4-Shortest Paths Problems

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/MathMods

The Shortest-Path Problem : G. Dantzig

Problem: Find the SP $s \rightsquigarrow t$ in $G = (\{v_1, ..., v_n\}, E)$ valuated

 $dist[v_i]$ (array) stores the **the shortest path length** from *s* to v_i . Let *S* be the set of elements on which dist is defined weight(i, j) a **function** which gives the value of $i \rightarrow j$ if it exists $pred[v_i]$ stores the predecessor of v_i or nil

Initially dist[s] = 0; $\forall v \neq s \ dist[v] = +\infty$, $pred[v] = nil \ (S = \{s\})$

First step: iterate on the adjacency list of *s*. We keep the vertex $v \notin S$ so that the value of the edge $s \rightarrow v$ is minimum and update dist[v]. The set *S* now contains *s* and *v*

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

Shortest-Paths Problems on Digraphs

Given a route map, we may be interested in questions like: "What is the fastest way to get from city x to city y?"

The Shortest Path between x and y : G. Dantzig

"What is the fastest way to get from city x to every other city?"

The Single-Source Shortest-Paths Problem : G. Dantzig

"What is the fastest way to get from every city to every other?"

All Pairs Shortest Paths : R. W. Floyd

Construct a graph *G* in which each vertex represents a city and each directed edge a route between cities. The label on edge $x \rightarrow y$ is the time to travel from one city to the other.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

The Shortest-Path Problem : G. Dantzig (continued)

At step k

- *dist* is defined on k vertices $v_1, ..., v_k$
- ∀v_j ∈ S, iterate on its adjacency list in order to find the edge towards a vertex w_i ∉ S with the smallest distance
- find the **index** j st $dist[v_i] + weight(v_i, w_i)$ is **minimum**
- update $dist[w_i]$ with this value and insert w_i in S
- **stop** as soon as we reach *t*

Complexity : v_j is taken in **constant time**. What remains are the k comparisons to choose w_j . The **maximum number of comparisons** is 1 + 2 + ... + V = V(V - 1)/2.

An edge $u \rightarrow v$ is *tense* if

```
dist[u] + weight(u, v) < dist[v]
```

If $u \to v$ is tense, the tentative (current) SP $s \rightsquigarrow u \to v$ is shorter. The algorithm finds a tense edge in G and *relaxes* it:

 $\mathsf{relax}(u o v) \ dist[v] = dist[u] + weight(u, v) \ pred(v) = u$

Detecting an edge which can be relaxed is like a graph traversal with a set S a vertices, initially containing $\{s\}$. When taking u out of S, we scan its outgoing edges for something

to relax. When we relax an edge $u \rightarrow v$, we put v in S. Contrarily to traversal, the same vertex can be visited many times.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

The Single-Source Shortest-Paths Problem : G. Dantzig

You don't stop when reaching tYou continue until every vertices are in the set SYou have computed the **single-source shortest-paths for** s

This algorithm is attributed to Dijkstra

All this kind of algorithms are special cases of an algorithm proposed by Ford in 1956 or independently by Dantzig in 1957.

Why Dantzig works ?

There can't be a SP $s \rightsquigarrow v_j$ shorter than the one chosen by the algorithm

- dist[v_i] chosen as the SP whose intermediate vertices are in S
- Suppose it exists a shorter path containing vertices not in ${\boldsymbol{S}}$
 - $\exists v \notin S$, so that $s \rightsquigarrow v \rightsquigarrow w_j$ is shorter than $s \rightsquigarrow w_j$
 - In that case we should have selected v in the algorithm

If the shortest paths are unique, they form a tree (*spanning tree*). Observe that any subpath of a SP is also a SP. If there are multiple shortest paths to the same vertices, we can always chose a path to each vertex so that the union of the path is a tree.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

Single source SP algorithm

initSSSP(s)
dist[s]=0
pred[s]=nil
forall vertices v != s
dist[v]=infinite
pred[v]=nil

SSSP(s)
initSSSP(s)
S={s}
while not empty?(S)
take u from S
forall edges (u,v)
if dist[u]+weight(u,v)<dist[v]
dist[v]=dist[u]+weight(u,v)
pred[v]=u
S= S union {v}</pre>

Matrix multiplication algorithm

Here's the structure of the problem for $u, v \in V$

- if u = v, then the SP from u to v is 0
- oherwise, decompose $P = u \rightsquigarrow x \rightsquigarrow v$ where $P' = u \rightsquigarrow x$ contains at most k edges and is the SP from u to x

A recursive solution: Let d_{ij}^k the minimum weight of any path from *i* to *j* that contains at most *k* edges.

