Sorting and Searching

Bruno MARTIN,

University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/mathmods.html

Main performance parameter: time complexity
Differents criteria are used to evaluate the time complexity of an internal sorting algorithm:

- The number of steps required
- The number of comparisons between keys. Comparisons can be expensive when keys are long character strings
- The number of time a record is moved. Only keys are compared, but entire records are moved

Simple algorithms

- like Bubble Sort, Insertion Sort, Selection Sort, ...
- usual time complexity: $O\left(N^{2}\right.$
- useful only for sorting shorts lists of records (<500)

Famous algorithms

- QuickSort
- time complexity: $O(N \log N)$ in the average case
- time complexity: $O\left(N^{2}\right)$ in the worst and best case

```
class Array
```

class Array
def bubble!
def bubble!
for i in 1..self.length-1
for i in 1..self.length-1
1.upto(self.length - i) { |j|
1.upto(self.length - i) { |j|
self.swap!(j-1,j) if self[j-1] > self[j] }
self.swap!(j-1,j) if self[j-1] > self[j] }
end
end
self
self
end
end
end

```
end
```

We keep our focus on algorithms and think of them as sorting arrays of \mathbf{N} records in ascending order of their key $(<)$ The algorithm of array sorting uses key comparisons ($<$) and record movements (swap)
The procedure swap! (\mathbf{i}, \mathbf{j}) is an exchange operation : $a[i] \leftrightarrow a[j]$
class Array def swap! (a,b)
self[a], self[b] = self[b], self[a] self end
end
$[1,2,3,4]$. swap $!(2,3) \quad \#=[1,2,4,3]$

Description: It keeps passing through the array $\left[a_{0}, \ldots, a_{N-1}\right]$,
exchanging each pair of adjacent elements $\left(a_{j-1}, a_{j}\right)$ which are out of order $\left(a_{j-1}>a_{j}\right)$
Why does it works ?

- during the first pass, the largest element is exchanged with each of the elements to its right, and gets into position a_{N-1}
- After the second pass the second largest gets into position a_{N-2}, \ldots
- after step k, the sub-array $\left[a_{N-k}, \ldots, a_{N-1}\right]$ is ordered, we need to continue on the interval $\llbracket 0, N-k-1 \rrbracket$
- when no more exchanges are required: the array is sorted
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Sorting and Searching
Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br Sorting and Searching
Bubble Sort Average Time Complexity in Number of
Comparisons

The Average number of Comparisons is $N(N-1) / 2$
We count the number of comparisons needed by the algorithm:

- At the first step, we need $N-1$ comparisons to put the largest element at position $N-1$
- At the second step we only need $N-2$ comparisons : we avoid comparing elements with the last one
$-$
- Summing up: $(N-1)+(N-2)+\ldots+1=N(N-1) / 2$

Selection Sort

We count the number of comparisons needed by the algorithm:
Best Case: Bubble Sort on an already sorted array:

- It does like for the average case $N(N-1) / 2$ comparisons
- During the iterations on the array: 0 exchange

Worst Case: array already sorted in reverse order :

- It does like for the average case $N(N-1) / 2$ comparisons
- It does a exchange each time it does a comparison $N(N-1) / 2$ exchanges

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Sorting and Searching

Sorting

Bubble Sort Average Number of Exchanges

The Average number of exchanges is $N(N-1) / 4$ in a list L of N items

- Consider L randomly ordered and \bar{L} its exact reverse
- Apply a bubble sort separately to both L and \bar{L}
- i and j are out of order in exactly one of L and \bar{L}, there is a swap in either L or \bar{L}
- the property applies to any two items in either L or \bar{L} for every pair of items
- Since there are $N(N-1) / 2$ distinct pairs, sorting both L and \bar{L} requires $N(N-1) / 2$ exchanges
- On average, $N(N-1) / 4$ swaps are required for a list of size N

Find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, continue until the entire array is sorted

Why does it works ?

