
4-Shortest Paths Problems

Bruno MARTIN,
University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr

http://deptinfo.unice.fr/~bmartin/MathMods

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Shortest-Paths Problems on Digraphs

Given a route map, we may be interested in questions like:
“What is the fastest way to get from city x to city y?”

The Shortest Path between x and y : G. Dantzig

“What is the fastest way to get from city x to every other city?”

The Single-Source Shortest-Paths Problem : G. Dantzig

“What is the fastest way to get from every city to every other?”

All Pairs Shortest Paths : R. W. Floyd

Construct a graph G in which each vertex represents a city and
each directed edge a route between cities. The label on edge
x → y is the time to travel from one city to the other.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

The Shortest-Path Problem : G. Dantzig

Problem: Find the SP s � t in G = ({v1, ..., vn},E) valuated

dist[vi] (array) stores the the shortest path length from s to vi .
Let S be the set of elements on which dist is defined
weight(i , j) a function which gives the value of i → j if it exists
pred [vi] stores the predecessor of vi or nil

Initially dist[s] = 0; ∀v �= s dist[v] = +∞, pred [v] = nil (S = {s})

First step: iterate on the adjacency list of s. We keep the vertex
v �∈ S so that the value of the edge s → v is minimum and update
dist[v]. The set S now contains s and v

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

The Shortest-Path Problem : G. Dantzig (continued)

At step k

dist is defined on k vertices v1, ..., vk

∀vj ∈ S , iterate on its adjacency list in order to find the
edge towards a vertex wj �∈ S with the smallest distance

find the index j st dist[vj] + weight(vj ,wj) is minimum

update dist[wj] with this value and insert wj in S

stop as soon as we reach t

Complexity : vj is taken in constant time. What remains are the
k comparisons to choose wj . The maximum number of

comparisons is 1 + 2 + ...+ V = V (V − 1)/2.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Relaxation

An edge u → v is tense if

dist[u] + weight(u, v) < dist[v]

If u → v is tense, the tentative (current) SP s � u → v is shorter.
The algorithm finds a tense edge in G and relaxes it:

relax(u → v)
dist[v] = dist[u] + weight(u, v)
pred(v) = u

Detecting an edge which can be relaxed is like a graph traversal
with a set S a vertices, initially containing {s}.
When taking u out of S , we scan its outgoing edges for something
to relax. When we relax an edge u → v , we put v in S .
Contrarily to traversal, the same vertex can be visited many times.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

The Single-Source Shortest-Paths Problem : G. Dantzig

You don’t stop when reaching t

You continue until every vertices are in the set S
You have computed the single-source shortest-paths for s

This algorithm is attributed to Dijkstra

All this kind of algorithms are special cases of an algorithm
proposed by Ford in 1956 or independently by Dantzig in 1957.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Why Dantzig works ?

There can’t be a SP s � vj shorter than the one chosen by the
algorithm

dist[vj] chosen as the SP whose intermediate vertices are in S

Suppose it exists a shorter path containing vertices not in S

∃v �∈ S , so that s � v � wj is shorter than s � wj

In that case we should have selected v in the algorithm

If the shortest paths are unique, they form a tree (spanning tree).
Observe that any subpath of a SP is also a SP. If there are multiple
shortest paths to the same vertices, we can always chose a path to
each vertex so that the union of the path is a tree.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Single source SP algorithm

initSSSP(s)

dist[s]=0

pred[s]=nil

forall vertices v != s

dist[v]=infinite

pred[v]=nil

SSSP(s)

initSSSP(s)

S={s}

while not empty?(S)

take u from S

forall edges (u,v)

if dist[u]+weight(u,v)<dist[v]

dist[v]=dist[u]+weight(u,v)

pred[v]=u

S= S union {v}

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Example SSSP from A

A B C D E

0 ∞ ∞ ∞ ∞ S = {A}
0 10A ∞ ∞ 5A S = {B ,E}
0 8E 14E 7E 5A S = {B ,C ,D}
0 8E 13D 7E 5A S = {B ,C}
0 8E 13D 7E 5A S = {B}
0 8E 9B 7E 5A S = ∅

A

B C

DE

10

1

9

5
2

2

3

4

6

7

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

All-Pairs Shortest-Path problem : R. W. Floyd

Problem: Find for each ordered pair of vertices (v , w) the length
of the SP from v to w in the digraph G (V ,E)

Obvious solution: run the previous SSSP from every vertex.
In this case, this leads to a O(V 3) algorithm with complex data
structures and O(V 3 logV) with classical data structures.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Matrix multiplication algorithm

Here’s the structure of the problem for u, v ∈ V

1 if u = v , then the SP from u to v is 0

2 oherwise, decompose P = u � x � v where P � = u � x

contains at most k edges and is the SP from u to x

A recursive solution: Let dk
ij the minimum weight of any path from

i to j that contains at most k edges.

