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Shortest-Paths Problems on Digraphs

Given a route map, we may be interested in questions like:
“What is the fastest way to get from city x to city y?”

The Shortest Path between x and y : G. Dantzig

“What is the fastest way to get from city x to every other city?”

The Single-Source Shortest-Paths Problem : G. Dantzig

“What is the fastest way to get from every city to every other?”

All Pairs Shortest Paths : R. W. Floyd

Construct a graph G in which each vertex represents a city and
each directed edge a route between cities. The label on edge
x → y is the time to travel from one city to the other.
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The Shortest-Path Problem : G. Dantzig

Problem: Find the SP s � t in G = ({v1, ..., vn},E ) valuated

dist[vi ] (array) stores the the shortest path length from s to vi .
Let S be the set of elements on which dist is defined
weight(i , j) a function which gives the value of i → j if it exists
pred [vi ] stores the predecessor of vi or nil

Initially dist[s] = 0; ∀v �= s dist[v ] = +∞, pred [v ] = nil (S = {s})

First step: iterate on the adjacency list of s. We keep the vertex
v �∈ S so that the value of the edge s → v is minimum and update
dist[v ]. The set S now contains s and v
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The Shortest-Path Problem : G. Dantzig (continued)

At step k

dist is defined on k vertices v1, ..., vk

∀vj ∈ S , iterate on its adjacency list in order to find the
edge towards a vertex wj �∈ S with the smallest distance

find the index j st dist[vj ] + weight(vj ,wj) is minimum

update dist[wj ] with this value and insert wj in S

stop as soon as we reach t

Complexity : vj is taken in constant time. What remains are the
k comparisons to choose wj . The maximum number of

comparisons is 1 + 2 + ...+ V = V (V − 1)/2.
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Relaxation

An edge u → v is tense if

dist[u] + weight(u, v) < dist[v ]

If u → v is tense, the tentative (current) SP s � u → v is shorter.
The algorithm finds a tense edge in G and relaxes it:

relax(u → v)
dist[v ] = dist[u] + weight(u, v)
pred(v) = u

Detecting an edge which can be relaxed is like a graph traversal
with a set S a vertices, initially containing {s}.
When taking u out of S , we scan its outgoing edges for something
to relax. When we relax an edge u → v , we put v in S .
Contrarily to traversal, the same vertex can be visited many times.
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The Single-Source Shortest-Paths Problem : G. Dantzig

You don’t stop when reaching t

You continue until every vertices are in the set S
You have computed the single-source shortest-paths for s

This algorithm is attributed to Dijkstra

All this kind of algorithms are special cases of an algorithm
proposed by Ford in 1956 or independently by Dantzig in 1957.
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Why Dantzig works ?

There can’t be a SP s � vj shorter than the one chosen by the
algorithm

dist[vj ] chosen as the SP whose intermediate vertices are in S

Suppose it exists a shorter path containing vertices not in S

∃v �∈ S , so that s � v � wj is shorter than s � wj

In that case we should have selected v in the algorithm

If the shortest paths are unique, they form a tree (spanning tree).
Observe that any subpath of a SP is also a SP. If there are multiple
shortest paths to the same vertices, we can always chose a path to
each vertex so that the union of the path is a tree.
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Single source SP algorithm

initSSSP(s)

dist[s]=0

pred[s]=nil

forall vertices v != s

dist[v]=infinite

pred[v]=nil

SSSP(s)

initSSSP(s)

S={s}

while not empty?(S)

take u from S

forall edges (u,v)

if dist[u]+weight(u,v)<dist[v]

dist[v]=dist[u]+weight(u,v)

pred[v]=u

S= S union {v}
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Example SSSP from A

A B C D E

0 ∞ ∞ ∞ ∞ S = {A}
0 10A ∞ ∞ 5A S = {B ,E}
0 8E 14E 7E 5A S = {B ,C ,D}
0 8E 13D 7E 5A S = {B ,C}
0 8E 13D 7E 5A S = {B}
0 8E 9B 7E 5A S = ∅
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All-Pairs Shortest-Path problem : R. W. Floyd

Problem: Find for each ordered pair of vertices (v , w) the length
of the SP from v to w in the digraph G (V ,E )

Obvious solution: run the previous SSSP from every vertex.
In this case, this leads to a O(V 3) algorithm with complex data
structures and O(V 3 logV ) with classical data structures.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Matrix multiplication algorithm

Here’s the structure of the problem for u, v ∈ V

1 if u = v , then the SP from u to v is 0

2 oherwise, decompose P = u � x � v where P � = u � x

contains at most k edges and is the SP from u to x

A recursive solution: Let dk
ij the minimum weight of any path from

i to j that contains at most k edges.