- After the $i^{\text {th }}$ step, the array between $0, \ldots, i-1$ is ordered
- You are sure that the next "minimum" a[min] will be larger than $a[0], \ldots, a[i-1]$
Notice: A brute-force approach but, since each item is moved at most once, Selection Sort is a method of choice when exchanging record is expensive (large records with small keys)

The average number of comparisons is $N(N-1) / 2$ and of exchanges is $(N-1) / 2$

- The first step requires $N-1$ comparisons to find the min
- The second step requires $N-2$ comparisons to find the second min
- The last step requires 1 comparison to find the min
- We do $(N-1)+(N-2)+\ldots+1=N(N-1) / 2$ comparisons
- We need less than $N-1$ exchanges. One for each element except when you try to exchange one element with itself

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br Sorting and Searching
 Sorting
 Selection Sort Time Complexity in Best and Worst Case

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Sorting and Searching

Sorting
Searching

Insertion Sort Average Time Complexity

The Average number of Comparisons is $(N(N+3) / 4)-1$

- The number of comparisons to insert an element in the sorted set of its predecessors is equal to the number of exchanges it causes plus one because we also compare it with the first element smaller than itself
- For the permutation α corresponding to the array to sort, the total number of comparisons is the total number of exchanges plus $N-1$
- $N(N-1) / 4$ =average number of exchanges in a permutation ${ }^{1}$
- The average number is

$$
N-1+N(N-1) / 4=(N(N+3) / 4)-1
$$

Best Case: Insertion Sort on an already sorted array:

- does $N-1$ iterations on the array, at each iteration it does 1 comparison
- It doesn't exchange during the $N-1$ iterations on the array: 0 exchange
Worst Case: Insertion sort on an array sorted in the reverse order:
- At step $i a_{i}$ is the minimum of the sorted part of the array
- algo compares $a_{i} i$ times (with $\left.a_{i-1}, \ldots, a_{0}\right) N(N-1) / 2$ comparisons
- It does its maximum number of shifts $N(N-1) / 2$ "exchanges"

Consider the operation of sorting an already sorted array:

- Bubble Sort can be linear: it iterates one time on the array using $N-1$ comparisons and 0 exchange and stops
- Insertion sort is linear : each element is immediately determined to be in its proper place in the array
- Selection Sort is quadratic: it keeps searching the minimum element

Consider the operation of sorting an "almost sorted" array:

- Insertion Sort becomes useful because its time complexity depends quite heavily on the order present in the array
- For each element you count the number of elements to its left which are greater
- This is the distance the elements have to move when inserted into the array
- In an almost sorted array the distance is small
- When records are large in comparison to the keys, Selection Sort is linear in exchanges

Invented by C.A.R. Hoare in 1960, easy to implement, a good general purpose internal sort
It is a divide-and-conquer algorithm :

- take at random an element in the array, say v
- divide the array into two partitions :
- One contains elements smaller than v
- The other contains elements greater than v
- put the elements $\leq v$ at the begining of the array (say, index between 1 and $m-1$) and the elements $\geq v$ at the end of the array (index between $m+1$ and N) then you have found the place to put v between the two partitions (at position m)
- recursively call QuickSort on ($\left[a_{0}, \ldots, a_{m-1}\right]$ and $\left[a_{m+1}, \ldots, a_{N-1}\right]$)
- stop when the partition is reduced to a single element

Implementation with ruby features

It uses the ideas of the quicksort
def qsort
return self if empty?
select \{ |x| x < first \}.qsort

+ select $\{|x| x==f i r s t\}$
+ select \{ |x| x > first \}.qsort
end
How can we replace the select operator from ruby?

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Sorting and Searching

Sorting earching

Algorithm of Quick Sort

For example, the random element can be the leftmost or the rightmost element, we choose the rightmost.
"Our" QuickSort runs on an array $\left[a_{l e f t}, \ldots, a_{\text {right }}\right]$:

```
def quick!(left,right)
    if left < right
        m = self.partition(left,right)
        self.quick!(left, m-1)
        self.quick!(m+1, right)
    end
end
```


Algorithm of the Partition of the Array

Scans (index i) from the left until you find an elt $\geq v(a[i] \geq v)$ Scans (index j) from the right until you find an elt $\leq v(a[j] \leq v)$
Both elements are obviously out of place: swap $a[i]$ and $a[j]$
Continue until the scan pointers cross $(j \leq i)$
Exchange $v(a[r i g h t])$ with the element $a[i]$

```
until j<=i do
    i+=1 until self[i]>=v #scans for i:self[i]>=v
    j-=1 until self[j]<=v #scans for j:self[j]<=v
    if i<=j
        self.swap!(i,j) #exchange both elements
        i+=1; j-=1
    end
end
```


Quick Sort

We test that neither i nor j cross the array bounds left and right Because $v=$ self [right] you are sure that the loop on i stops at least when $i=r i g h t$
But if $v=s e l f[r i g h t]$ happens to be the smallest element between left and right, the loop on j might pass the left end of the array To avoid the tests, you can choose another solution

