4-Shortest Paths Problems

Bruno MARTIN,

University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/MathMods

Shortest-Paths Problems on Digraphs

Given a route map, we may be interested in questions like:
"What is the fastest way to get from city x to city y ?"

The Shortest Path between x and y : G. Dantzig

"What is the fastest way to get from city x to every other city?"

The Single-Source Shortest-Paths Problem : G. Dantzig

"What is the fastest way to get from every city to every other?"
All Pairs Shortest Paths: R. W. Floyd
Construct a graph G in which each vertex represents a city and each directed edge a route between cities. The label on edge $x \rightarrow y$ is the time to travel from one city to the other.

Problem: Find the SP $s \rightsquigarrow t$ in $G=\left(\left\{v_{1}, \ldots, v_{n}\right\}, E\right)$ valuated
$\operatorname{dist}\left[v_{i}\right]$ (array) stores the the shortest path length from s to v_{i}. Let S be the set of elements on which dist is defined weight (i, j) a function which gives the value of $i \rightarrow j$ if it exists pred $\left[v_{i}\right]$ stores the predecessor of v_{i} or nil
Initially $\operatorname{dist}[s]=0 ; \forall v \neq s \operatorname{dist}[v]=+\infty, \operatorname{pred}[v]=\operatorname{nil}(S=\{s\})$
First step: iterate on the adjacency list of s. We keep the vertex $v \notin S$ so that the value of the edge $s \rightarrow v$ is minimum and update $\operatorname{dist}[v]$. The set S now contains s and v

At step k

- dist is defined on k vertices v_{1}, \ldots, v_{k}
- $\forall v_{j} \in S$, iterate on its adjacency list in order to find the edge towards a vertex $w_{j} \notin S$ with the smallest distance
- find the index j st $\operatorname{dist}\left[v_{j}\right]+$ weight $\left(v_{j}, w_{j}\right)$ is minimum
- update $\operatorname{dist}\left[w_{j}\right]$ with this value and insert w_{j} in S
- stop as soon as we reach t

Complexity : v_{j} is taken in constant time. What remains are the k comparisons to choose w_{j}. The maximum number of comparisons is $1+2+\ldots+V=V(V-1) / 2$.

Relaxation

An edge $u \rightarrow v$ is tense if

$$
\operatorname{dist}[u]+\operatorname{weight}(u, v)<\operatorname{dist}[v]
$$

If $u \rightarrow v$ is tense, the tentative (current) SP $s \rightsquigarrow u \rightarrow v$ is shorter. The algorithm finds a tense edge in G and relaxes it:

```
relax \((u \rightarrow v)\)
    \(\operatorname{dist}[v]=\operatorname{dist}[u]+\operatorname{weight}(u, v)\)
    \(\operatorname{pred}(v)=u\)
```

Detecting an edge which can be relaxed is like a graph traversal with a set S a vertices, initially containing $\{s\}$.
When taking u out of S, we scan its outgoing edges for something to relax. When we relax an edge $u \rightarrow v$, we put v in S.
Contrarily to traversal, the same vertex can be visited many times.

The Single-Source Shortest-Paths Problem : G. Dantzig

You don't stop when reaching t
You continue until every vertices are in the set S
You have computed the single-source shortest-paths for s
This algorithm is attributed to Dijkstra
All this kind of algorithms are special cases of an algorithm proposed by Ford in 1956 or independently by Dantzig in 1957.

Why Dantzig works ?

There can't be a SP $s \rightsquigarrow v_{j}$ shorter than the one chosen by the algorithm

- $\operatorname{dist}\left[v_{j}\right]$ chosen as the SP whose intermediate vertices are in S
- Suppose it exists a shorter path containing vertices not in S
- $\exists v \notin S$, so that $s \rightsquigarrow v \rightsquigarrow w_{j}$ is shorter than $s \rightsquigarrow w_{j}$
- In that case we should have selected v in the algorithm

If the shortest paths are unique, they form a tree (spanning tree). Observe that any subpath of a SP is also a SP. If there are multiple shortest paths to the same vertices, we can always chose a path to each vertex so that the union of the path is a tree.