1 if k = 0 then d0
ij =

�
0 if i = j

∞ if i �= j

2 Otherwise, for k ≥ 1, dk
ij is computed from d

k−1
ij and the

weights adjacency matrix A:

d
k
ij = min

�
d
k−1
ij , min

1≤�≤n

�
d
k−1
i� + A(�, j)

��

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

All-Pairs Shortest-Path problem : R. W. Floyd

Problem: Find for each ordered pair of vertices (v , w) the length
of the SP from v to w in the digraph G (V ,E)

A[V ×V] is a matrix; A[i , j] stores the length of the SP from i to j

A function weight(i , j) gives the value of the edge between i and j

if it exists ∞ otherwise

Initially A stores the weight of each existing edge, ∞ otherwise
and 0 on the diagonal

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

All-Pairs Shortest-Path problem : R. W. Floyd (continued)

We iterate on the vertices of the graph
At the k th iteration:

A[i , j] is the shortest path from i to j that passes only through
vertices {1, ..., k − 1}
A[i , j] = min(A[i , j], A[i , k] + A[k , j])

If we need to retrieve the path to go from i to j use an
additional matrix (Path[i , j] = k if relevant)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

How Floyd’s algorithm works

For each vertex k in V, we run through the entire matrix A

Before the iteration for the vertex k , the existing A[i , j] does not
pass through the vertex k

If it is faster to go from i to j by passing through k , we take
A[i , k] + A[k , j] as the new A[i , j] value
The running time is clearly O(V 3) three nested loops

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

The Floyd’s algorithm

floyd

for i = 0 to numberOfVertices

for j = 0 to numberOfVertices

if (weight(i,j) != nil) A[i,j] = weight(i,j)

else A[i,j] = Infinite

Path[i,j]=-1;

for i = 0 to numberOfVertices

A[i,i] = 0

for k = 0 to numberOfVertices

for i = 0 numberOfVertices

for j = 0 to numberOfVertices

if (A[i,k]+A[k,j] < A[i,j])

A[i,j] = A[i,k] + A[k,j]

Path[i,j]=k

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Floyd’s algorithm in Ruby

def floyd

@graph.each_index do |k|

@graph.each_index do |i|

@graph.each_index do |j|

if (@graph[i][j] == "inf.") && (@graph[i][k] != "inf."

&& @graph[k][j] != "inf.")

@graph[i][j] = @graph[i][k]+@graph[k][j]

@pre[i][j] = @pre[k][j]

elsif (@graph[i][k] != "inf." && @graph[k][j] != "inf.")

&& (@graph[i][j] > @graph[i][k]+@graph[k][j])

@graph[i][j] = @graph[i][k]+@graph[k][j]

@pre[i][j] = @pre[k][j]

end

end

end

end

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Floyd Example

k 0 B C D E A
AB 10 10 10 10 7 7
AC ∞ 11 11 11 8 8
AD ∞ ∞ 15 15 7 7
AE 5 5 5 5 5 5
BA ∞ ∞ ∞ 12 12 12
BC 1 1 1 1 1 1
BD ∞ ∞ 5 5 5 5
BE 3 3 3 3 3 3
CA ∞ ∞ ∞ 11 11 11
CB ∞ ∞ ∞ ∞ ∞ 18
CD 4 4 4 4 4 4
CE ∞ ∞ ∞ ∞ ∞ 16
DA 7 7 7 7 7 7
DB ∞ ∞ ∞ ∞ ∞ 14
DC 6 6 6 6 6 6
DE ∞ ∞ ∞ ∞ ∞ 12
EA ∞ ∞ ∞ 9 9 9
EB 2 2 2 2 2 2
EC 9 3 3 3 3 3
ED 2 2 2 2 2 2

�
0 10 ∞ ∞ 5
∞ 0 1 ∞ 3
∞ ∞ 0 4 ∞
7 ∞ 6 0 ∞
∞ 2 9 2 0

�

�
0 10 ∞ ∞ 5
∞ 0 1 ∞ 3
∞ ∞ 0 4 ∞
7 ∞ 6 0 ∞
∞ 2 9 2 0

� �
0 7 11 7 5
∞ 0 1 5 3
∞ ∞ 0 4 ∞
7 17 6 0 12
9 2 3 2 0

�

A

B C

DE

10

1

9

5

2

2
3 4

6

7

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Transitive Closure : Warshall’s Algorithm

In some problems we may need to know only whether there exists a
path from vertex i to vertex j in the digraph G (V ,E)
We specialize Floyd’s algorithm

weight(i , j) = TRUE if there is an edge from i to j , FALSE
otherwise

We wish to compute the matrix A such that A[i , j] = TRUE if
there is a path from i to j and FALSE otherwise

A is called the transitive closure for the adjacency matrix

How it works

For each vertex k ∈ V , we run through the entire matrix A

If there is no path from i to j (A[i , j] = FALSE), we test if
there is a path from i to j going through k (A[i , k] and
A[k , j]) and we update A if needed

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Warshall’s algorithm

warshallAlgorithm

for i = 0 to numberOfVertices

for j = 0 to numberOfVertices

if (weight(i,j) != nil) then A[i,j] = TRUE

else A[i,j] = FALSE

for k = 0..numberOfVertices

for i = 0..numberOfVertices

for j = 0..numberOfVertices

if (A[i,j] == FALSE) then

A[i,j] = A[i,k] && A[k,j]

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

Improvement by repeated squaring

Inside k loop, each Ak matrix contains the SP of at most k edges.
What we were doing: ”Given the SP of at most length k , and the
SP of at most length 1, what is the SP of at most length k + 1?”
Repeated squaring method: ”Given the SP of at most length k ,
what is the SP of at most length k + k?” The correctness of this
approach lies in the observation that the SP of at most m edges is
the same as the shortest paths of at most n − 1 edges for all
m > n − 1. Thus:

A1 = W

A2 = W 2 = W ·W
A4 = W 4 = W 2 ·W 2

...
A2�log(n−1)� = W �log(n−1)� ·W �log(n−1)�

With repeated squaring, we run the algorithm �log(n − 1)� times

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods4-Shortest Paths Problems

