vertices remain unvisited, select one of them as a new start vertex
- Repeat this process until all vertices have been visited

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Stack Queue Graphs

Queue

Ruby implementation

require 'rgl/adjacency' class Graphe < RGL::AdjacencyGraph</pre> def dfs \$visited = Array.new(G.max+1) G.each vertex{ |i| \$visited[i]=false } def mydfs(n) \$visited[n] = true puts n $G.each_adjacent(n) \{ |x| \}$ mydfs(x) if \$visited[x]==false } end puts "from which node?" v=gets G.mydfs(v.to_i) end end

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへの

Usage

Iterative Depth-First Search

Queue

DFS invoked on a graph is exactly equivalent to traversing a tree that spans the graph we call it **tree traversal** The recursion of DFS can be removed by using a stack A vertex can be unvisited, unvisited and in the stack, or visited, in this case it is not in the stack We must avoid putting a vertex twice on the stack

Queue

・ロト・4回ト・4回ト・4回ト 回 のへの

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

The graph has E edges and V vertices

Adjacency list All the calls to DFS take O(V + E) time

- DFS is called once by vertex O(V)
- Going down the adjacency list of all vertices is proportional to the sums of the lengths of those lists i.e. O(E)

Adjacency matrix DFS takes $O(V^2)$ time

- DFS is called once by vertex V
- Going down the adjacency list of one vertex costs exactly V and we do it for each vertex so O(V²)

・ロ・・雪・・雨・・雨・ 雨・ うへの

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

Iterative DFS

dfs(s)

initialize S to be a stack with one element s
while S not empty
 take a node u from S
 if explored[u]=false then
 set explored[u]= true
 for each edge (u,v) adjacent to u
 add v to S
 end
 end
end

Graphs

Execution seen at http://www.cs.umd.edu/class/sum2005/ cmsc451/dfsimplementation.pdf

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへの

The Breadth-First Search algorithm

Problem: It is another systematic way of visiting the vertices of a digraph G(V, E). Start from a vertex, step forward all vertices adjacent to it, then step forward all vertices adjacent to its sons,...

The Breadth-First Search algorithm is quite the same algorithm as the iterative DFS, you simply replace the stack with a queue

Ruby implementation of BFS

def bfs

```
$explored = Array.new(G.max+1)
         G.each_vertex{ |i| $explored[i]=false }
         def bfs_from(s)
           q=Queue.new
           q.enqueue s
           until q.empty?
             u=q.dequeue
             if not $explored[u]
                $explored[u]=true
                puts u
               G.each_adjacent(u) { |v| q.enqueue v}
             end
           end
         end
         v = gets
         G.bfs_from(v.to_i)
      end
                                                 ◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs
```

Queue Graphs

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへで

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 3-Stack-Queue and Graphs

	Stack Queue Graphs		
(Iterative) BFS			

```
bfs(s)
```

```
initialize Q to be a queue with one element s
while Q not empty
  take a node u from Q
  if explored[u]=false then
    set explored[u]= true
    for each edge (u,v) adjacent to u
        add v to Q
    end
  end
end
```