Single source SP algorithm

	initSSSP(s)
initSSSP(s)	$\mathrm{S}=\{\mathrm{s}\}$
dist[s]=0	while not empty? (S)
pred[s]=nil	take u from S
```forall vertices v != s dist[v]=infinite pred[v]=nil```	forall edges (u,v)
	if dist[u]+weight (u,v) <dist [v]
	dist[v]=dist [u]+weight (u,v)
	pred [v] $=\mathrm{u}$
	$\mathrm{S}=\mathrm{S}$ union $\{\mathrm{v}\}$

## Example SSSP from A



## All-Pairs Shortest-Path problem : R. W. Floyd

Problem: Find for each ordered pair of vertices $(v, w)$ the length of the SP from $v$ to $w$ in the digraph $G(V, E)$

Obvious solution: run the previous SSSP from every vertex. In this case, this leads to a $O\left(V^{3}\right)$ algorithm with complex data structures and $O\left(V^{3} \log V\right)$ with classical data structures.

## Matrix multiplication algorithm

Here's the structure of the problem for $u, v \in V$
(1) if $u=v$, then the SP from $u$ to $v$ is 0
(2) oherwise, decompose $P=u \rightsquigarrow x \rightsquigarrow v$ where $P^{\prime}=u \rightsquigarrow x$ contains at most $k$ edges and is the SP from $u$ to $x$
A recursive solution: Let $d_{i j}^{k}$ the minimum weight of any path from
$i$ to $j$ that contains at most $k$ edges.
(1) if $k=0$ then $d_{i j}^{0}=\left\{\begin{array}{l}0 \text { if } i=j \\ \infty \text { if } i \neq j\end{array}\right.$
(-) Otherwise, for $k \geq 1, d_{i j}^{k}$ is computed from $d_{i j}^{k-1}$ and the weights adjacency matrix $A$ :

$$
d_{i j}^{k}=\min \left\{d_{i j}^{k-1}, \min _{1 \leq \ell \leq n}\left\{d_{i \ell}^{k-1}+A(\ell, j)\right\}\right\}
$$

## All-Pairs Shortest-Path problem : R. W. Floyd

Problem: Find for each ordered pair of vertices $(v, w)$ the length of the SP from $v$ to $w$ in the digraph $G(V, E)$
$A[V \times V]$ is a matrix; $A[i, j]$ stores the length of the SP from $i$ to $j$ A function weight $(i, j)$ gives the value of the edge between $i$ and $j$ if it exists $\infty$ otherwise

Initially A stores the weight of each existing edge, $\infty$ otherwise and 0 on the diagonal

We iterate on the vertices of the graph
At the $k^{\text {th }}$ iteration:

- $A[i, j]$ is the shortest path from $i$ to $j$ that passes only through vertices $\{1, \ldots, k-1\}$
- $A[i, j]=\min (A[i, j], A[i, k]+A[k, j])$
- If we need to retrieve the path to go from $i$ to $j$ use an additional matrix (Path $[i, j]=k$ if relevant $)$
floyd
for i $=0$ to numberOfVertices
for $j=0$ to numberOfVertices if (weight (i,j) != nil) A[i,j] = weight (i,j) else A[i,j] = Infinite Path $[i, j]=-1$;
for $i=0$ to numberOfVertices $\mathrm{A}[\mathrm{i}, \mathrm{i}]=0$
for $\mathrm{k}=0$ to numberOfVertices
for i $=0$ numberOfVertices
for $\mathrm{j}=0$ to numberOfVertices if ( $A[i, k]+A[k, j]<A[i, j])$ $A[i, j]=A[i, k]+A[k, j]$ Path[i,j]=k


## How Floyd's algorithm works

For each vertex $k$ in $V$, we run through the entire matrix $A$ Before the iteration for the vertex $k$, the existing $A[i, j]$ does not pass through the vertex $k$
If it is faster to go from $i$ to $j$ by passing through $k$, we take $A[i, k]+A[k, j]$ as the new $A[i, j]$ value
The running time is clearly $O\left(V^{3}\right)$ three nested loops

## Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br $\quad$ 4-Shortest Paths Problems

## Floyd's algorithm in Ruby

