The Shortest-Path Problem : G. Dantzig

Problem: Find the SP s ~ tin G = ({v1, ..., Vo }, E) valuated

4-Shortest Paths Problems dist[v;] (array) stores the the shortest path length from s to v;.

Let S be the set of elements on which dist is defined
Bruno MARTIN, weight(i,j) a function which gives the value of i — j if it exists

University of Nice - Sophia Antipolis pred[v;] stores the predecessor of v; or nil
mailto:Bruno.Martin@unice.fr

http://deptinfo.unice.fr/~bmartin/MathMods Initially dist[s] = 0; ¥v # s dist[v] = +oc, pred[v] = nil (5 = {s})

First step: iterate on the adjacency list of s. We keep the vertex
v € S so that the value of the edge s — v is minimum and update
dist[v]. The set S now contains s and v

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bzx 4-Shortest Paths Problems

Shortest-Paths Problems on Digraphs The Shortest-Path Problem : G. Dantzig (continued)

Given a route map, we may be interested in questions like:
“What is the fastest way to get from city x to city y?” At step k

The Shortest Path between x and y : G. Dantzig o dist is defined on k vertices v, ..., vi

@ Vv; € S, iterate on its adjacency list in order to find the
“What is the fastest way to get from city x to every other city?” edge towards a vertex w; ¢ S with the smallest distance

The Single-Source Shortest-Paths Problem : G. Dantzig o find the index j st dist[v] + weight(v;, w;) is minimum

e update dist[w;] with this value and insert w; in S

“What is the fastest way to get from every city to every other?”
@ stop as soon as we reach t

All Pairs Shortest Paths : R. W. Floyd Complexity : v; is taken in constant time. What remains are the
k comparisons to choose w;. The maximum number of

Construct a graph G in which each vertex represents a city and comparisons is 1+ 2 + ... + V = V(V — 1)/2.

each directed edge a route between cities. The label on edge
x — y is the time to travel from one city to the other.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bz 4-Shortest Paths Problems

An edge u — v is tense if

dist[u] 4 weight(u, v) < dist[v] There can't be a SP s ~» v; shorter than the one chosen by the

. . . algorithm
If u— v is tense, the tentative (current) SP s ~» u — v is shorter.

The algorithm finds a tense edge in G and relaxes it: o dist[vj] chosen as the SP whose intermediate vertices are in S

@ Suppose it exists a shorter path containing vertices not in S

relax(u — v) o dv ¢ 5,50 that s ~» v ~» wj is shorter than s ~» w;
dist[v] = dist[u] + weight(u, v) o In that case we should have selected v in the algorithm
pred(v) = u

If the shortest paths are unique, they form a tree (spanning tree).
Observe that any subpath of a SP is also a SP. If there are multiple
Detecting an edge which can be relaxed is like a graph traversal shortest paths to the same vertices, we can always chose a path to
with a set S a vertices, initially containing {s}. each vertex so that the union of the path is a tree.

When taking v out of S, we scan its outgoing edges for something

to relax. When we relax an edge u — v, we put v in S.

Contrarily to traversal, the same vertex can be visited many times.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bzx 4-Shortest Paths Problems

The Single-Source Shortest-Paths Problem : G. Dantzig Single source SP algorithm

You don’t stop when reaching t SSSPFS)
. . 3 . initSSSP(s)

You continue until every \{ertlces are in the set S initSSSP(s) s={s}
You have computed the single-source shortest-paths for s dist[s]1=0 while not empty?(S)

. pred[s]=nil take u from S
This algorithm is attributed to Dijkstra forall vertices v != s forall edges (u,v)

dist[v]=infinite if dist[ul+weight(u,v)<dist[v]

All this kind of algorithms are special cases of an algorithm pred[v]=nil dist [v]=dist [u] +weight (u,v)
proposed by Ford in 1956 or independently by Dantzig in 1957. pred[v]=u

S= S union {v}

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bz 4-Shortest Paths Problems

Example SSSP from A Matrix multiplication algorithm

Here's the structure of the problem for u,v € V
Q@ if u=v, thenthe SP fromutovisO

@ oherwise, decompose P = u ~» x ~ v where P’ = uy ~» x

Al B Cc | DE contains at most k edges and is the SP from u to x

0 o0 | © || A recursive solution: Let dX the minimum weight of any path from
0 |10A4] oo | o0 | 5A i to j that contains at mos”Jc k edges.

0| 8E | 14E | 7TE | 5A ..

0| 8E |13D | 7E |5A Oifk:OthendIQ:{Olf./.—J'

0| 8E |13D | 7TE | 5A U oo if i #£ j

0

8E | 9B | 7E | 5A @ Otherwise, for k > 1, d,-jf is computed from déf_l and the

weights adjacency matrix A:

K . k=1 . k-1 .
d;i = min {d,-j , min_ {df™ + A(K,J)}}

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bzx 4-Shortest Paths Problems

All-Pairs Shortest-Path problem : R. W. Floyd All-Pairs Shortest-Path problem : R. W. Floyd

Problem: Find for each ordered pair of vertices (v, w) the length
Problem: Find for each ordered pair of vertices (v, w) the length of the SP from v to w in the digraph G(V, E)

of the SP from v to w in the digraph G(V, E
graph &) A[V x V] is a matrix; A[i,] stores the length of the SP from i to j