1 if k = 0 then d0
ij =

�
0 if i = j

∞ if i �= j

2 Otherwise, for k ≥ 1, dk
ij is computed from d

k−1
ij and the

weights adjacency matrix A:

d
k
ij = min

�
d
k−1
ij , min

1≤�≤n

�
d
k−1
i� + A(�, j)

��
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All-Pairs Shortest-Path problem : R. W. Floyd

Problem: Find for each ordered pair of vertices (v , w) the length
of the SP from v to w in the digraph G (V ,E )

A[V ×V ] is a matrix; A[i , j ] stores the length of the SP from i to j

A function weight(i , j) gives the value of the edge between i and j

if it exists ∞ otherwise

Initially A stores the weight of each existing edge, ∞ otherwise
and 0 on the diagonal
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All-Pairs Shortest-Path problem : R. W. Floyd (continued)

We iterate on the vertices of the graph
At the k th iteration:

A[i , j ] is the shortest path from i to j that passes only through
vertices {1, ..., k − 1}
A[i , j ] = min(A[i , j ], A[i , k] + A[k , j ])

If we need to retrieve the path to go from i to j use an
additional matrix (Path[i , j ] = k if relevant)
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How Floyd’s algorithm works

For each vertex k in V, we run through the entire matrix A

Before the iteration for the vertex k , the existing A[i , j ] does not
pass through the vertex k

If it is faster to go from i to j by passing through k , we take
A[i , k] + A[k , j ] as the new A[i , j ] value
The running time is clearly O(V 3) three nested loops
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The Floyd’s algorithm

floyd

for i = 0 to numberOfVertices

for j = 0 to numberOfVertices

if (weight(i,j) != nil) A[i,j] = weight(i,j)

else A[i,j] = Infinite

Path[i,j]=-1;

for i = 0 to numberOfVertices

A[i,i] = 0

for k = 0 to numberOfVertices

for i = 0 numberOfVertices

for j = 0 to numberOfVertices

if (A[i,k]+A[k,j] < A[i,j])

A[i,j] = A[i,k] + A[k,j]

Path[i,j]=k
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Floyd’s algorithm in Ruby

def floyd

@graph.each_index do |k|

@graph.each_index do |i|

@graph.each_index do |j|

if (@graph[i][j] == "inf.") && (@graph[i][k] != "inf."

&& @graph[k][j] != "inf.")

@graph[i][j] = @graph[i][k]+@graph[k][j]

@pre[i][j] = @pre[k][j]

elsif (@graph[i][k] != "inf." && @graph[k][j] != "inf.")

&& (@graph[i][j] > @graph[i][k]+@graph[k][j])

@graph[i][j] = @graph[i][k]+@graph[k][j]

@pre[i][j] = @pre[k][j]

end

end

end

end

end
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Floyd Example

k 0 B C D E A
AB 10 10 10 10 7 7
AC ∞ 11 11 11 8 8
AD ∞ ∞ 15 15 7 7
AE 5 5 5 5 5 5
BA ∞ ∞ ∞ 12 12 12
BC 1 1 1 1 1 1
BD ∞ ∞ 5 5 5 5
BE 3 3 3 3 3 3
CA ∞ ∞ ∞ 11 11 11
CB ∞ ∞ ∞ ∞ ∞ 18
CD 4 4 4 4 4 4
CE ∞ ∞ ∞ ∞ ∞ 16
DA 7 7 7 7 7 7
DB ∞ ∞ ∞ ∞ ∞ 14
DC 6 6 6 6 6 6
DE ∞ ∞ ∞ ∞ ∞ 12
EA ∞ ∞ ∞ 9 9 9
EB 2 2 2 2 2 2
EC 9 3 3 3 3 3
ED 2 2 2 2 2 2

�
0 10 ∞ ∞ 5
∞ 0 1 ∞ 3
∞ ∞ 0 4 ∞
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Transitive Closure : Warshall’s Algorithm

In some problems we may need to know only whether there exists a
path from vertex i to vertex j in the digraph G (V ,E )
We specialize Floyd’s algorithm

weight(i , j) = TRUE if there is an edge from i to j , FALSE
otherwise

We wish to compute the matrix A such that A[i , j ] = TRUE if
there is a path from i to j and FALSE otherwise

A is called the transitive closure for the adjacency matrix

How it works

For each vertex k ∈ V , we run through the entire matrix A

If there is no path from i to j (A[i , j ] = FALSE ), we test if
there is a path from i to j going through k (A[i , k] and
A[k , j ]) and we update A if needed
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Warshall’s algorithm

warshallAlgorithm

for i = 0 to numberOfVertices

for j = 0 to numberOfVertices

if (weight(i,j) != nil) then A[i,j] = TRUE

else A[i,j] = FALSE

for k = 0..numberOfVertices

for i = 0..numberOfVertices

for j = 0..numberOfVertices

if (A[i,j] == FALSE) then

A[i,j] = A[i,k] && A[k,j]
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Improvement by repeated squaring

Inside k loop, each Ak matrix contains the SP of at most k edges.
What we were doing: ”Given the SP of at most length k , and the
SP of at most length 1, what is the SP of at most length k + 1?”
Repeated squaring method: ”Given the SP of at most length k ,
what is the SP of at most length k + k?” The correctness of this
approach lies in the observation that the SP of at most m edges is
the same as the shortest paths of at most n − 1 edges for all
m > n − 1. Thus:

A1 = W

A2 = W 2 = W ·W
A4 = W 4 = W 2 ·W 2

...
A2�log(n−1)� = W �log(n−1)� ·W �log(n−1)�

With repeated squaring, we run the algorithm �log(n − 1)� times
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