
Master Mathmods, april 30, 2012

Searching and hashing

1 Selection
We consider the following procedure which akin to quicksort for finding the k-th element of an array if it
were sorted but without sorting it. (The source is avaible for download from the website).

def kselect(k)
if self.size >= k
pivot=self[rand(self.size)]
a=select{ |x| x < pivot}
b=select{ |x| x == pivot}
c=select{ |x| x> pivot }
if a.size >= k then return a.kselect(k)
elsif (a.size+b.size)>=k then return pivot
else return c.kselect(k-a.size-b.size)
end
end

end

(1) Explain the behaviour of this algorithm

(2) What’s its time complexity in the worst case?

(3) Show that it has a linear average execution time.

2 Hashing
(1) We are given a new sorting algorithm and we’d like to check its behavior for big data sets. We’d like

to check:

• that the array is sorted;

• that the data haven’t been corrupted.

Propose a method to fulfill the above requirements in a time linear in the array’s size.

(2) Assume h1, h2, is an infinite sequence of hash functions with values in [[1,m]] which are uniform
and independant; we’d like to use them one after the other to avoid the clustering problem.

Let pr be the probability that exactly r comparisons are required for finding an empty cell in a hash
table of size m containing n elements.

(a) Prove that pr = αr(1− α) where α = n/m denotes the hash-table filling rate;

(b) deduce that α/(1− α) is the expected number of comparisons for a negative search;

(c) show that the expected number of comparisons for a positive search is
(

1
α

∑n−1
j=0

1
m−j

)
− 1 =

m
n (Hm −Hn) − 1 where Hi denotes the i-th harmonic number, sum of the reciprocal of the
first i natural numbers

∑i
k=1

1
k .

1