- Take three elements in the array: the leftmost, the rightmost and the middle one
- Sort them
- Put the smallest at the leftmost position, the greatest at the rightmost position and the middle one as v

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Sorting and Searching

Quick Sort on Average-Case Partitioning

Average performance of Quick Sort is about $1.38 N \log N$ very efficient algorithm with a very small constant
Quick Sort is a divide-and-conquer algorithm which splits the problem in two recursive calls and "combines" the results Divide-and-conquer is a good method every time you can split your problem in smaller pieces and combine the results to obtain the global solution
But divide-and-conquer leads to an efficient algorithm only when the problem is divided without overlap
C_{N} : average number of comparisons for sorting N elements: $C_{N}=N+1+\frac{1}{N} \sum_{k=1}^{N}\left(C_{k-1}+C_{N-k}\right)$

- $N+1$ comparisons during the two inner whiles $N-1+2$ (2 when i and j cross)
- Plus the average number of comparisons on the two sub-arrays

$$
\left(\left(C_{0}+C_{N-1}\right)+\left(C_{1}+C_{N-2}\right)+\ldots+\left(C_{N-1}+C_{0}\right)\right) / N
$$

By symmetry: $C_{N}=N+1+\frac{2}{N} \sum_{k=1}^{N} C_{k-1}$
substract $N C_{N}-(N-1) C_{N-1}$

$$
N C_{N}=(N+1) C_{N-1}+2 N
$$

divide both side by $N(N+1)$ to obtain the recurrence
$\frac{C_{N}}{N+1}=\frac{C_{N-1}}{N}+\frac{2}{N+1}=\frac{C_{N-2}}{N-1}+\frac{2}{N}+\frac{2}{N+1}=\ldots=\frac{C_{2}}{3}+2 \sum_{k=4}^{N+1} \frac{1}{k}$
Approximation : $\frac{C_{N}}{N+1} \approx 2 \sum_{k=1}^{N} \frac{1}{k} \approx 2 \int_{1}^{N} \frac{1}{x} d x \approx 2 \ln N$

$$
C_{N} \approx 2 N \ln N \approx 2 N \ln (2) \log (N) \approx 1.38 N \log N
$$

Quick Sort is very inefficient on already sorted sets: $O\left(N^{2}\right)$

- Suppose $a[0], \ldots, a[N-1]$ sorted without equal elements
- At the first call $v=a[N-1]$
- The while on i continues until $i=N-1$ and stops because $a[N-1]=v$: the sort does N comparisons
- The while on j stops on $j=N-2$ because $a[N-2]<v$: 1 comparison
- We exchange $a[N-1]$ with itself : 1 exchange
- We call QuickSort on $a[0], \ldots, a[N-2]$ and on $a[N-2], \ldots, a[N-1]$ which imediately stops
- So $(N+1)+N+(N-1)+\ldots+2=N(N+3) / 2$
- QuickSort is in $O\left(N^{2}\right)$ on sorted sets

Intuition for the performance of quick sort

Quicksort running time depends on whether the partitioning is balanced
The worst-case partitioning occurs when the partitioning produces one region with 1 element and one with $N-1$ elements: $O\left(N^{2}\right)$ The best-case partitioning occurs when the partitioning produces two regions with $N / 2$ elements $\left(C_{N}=N+2 C_{N / 2}\right): O(N \log N)$

worst-case

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br Sorting and Searching

Representing the decision tree model

Set to sort: $\{a 1, a 2, a 3\}$ the corresponding decision tree is :

$$
\begin{aligned}
& \text { a1 > a2 } \\
& \text { / } \backslash \\
& \text { a2 > a3 a1 > a3 } \\
& \text { (a1,a2,a3) a1 > a3 (a2,a1,a3) a2 > a3 } \\
& \text { / \ / \ } \\
& \text { (a1, a3, a2) (a3, a1, a2) (a3, a2, a1) (a3, a2, a1) }
\end{aligned}
$$

The decision tree to sort N elements has N ! leaves (all possible permutations)
A binary tree with N ! leaves has a height order of $\log (N!)$ which is approximately $N \log N$ (Stirling)
$N \log N$ is a lower bound for sorting

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br Sorting and Searching

Overview | Sorting |
| :---: |
| Searching |

Sequential Searching in an Array is $O(N)$

Searching: fundamental operation in many tasks: retrieving a particular information among a large amount of stored data

The stored data can be viewed as a set
Information divided into records with field key used for searching
Goal of Searching: find the records whose key matches a given searched key

Dictionaries and symbol tables are two examples of data
structures needed for searching

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Sorting and Searching

Operations of Searching

The time complexity often depends on the structure given to the set of records (eg lists, sets, arrays, trees, ...)

