
Master Mathmods, april 16, 2012

Sorting
(1) Prove that searching for the minimum among n elements requires n− 1 comparisons. Hint: For any

algorithm and at any time, the set of n elements can be partitionned into:

• A = {elements candidate for being the minimum}
• B = {elements which cannot be candidate for being the minimum anymore}

When the algorithm starts, all of its elements belong to A and when it stops, A contains a single
element.

(2) Bubble sort improvement: The best case time bound can be improved by testing if there weren’t any
swap. In this case, we can exit the loops and end the method. Provide an algorithm for implementing
this improvement and evaluate the best-time complexity.

(3) Propose an efficient algorithm (3n/2 + o(1) comparisons) for finding simultaneously the maximum
and the minimum among n elements (for n even).

(4) We consider the following algorithm for sorting n elements:

def asort!
def lasort(left,right)

n=(right-left+1)
case

when n==1 return self
when n==2 self.swap!(left,right) if self[left]>self[right]
else k=n.div(3)
self.lasort(left,right-k) #sorts the first 2/3 of the array
self.lasort(left+k,right) #sorts the last 2/3 of the array
self.lasort(left,right-k) #sorts the first 2/3 of the array

end
end
self.lasort(0,self.lenght-1)
self

end

Prove that asort! effectively sorts an array; give a recurrence relation on its running time in the
worst case and solve it.

1