- if k = 0 then $d_{ij}^0 = \begin{cases} 0 \text{ if } i = j \\ \infty \text{ if } i \neq j \end{cases}$
- Otherwise, for k ≥ 1, d^k_{ij} is computed from d^{k-1}_{ij} and the weights adjacency matrix A:

$$d_{ij}^{k} = \min\left\{d_{ij}^{k-1}, \min_{1 \le \ell \le n}\left\{d_{i\ell}^{k-1} + A(\ell, j)\right\}\right\}$$

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

All-Pairs Shortest-Path problem : R. W. Floyd

Problem: Find for each ordered pair of vertices (v, w) the length of the SP from v to w in the digraph G(V, E)

Obvious solution: run the previous SSSP from every vertex. In this case, this leads to a $O(V^3)$ algorithm with complex data structures and $O(V^3 \log V)$ with classical data structures. **Problem:** Find for each ordered pair of vertices (v, w) the length of the SP from v to w in the digraph G(V, E)

 $A[V \times V]$ is a matrix; A[i, j] stores the length of the SP from *i* to *j* A function *weight*(*i*, *j*) gives the value of the edge between *i* and *j* if it exists ∞ otherwise

Initially A stores the *weight* of each existing edge, ∞ otherwise and 0 on the diagonal

no MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

All-Pairs Shortest-Path problem : R. W. Floyd

All-Pairs Shortest-Path problem : R. W. Floyd (continued)

We iterate on the vertices of the graph **At the** k^{th} **iteration:**

- A[i,j] is the shortest path from *i* to *j* that passes only through vertices $\{1, ..., k 1\}$
- A[i,j] = min(A[i,j], A[i,k] + A[k,j])
- If we need to retrieve the path to go from i to j use an additional matrix (Path[i, j] = k if relevant)

The Floyd's algorithm

```
floyd
for i = 0 to numberOfVertices
for j = 0 to numberOfVertices
if (weight(i,j) != nil) A[i,j] = weight(i,j)
else A[i,j] = Infinite
Path[i,j]=-1;
for i = 0 to numberOfVertices
A[i,i] = 0
for k = 0 to numberOfVertices
for i = 0 numberOfVertices
for j = 0 to numberOfVertices
if (A[i,k]+A[k,j] < A[i,j])
A[i,j] = A[i,k] + A[k,j]
Path[i,j]=k
```

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

How Floyd's algorithm works

For each vertex k in V, we run through the entire matrix A Before the iteration for the vertex k, the existing A[i, j] does not pass through the vertex k If it is faster to go from i to j by passing through k, we take A[i, k] + A[k, j] as the new A[i, j] value **The running time is clearly** $O(V^3)$ three nested loops

Floyd's algorithm in Ruby

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:B1 4-Shortest Paths Problems

def floyd @graph.each_index do |k| @graph.each_index do |i| @graph.each_index do |j| if (@graph[i][j] == "inf.") && (@graph[i][k] != "inf." && @graph[k][j] != "inf.") @graph[i][j] = @graph[i][k]+@graph[k][j] @pre[i][j] = @pre[k][j] elsif (@graph[i][k] != "inf." && @graph[k][j] != "inf.") && (@graph[i][j] > @graph[i][k]+@graph[k][j]) @graph[i][j] = @graph[i][k]+@graph[k][j] @pre[i][j] = @pre[k][j] end end end end end

Floyd Example

Transitive Closure : Warshall's Algorithm

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

In some problems we may need to know only whether there exists a path from vertex *i* to vertex *j* in the digraph G(V, E)We specialize Floyd's algorithm

- weight(i,j) = TRUE if there is an edge from i to j, FALSE otherwise
- We wish to compute the matrix A such that A[i, j] = TRUE if there is a path from *i* to *j* and *FALSE* otherwise
- A is called the **transitive closure** for the adjacency matrix

How it works

- For each vertex $k \in V$, we run through the entire matrix A
- If there is no path from i to j (A[i, j] = FALSE), we test if there is a path from i to j going through k (A[i, k] and A[k, j]) and we update A if needed

Warshall's algorithm

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 4-Shortest Paths Problems

Improvement by repeated squaring

Inside k loop, each A_k matrix contains the SP of at most k edges. What we were doing: "Given the SP of at most length k, and the SP of at most length 1, what is the SP of at most length k + 1?" Repeated squaring method: "Given the SP of at most length k, what is the SP of at most length k + k?" The correctness of this approach lies in the observation that the SP of at most m edges is the same as the shortest paths of at most n - 1 edges for all m > n - 1. Thus:

$$A_{1} = W$$

$$A_{2} = W^{2} = W \cdot W$$

$$A_{4} = W^{4} = W^{2} \cdot W^{2}$$

$$\vdots$$

$$A_{2\lceil \log(n-1) \rceil} = W^{\lceil \log(n-1) \rceil} \cdot W^{\lceil \log(n-1) \rceil}$$

With repeated squaring, we run the algorithm $\lceil \log(n-1) \rceil$ times