So, when programming a Searching algorithm on a structure, one often needs to provide operations like Insertion, Deletion and sometimes Sorting the set of records

In any case, the time complexity of the searching algorithm might be sensitive to operations like comparison of keys, insertion of one record in the set, shift of records, exchange of records, ...

Sequential Searching in an array uses

- $N+1$ comparisons for an unsuccessful search in the best, average and worst case
- ($N+1$)/2 comparisons for a successful search on the average ${ }^{2}$
- Suppose that the records have the same probability to be found
- We do 1 comparison with the first one,
- :
- N to find the last one
- on the average: $(1+2+\ldots+N) / N=N(N+1) / 2 N$

${ }^{2}$ average $=$ mean $=\frac{\text { sum of all the entries }}{\text { number of entries }}$
Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br

Sorting and Searching
Searching

Sequential Searching in a Sorted List is in $O(N)$

Sequential searching in a sorted list approximately uses $N / 2$ for both a successful and an unsuccessful search

- The (average) complexity of the successful search in sorted lists equals the successful search on array in the average case - For unsuccessful:
- The search can be ended by each of the elements of the list
- We do 1 comparison if the searched key is less than the first element, $\ldots, N+1$ comparison if the key is greater than the last one (the sentinel)
- $(1+\ldots+(N+1)) / N=(N+1)(N+2) / 2 N$

When the set of records gets large and the records are ordered to reduce the searching time, use a divide-and-conquer strategy:

- Divide the set into two parts
- Determine in which part the key might belong to
- Repeat the search on this part of the set

For finding an approximate of the zeroes of a cont. function by the
Theorem (Intermediate value theorem)
If the function $f(x)=y$ is continuous on $[a, b]$ and u is a number st $f(a)<u<f(b)$, then there is a $c \in[a, b]$ s.t. $f(c)=u$.
if one can evaluate the sign of $f((a+b) / 2)$;
Let f be strictly increasing on $[a, b]$ with $f(a)<0<f(b)$
The binary search allows to find y st $f(y)=0$:
(1) start with the pair (a, b)
(2) evaluate $v=f((a+b) / 2)$
(3) if $v<0$ replace a by v otherwise replace b by v
(1) iterate on the new pair until the diff. between the values is less than an arbitrary given precision

Binary Search uses approximately $\log N$ comparisons for both (un)successful search in best, average and worst case

Maximal number of comparisons when the search is unsuccessful

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br Sorting and Searching

\square

Proof 1

- Consider the tree of the recursive calls of the Search
- At each call the array is split into two halves
- The tree is a full binary tree
- The number of comparisons equals the tree height: $\log _{2} N$

Proof 2 :

- The number of comparisons at step N equals the number of comparisons in one subarray plus 1 because you compare with the root
- Solve the recurrence
$C_{N}=C_{N / 2}+1$, for $N \geq 2$ with $C_{1}=0 \rightarrow \log N$ $C_{N}=C_{N / 2}+1 N=2^{n} C_{2^{n}}=C_{2^{n-1}}+1 \ldots C_{2^{n}}=n=\log N$

Searching on the average case :

- A successful sequential search in a set of 10000 elements takes 5000 comparisons
- A successful binary search in the same set takes 14 comparisons

BUT

Inserting an element :

- In an array takes 1 operation
- In a sorted array takes N operations : to find the place and shift right the other elements

The interpolation search uses approximately $\log (\log N)$ comparisons for both (un)successful search in the array

But Interpolation search heavily depends on the fact that the keys are well distributed over the interval

The method requires some computation; for small sets the $\log N$ of binary search is close to $\log (\log N)$

So interpolation search should be used for large sets in applications where comparisons are particularly expensive or for external methods where access costs are high

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br Sorting and Searching

Sorting Searching

Elementary Searching Algorithm: Interpolation Searching

Dictionary search: if the word begins by B you look near the beginning and if the word begins by \mathbf{T} you turn a lot of pages.

Suppose you search the key k, in the binary search you cut the array in the middle

$$
\text { middle }=l e f t+\frac{1}{2}(r i g h t-l e f t)
$$

In the interpolation you takes the values of the keys into account by replacing $1 / 2$ by a better progression

$$
\text { position }=\text { left }+\frac{k-A[l e f t] \cdot k e y}{A[r i g h t] \cdot k e y-A[l e f t] \cdot k e y}(\text { right }- \text { left })
$$

