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Sorting Problem

input: sequence of N numbers 〈a1, a2, ..., aN〉
output: permutation (a′1, a

′
2, ..., a

′
N ,≤) of the input

The input sequence is usually an array of N elements

Internal or External Sort ?

If the input fits into memory: internal sort

Sorting sets from tape or disk: external sorting

Internal Sorts access to any records

External Sorts only access records by blocks

we focus on internal sorts
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Sorting Time Complexity

Main performance parameter: time complexity

Differents criteria are used to evaluate the time complexity of
an internal sorting algorithm:

The number of steps required

The number of comparisons between keys. Comparisons can
be expensive when keys are long character strings

The number of time a record is moved. Only keys are
compared, but entire records are moved
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Some Ideas about Time Complexity of Sorting

Simple algorithms
• like Bubble Sort, Insertion Sort, Selection Sort, ...
• usual time complexity: O(N2)
• useful only for sorting shorts lists of records (< 500)

Famous algorithms
• QuickSort

• time complexity: O(N log N) in the average case
• time complexity: O(N2) in the worst and best case
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Notation

We keep our focus on algorithms and think of them as sorting
arrays of N records in ascending order of their key (<)
The algorithm of array sorting uses key comparisons (<) and
record movements (swap)
The procedure swap!(i,j) is an exchange operation : a[i ] ↔ a[j ]

class Array
def swap!(a,b)

self[a], self[b] = self[b], self[a]
self
end

end

[1,2,3,4].swap!(2,3) # = [1,2,4,3]
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Bubble Sort

Description: It keeps passing through the array [a0, ..., aN−1],
exchanging each pair of adjacent elements (aj−1, aj) which are out
of order (aj−1 > aj)
Why does it works ?

during the first pass, the largest element is exchanged with
each of the elements to its right, and gets into position aN−1

After the second pass the second largest gets into position
aN−2, ...

after step k, the sub-array [aN−k , ..., aN−1] is ordered, we need
to continue on the interval [[0,N − k − 1]]

when no more exchanges are required: the array is sorted
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Implementation

class Array
def bubble!

for i in 1..self.length-1
1.upto(self.length - i) { |j|

self.swap!(j-1,j) if self[j-1] > self[j] }
end
self

end
end
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Bubble Sort Average Time Complexity in Number of
Comparisons

The Average number of Comparisons is N(N − 1)/2
We count the number of comparisons needed by the algorithm:

At the first step, we need N − 1 comparisons to put the
largest element at position N − 1

At the second step we only need N − 2 comparisons : we
avoid comparing elements with the last one

...

Summing up: (N − 1) + (N − 2) + ... + 1 = N(N − 1)/2
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Bubble Sort Time Complexity in Best and Worst Case

We count the number of comparisons needed by the algorithm:
Best Case: Bubble Sort on an already sorted array:

It does like for the average case N(N − 1)/2 comparisons

During the iterations on the array: 0 exchange

Worst Case: array already sorted in reverse order :

It does like for the average case N(N − 1)/2 comparisons

It does a exchange each time it does a comparison
N(N − 1)/2 exchanges
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Bubble Sort Average Number of Exchanges

The Average number of exchanges is N(N − 1)/4 in a list L
of N items

Consider L randomly ordered and L its exact reverse

Apply a bubble sort separately to both L and L

i and j are out of order in exactly one of L and L, there is a
swap in either L or L

the property applies to any two items in either L or L for every
pair of items

Since there are N(N − 1)/2 distinct pairs, sorting both L and
L requires N(N − 1)/2 exchanges

On average, N(N − 1)/4 swaps are required for a list of size N
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Selection Sort

Find the smallest element in the array and exchange it with the
element in the first position, then find the second smallest
element and exchange it with the element in the second position,
continue until the entire array is sorted
Why does it works ?

After the i th step, the array between 0, ..., i − 1 is ordered

You are sure that the next “minimum” a[min] will be larger
than a[0], ..., a[i − 1]

Notice: A brute-force approach but, since each item is moved at
most once, Selection Sort is a method of choice when
exchanging record is expensive (large records with small keys)
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Ruby implementation

def selsort!
return self if self.size <=1 # already sorted
for i in 0..self.length-2 # while there are elements to sort
min = i # variable for the min
for j in i+1..self.length-1 # check every item in the array

min = j if self[j] < self[min] # is it smaller?
end
self.swap!(i,min) if i != min # exchange leftmost and min

end
self

end
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Selection Sort Average Time Complexity