Obvious solution: run the previous SSSP from every vertex. A function weight(i,j) gives the value of the edge between i and j
In this case, this leads to a O(V?3) algorithm with complex data if it exists oo otherwise

structures and O(V3log V) with classical data structures. .] o)
Initially A stores the weight of each existing edge, co otherwise

and 0 on the diagonal

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bz 4-Shortest Paths Problems

All-Pairs Shortest-Path problem : R. W. Floyd (continued)

We iterate on the vertices of the graph
At the k!" iteration:

o A[i,j] is the shortest path from i to j that passes only through

vertices {1,...,k — 1}

o Ali,j] = min(A[i,j], Ali, k] + Alk,Jj])

@ If we need to retrieve the path to go from i to j use an
additional matrix (Path[i, j| = k if relevant)

The Floyd's algorithm

floyd

for i = 0 to numberQOfVertices
for j = 0 to numberOfVertices
if (weight(i,j) !'= nil) A[i,jl = weight(i,j)
else A[i,j] = Infinite
Path[i,jl=-1;
for i = 0 to numberOfVertices
Ali,i] = 0
for k¥ = 0 to numberOfVertices
for i = 0 numberOfVertices
for j = 0 to numberOfVertices
if (A[i,k1+ALk,j1 < A[i,jD)
Ali,jl = Ali,k] + Alk,j]
Path[i,jl=k

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bzx 4-Shortest Paths Problems

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems

How Floyd's algorithm works

For each vertex k in V, we run through the entire matrix A
Before the iteration for the vertex k, the existing A[/,j] does not
pass through the vertex k

If it is faster to go from /i to j by passing through k, we take
Ali, k] + Alk, j] as the new A[i,] value

The running time is clearly O(V3) three nested loops

Floyd's algorithm in Ruby

def floyd

O@graph.each_index do |kl
O@graph.each_index do |il
@graph.each_index do [jl
if (@graph[i] [j] == "inf.") && (@graph[i] [k] != "inf."
&% @graph([k][j] != "inf.")
Ograph[i] [j] = @graph[i] [k]+@graph[k] [j]
@pre[i] [j1 = @prelk][j]
elsif (@graph[i] [k] != "inf." && @graph[k][j] != "inf.")
&% (@graphlil [j] > @graph[i] [k]+@graph[k][j]1)
@graph[i] [j] = @graph[i] [k]+@graph (k] [j]
@pre[i] [j] = @prel[k] [j]
end
end
end
end

end

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bz 4-Shortest Paths Problems

Floyd Example

Warshall’s algorithm

0 10001000 g
k |o|B|C|D|E]A X o 0 7
AB (10|10 |10 |10 7 |7 7 00 6 0 oo
AC | oo |11 |11 |11 8 | 8 © 2920
AD 15(15] 7|7 ~
AE 050 050 clels|s 0 10 00 0o 5 071175 warshallAlgorithm
BA | ool ool oo |12l 1212 2013 0153 for i = 0 to numberOfVertices
BC| 1|1 |1 |1[1]1 Ix89% JiggL for j = 0 to numberOfVertices
e R A N R B . C if (weight(i,j) != nil) then A[i,j] = TRUE
CA | oo |oo|loo|11]11]11 else A[i,j] = FALSE
gg ‘f 30 ‘f ‘f ‘10 148 for k = 0..numberOfVertices
CE | 0o | 00| 00| 00| oo| 16 for i = 0..numberOfVertices
gg L A A R 174 for j = 0..numberOfVertices
DC 6 6 6 6 6 6 if (A[l,J] == FALSE) then
DE | o0 | o0 | o0 | o0 | o0 | 12 Ali,j] = ALi,k] && Alk,j]
oo oo oo
EB|2|2]2|2|2]2
EC|9|3[3|3|3]3
ED|2|2]2|2|2]2

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bzx 4-Shortest Paths Problems

Improvement by repeated squaring

Inside k loop, each Ax matrix contains the SP of at most k edges.
What we were doing: " Given the SP of at most length k, and the
SP of at most length 1, what is the SP of at most length k 4 17"
Repeated squaring method: " Given the SP of at most length k,
what is the SP of at most length k + k7" The correctness of this
approach lies in the observation that the SP of at most m edges is
the same as the shortest paths of at most n — 1 edges for all
m>n—1. Thus:

Transitive Closure : Warshall's Algorithm

In some problems we may need to know only whether there exists a
path from vertex i to vertex j in the digraph G(V/, E)
We specialize Floyd’s algorithm

e weight(i,j) = TRUE if there is an edge from i to j, FALSE
otherwise

@ We wish to compute the matrix A such that A[i,j] = TRUE if

there is a path from 7 to j and FALSE otherwise
@ A is called the transitive closure for the adjacency matrix A=W
1 =
Ar=W2=W. W
Ay = W= W?. w2

How it works
@ For each vertex k € V, we run through the entire matrix A

o If there is no path from i to j (A[i,j] = FALSE), we test if
there is a path from i to j going through k (A[/, k] and
Alk,j]) and we update A if needed

Anfiog(n-1y] = W8l . pyTlog(n=1]

With repeated squaring, we run the algorithm [log(n — 1)] times

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx 4-Shortest Paths Problems

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bz 4-Shortest Paths Problems