```
def floyd
 @graph.each_index do |k|
 @graph.each_index do |i|
 @graph.each_index do |j|
 if (@graph[i][j] == "inf.") && (@graph[i][k] != "inf."
 && @graph[k][j] != "inf.")
 @graph[i][j] = @graph[i][k]+@graph[k][j]
 @pre[i][j] = @pre[k][j]
 elsif (@graph[i][k] != "inf." && @graph[k][j] != "inf.")
 && (@graph[i][j] > @graph[i][k]+@graph[k][j])
 @graph[i][j] = @graph[i][k]+@graph[k][j]
 @pre[i][j] = @pre[k][j]
 end
 end
 end
 end
 end
```


## Floyd Example

	N
	$\bigcirc$
N	$\infty$
	$\bigcirc$
	$\bigcirc$
	$\pi$
	入

$\left(\begin{array}{ccccc}0 & 10 & \infty & \infty & 5 \\ \infty & 0 & 1 & \infty & 3 \\ \infty & \infty & 0 & 4 & \infty \\ 7 & \infty & 6 & 0 & \infty \\ \infty & 2 & 9 & 2 & 0\end{array}\right)$


## Bruno MARTIN, University of Nice - Sophia Antipolis mailto: E

## Transitive Closure : Warshall's Algorithm

In some problems we may need to know only whether there exists a path from vertex $i$ to vertex $j$ in the digraph $G(V, E)$
We specialize Floyd's algorithm

- weight $(i, j)=$ TRUE if there is an edge from $i$ to $j$, FALSE otherwise
- We wish to compute the matrix $A$ such that $A[i, j]=$ TRUE if there is a path from $i$ to $j$ and $F A L S E$ otherwise
- $A$ is called the transitive closure for the adjacency matrix


## How it works

- For each vertex $k \in V$, we run through the entire matrix $A$
- If there is no path from $i$ to $j(A[i, j]=F A L S E)$, we test if there is a path from $i$ to $j$ going through $k$ ( $A[i, k]$ and $A[k, j]$ ) and we update $A$ if needed


## Warshall's algorithm

```
warshallAlgorithm
 for i = O to numberOfVertices
 for j = 0 to numberOfVertices
 if (weight(i,j) != nil) then A[i,j] = TRUE
 else A[i,j] = FALSE
for k = O..numberOfVertices
 for i = 0..numberOfVertices
 for j = 0..numberOfVertices
 if (A[i,j] == FALSE) then
 A[i,j] = A[i,k] && A[k,j]
```


## Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br $\quad$ 4-Shortest Paths Problems

## Improvement by repeated squaring

Inside $k$ loop, each $A_{k}$ matrix contains the SP of at most $k$ edges. What we were doing: "Given the SP of at most length $k$, and the SP of at most length 1 , what is the SP of at most length $k+1$ ?" Repeated squaring method: "Given the SP of at most length $k$, what is the SP of at most length $k+k$ ?" The correctness of this approach lies in the observation that the SP of at most $m$ edges is the same as the shortest paths of at most $n-1$ edges for all $m>n-1$. Thus:

$$
\begin{aligned}
& A_{1}=W \\
& A_{2}=W^{2}=W \cdot W^{4} \\
& A_{4}=W^{4}=W^{2} \cdot W^{2} \\
& \vdots \\
& A_{2\lceil\log (n-1)\rceil}=W^{\lceil\log (n-1)\rceil} \cdot W^{\lceil\log (n-1)\rceil}
\end{aligned}
$$

With repeated squaring, we run the algorithm $\lceil\log (n-1)\rceil$ times