The average number of comparisons is N(N − 1)/2 and of
exchanges is (N − 1)/2

The first step requires N − 1 comparisons to find the min

The second step requires N − 2 comparisons to find the
second min

The last step requires 1 comparison to find the min

We do (N − 1) + (N − 2) + ... + 1 = N(N − 1)/2 comparisons

We need less than N − 1 exchanges. One for each element
except when you try to exchange one element with itself
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Selection Sort Time Complexity in Best and Worst Case

Best Case: Selection Sort on an already sorted array:

It still iterates on the array to find the minimum and it does
N(N − 1)/2 comparisons

doesn’t exchange during the iterations: 0 exchange

Worst Case: Selection Sort on an array sorted in reverse order:

It does like for the best and average case N(N − 1)/2
comparisons

It does its maximum number of exchanges N − 1 exchanges
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Insertion Sort

You consider the elements one at a time. You insert each in its
proper place among those already sorted
Notice:

After placing the element ai , the elements [a0, ..., ai ] are sorted

To place the element ai+1, you iterate down the sorted array
(from ai to a0) shifting one place to the right the current
element if it is greater than ai+1

When the current element is smaller than ai+1 you have after
it a free place to insert ai+1
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Insertion Sort Average Time Complexity

The Average number of Comparisons is (N(N + 3)/4)− 1

The number of comparisons to insert an element in the sorted
set of its predecessors is equal to the number of exchanges it
causes plus one because we also compare it with the first
element smaller than itself

For the permutation α corresponding to the array to sort, the
total number of comparisons is the total number of exchanges
plus N − 1

N(N − 1)/4=average number of exchanges in a permutation1

The average number is
N − 1 + N(N − 1)/4 = (N(N + 3)/4)− 1

1admitted, cf. http://mathworld.wolfram.com/RandomPermutation.html
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Insertion Sort Time Complexity in Best and Worst Case

Best Case: Insertion Sort on an already sorted array:

does N − 1 iterations on the array, at each iteration it does 1
comparison

It doesn’t exchange during the N − 1 iterations on the array:
0 exchange

Worst Case: Insertion sort on an array sorted in the reverse order:

At step i ai is the minimum of the sorted part of the array

algo compares ai i times (with ai−1, ..., a0) N(N − 1)/2
comparisons

It does its maximum number of shifts N(N − 1)/2
”exchanges”
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Comparisons between Elementary Sorts in the Best Case

Consider the operation of sorting an already sorted array:

Bubble Sort can be linear : it iterates one time on the array
using N − 1 comparisons and 0 exchange and stops

Insertion sort is linear : each element is immediately
determined to be in its proper place in the array

Selection Sort is quadratic : it keeps searching the minimum
element
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Comparisons between Elementary Sorts

Consider the operation of sorting an “almost sorted” array:

Insertion Sort becomes useful because its time complexity
depends quite heavily on the order present in the array

For each element you count the number of elements to its left
which are greater

This is the distance the elements have to move when inserted
into the array

In an almost sorted array the distance is small

When records are large in comparison to the keys, Selection
Sort is linear in exchanges
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Quick Sort

Invented by C.A.R. Hoare in 1960, easy to implement, a good
general purpose internal sort

It is a divide-and-conquer algorithm :

take at random an element in the array, say v

divide the array into two partitions :
One contains elements smaller than v
The other contains elements greater than v

put the elements ≤ v at the begining of the array (say, index
between 1 and m− 1) and the elements ≥ v at the end of the
array (index between m + 1 and N) then you have found the
place to put v between the two partitions (at position m)

recursively call QuickSort on ([a0, ..., am−1] and [am+1, ..., aN−1])

stop when the partition is reduced to a single element
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Implementation with ruby features

It uses the ideas of the quicksort

def qsort
return self if empty?
select { |x| x < first }.qsort
+ select { |x| x==first}
+ select { |x| x > first }.qsort

end

How can we replace the select operator from ruby?
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Algorithm of Quick Sort

For example, the random element can be the leftmost or the
rightmost element, we choose the rightmost.
”Our” QuickSort runs on an array [aleft , ..., aright ]:

def quick!(left,right)
if left < right

m = self.partition(left,right)
self.quick!(left, m-1)
self.quick!(m+1, right)

end
end
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Algorithm of the Partition of the Array

Scans (index i) from the left until you find an elt ≥ v (a[i ] ≥ v)
Scans (index j) from the right until you find an elt ≤ v (a[j ] ≤ v)
Both elements are obviously out of place: swap a[i ] and a[j ]
Continue until the scan pointers cross (j ≤ i)
Exchange v (a[right]) with the element a[i ]

until j<=i do
i+=1 until self[i]>=v #scans for i:self[i]>=v
j-=1 until self[j]<=v #scans for j:self[j]<=v
if i<=j

self.swap!(i,j) #exchange both elements
i+=1; j-=1 #modify indexes:clean recursion

end
end
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The big picture
def qsort!
def lqsort(left,right) #sort from left to right
if left<right
v,i,j=self[right],left,right
until j<=i do
i+=1 until self[i]>=v #scans for i:self[i]>=v
j-=1 until self[j]<=v #scans for j:self[j]<=v
if i<=j
self.swap!(i,j) #exchange both elements
i+=1; j-=1 #modify indexes:clean recursion

end
end
self.lqsort(left,j) #sort left part
self.lqsort(i,right) #sort right part

end
end
self.lqsort(0,self.length-1)
self

end
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Quick Sort

We test that neither i nor j cross the array bounds left and right
Because v = self [right] you are sure that the loop on i stops at
least when i = right
But if v = self [right] happens to be the smallest element between
left and right, the loop on j might pass the left end of the array
To avoid the tests, you can choose another solution

Take three elements in the array: the leftmost, the rightmost
and the middle one

Sort them

Put the smallest at the leftmost position, the greatest at the
rightmost position and the middle one as v
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Quick Sort on Average-Case Partitioning

Average performance of Quick Sort is about 1.38N log N:
very efficient algorithm with a very small constant
Quick Sort is a divide-and-conquer algorithm which splits the
problem in two recursive calls and “combines” the results
Divide-and-conquer is a good method every time you can split your
problem in smaller pieces and combine the results to obtain the
global solution
But divide-and-conquer leads to an efficient algorithm only when
the problem is divided without overlap
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CN : average number of comparisons for sorting N elements:
CN = N + 1 + 1

N

∑N
k=1(Ck−1 + CN−k)

N + 1 comparisons during the two inner whiles N − 1 + 2
(2 when i and j cross)
Plus the average number of comparisons on the two sub-arrays
((C0 + CN−1) + (C1 + CN−2) + ... + (CN−1 + C0))/N

By symmetry : CN = N + 1 + 2
N

∑N
k=1 Ck−1

substract NCN − (N − 1)CN−1

NCN = (N + 1)CN−1 + 2N

divide both side by N(N + 1) to obtain the recurrence :

CN

N + 1
=

CN−1

N
+

2

N + 1
=

CN−2

N − 1
+

2

N
+

2

N + 1
= ... =

C2

3
+2

N+1∑

k=4

1

k

Approximation : CN
N+1 ≈ 2

∑N
k=1

1
k ≈ 2

∫ N
1

1
x dx ≈ 2 ln N

CN ≈ 2NlnN ≈ 2Nln(2)Log(N) ≈ 1.38NLogN
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Quick Sort on worst-case partitioning

Quick Sort is very inefficient on already sorted sets: O(N2)

Suppose a[0], ..., a[N − 1] sorted without equal elements

At the first call v = a[N − 1]
The while on i continues until i = N − 1 and stops because
a[N − 1] = v : the sort does N comparisons
The while on j stops on j = N − 2 because a[N − 2] < v : 1
comparison
We exchange a[N − 1] with itself : 1 exchange
We call QuickSort on a[0], ..., a[N − 2] and on
a[N − 2], ..., a[N − 1] which imediately stops

So (N + 1) + N + (N − 1) + ... + 2 = N(N + 3)/2

QuickSort is in O(N2) on sorted sets

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlSorting and Searching



Sorting
Searching

Intuition for the performance of quick sort

Quicksort running time depends on whether the partitioning is
balanced
The worst-case partitioning occurs when the partitioning produces
one region with 1 element and one with N − 1 elements: O(N2)
The best-case partitioning occurs when the partitioning produces
two regions with N/2 elements (CN = N + 2CN/2): O(N log N)

worst-case ^ best-case
N | N N ^
/ \ | / \ |
1 N-1 | N/2 N/2 N |

/ \ N / \ / \ log N
1 N-2 | N/4 N/4 N/4 N/4 N |

/ \ | . |
1 N-3 | . |

... | 1 1 ... 1 1 N |
/ \ | v
1 1 v
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Lower Bound for Sorting

Is it possible to sort an array of N elements in less than N log N
operations ?
If you use element comparisons: it is impossible
You need to model your computation problem:
You express each sort by a decision tree where each internal
node represents the comparison between two elements
The left child correspond to the negative answer and the right
child to the positive one
Each leaf represents a given permutation
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Representing the decision tree model

Set to sort: {a1, a2, a3} the corresponding decision tree is :

a1 > a2
/ \

a2 > a3 a1 > a3
/ \ / \

(a1,a2,a3) a1 > a3 (a2,a1,a3) a2 > a3
/ \ / \

(a1,a3,a2) (a3,a1,a2) (a3,a2,a1) (a3,a2,a1)

The decision tree to sort N elements has N! leaves (all possible
permutations)
A binary tree with N! leaves has a height order of log(N!) which is
approximately N log N (Stirling)
N log N is a lower bound for sorting
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Overview

1 Sorting

2 Searching
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Introduction to Searching

Searching: fundamental operation in many tasks: retrieving a
particular information among a large amount of stored data

The stored data can be viewed as a set
Information divided into records with field key used for searching

Goal of Searching: find the records whose key matches a given
searched key

Dictionaries and symbol tables are two examples of data
structures needed for searching
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Operations of Searching

The time complexity often depends on the structure given to the
set of records (eg lists, sets, arrays, trees,...)

So, when programming a Searching algorithm on a structure, one
often needs to provide operations like Insertion, Deletion and
sometimes Sorting the set of records

In any case, the time complexity of the searching algorithm might
be sensitive to operations like comparison of keys, insertion of one
record in the set, shift of records, exchange of records, ...
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Sequential Searching in an Array is O(N)

Sequential Searching in an array uses

N + 1 comparisons for an unsuccessful search in the best,
average and worst case

(N + 1)/2 comparisons for a successful search on the
average2

Suppose that the records have the same probability to be found
We do 1 comparison with the first one,
...
N to find the last one
on the average: (1 + 2 + ... + N)/N = N(N + 1)/2N

2average=mean=sum of all the entries
number of entries
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Sequential Searching in a Sorted List is in O(N)

Sequential searching in a sorted list approximately uses N/2 for
both a successful and an unsuccessful search

The (average) complexity of the successful search in sorted
lists equals the successful search on array in the average case

For unsuccessful:
The search can be ended by each of the elements of the list
We do 1 comparison if the searched key is less than the first
element,..., N + 1 comparison if the key is greater than the last
one (the sentinel)
(1 + ... + (N + 1))/N = (N + 1)(N + 2)/2N
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An Elementary Searching Algorithm : the Binary Search

When the set of records gets large and the records are ordered to
reduce the searching time, use a divide-and-conquer strategy:

Divide the set into two parts

Determine in which part the key might belong to

Repeat the search on this part of the set
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Application to numerical analysis

For finding an approximate of the zeroes of a cont. function by the

Theorem (Intermediate value theorem)

If the function f (x) = y is continuous on [a, b] and u is a number
st f (a) < u < f (b), then there is a c ∈ [a, b] s.t. f (c) = u.

if one can evaluate the sign of f ((a + b)/2);
Let f be strictly increasing on [a, b] with f (a) < 0 < f (b)
The binary search allows to find y st f (y) = 0:

1 start with the pair (a, b)

2 evaluate v = f ((a + b)/2)

3 if v < 0 replace a by v otherwise replace b by v

4 iterate on the new pair until the diff. between the values is
less than an arbitrary given precision
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Performance of Binary Search

Binary Search uses approximately log N comparisons for both
(un)successful search in best, average and worst case

Maximal number of comparisons when the search is unsuccessful
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Performance of Binary Search

Proof 1 :

Consider the tree of the recursive calls of the Search

At each call the array is split into two halves

The tree is a full binary tree

The number of comparisons equals the tree height : log2 N

Proof 2 :

The number of comparisons at step N equals the number of
comparisons in one subarray plus 1 because you compare with
the root

Solve the recurrence
CN = CN/2 + 1, for N ≥ 2 with C1 = 0 → log N
CN = CN/2 + 1 N = 2n C2n = C2n−1 + 1 ...C2n = n = log N
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Order of magnitude

Searching on the average case :

A successful sequential search in a set of 10000 elements
takes 5000 comparisons

A successful binary search in the same set takes 14
comparisons

BUT
Inserting an element :

In an array takes 1 operation

In a sorted array takes N operations : to find the place and
shift right the other elements
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Elementary Searching Algorithm: Interpolation Searching

Dictionary search: if the word begins by B you look near the
beginning and if the word begins by T you turn a lot of pages.

Suppose you search the key k, in the binary search you cut the
array in the middle

middle = left +
1

2
(right − left)

In the interpolation you takes the values of the keys into account
by replacing 1/2 by a better progression

position = left +
k − A[left].key

A[right].key − A[left].key
(right − left)
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Performance of the Interpolation Search

The interpolation search uses approximately log(log N)
comparisons for both (un)successful search in the array

But Interpolation search heavily depends on the fact that the keys
are well distributed over the interval

The method requires some computation; for small sets the log N
of binary search is close to log(log N)

So interpolation search should be used for large sets in
applications where comparisons are particularly expensive or for
external methods where access costs are high
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