
7- Hashing

Bruno MARTIN,
University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr

http://www.i3s.unice.fr/~bmartin/mathmods.html

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Hashing

Hashing is a completely different method of searching

The idea is to access directly the record in a table using its

key - the same way an index accesses an entry in an array -

We use a hash function that computes a table index from the key

Basic operations: insert, remove, search

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Hashing

The steps in hashing:

1 compute a hash function which maps keys in table addresses

Since there are more records (N) than indexes (M) in the
table, two or more keys may hash to the same table address :
it’s the collision problem

2 the collision resolution process

Good hash functions should uniformly distribute entries in the table

Since, if the function uniformly distributes the keys, the complexity
of searching is approx. divided by the table’s size

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Transform Keys into Integers in [[0, M − 1]]

If the key is already a large integer

choose M to be a prime and compute key mod M

If the key is an uppercase character string

encode each char in a 5-bit code (5 bits (25) are required to
encode 26 items): each letter is encoded by the binary value
of its rank in the alphabet

compute the modulo of the corresponding decimal value

Example

ABC ⇒ 00001 00010 00011 ⇒
1 ∗ (25)2 + 2 ∗ (25)1 + 3 ∗ (25)0 = 1091 ⇒ 1091 mod M ⇒
index table

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Why does M have to be prime ?

An example of hash function is

hash(key) =
�
key [0]× (2k)0 + key [1]× (2k)1 + ...+ key [n]× (2k)n

�
mod M

Suppose you choose M = 2k then

XXX mod M is unaffected by adding to XXX multiples of 2k

hash(key) = key [0] : hash only depends on the 1st char of key

The simplest way to ensure that the hash function takes all the
characters of a key into account is to take M prime

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

How to Handle the Collision Process

We have an array of size M - called the hash table - and a hash
function which gives for any key a possible entry in this array

Problem: decide what to do when 2 keys hash to the same address

A first simple method is to build for each table entry a linked list

of records whose keys hash to the same entry
Colliding records are chained together we call it separate chaining

At the initialization, the hash table will be an array of M pointers
to empty linked lists

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Example

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Searching a record in a Hash Table with linked lists

Main operation on a HashTable: search a record with its key :

compute the hash value of the key : hash(key) = i

access to the linked list at position i : HashTable[i]

if there’s more than your record in the list you have collisions

searching becomes a search in a list: iterate on each record
comparing the keys

unsuccessful search: you iterate down the list without finding
your record

Operations of insertion and removal of records in a Hash
Table become linked list operations

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Searching Performances

Good hash functions uniformly distribute N entries over the M
positions of the table

Searching expected values in O(α) (α = N
M table’s filling rate):

Unsuccessfull: 1

M

�
M(1 + �Li) since the element �∈ Li

Q−(M,N) = α+ 1 since
�

�Li = N

Successful: searching for an element in the table equals the cost of
inserting it when only the inserted elements before it were already in
the table:

Q+(M,N) =
1

N

N−1�

i=0

Q−(M, i) =
1

N

N−1�

i=0

1 +
i

M
= 1 +

α

2
− 1

2M

The interest of hashing is that it is efficient and easy to program

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Alternative proof for successful search

xi is the i th element inserted into the table and ki = key [xi]

Xij = 1{h(ki) = h(kj)} for all i , j (indicator R.V.)

simple uniform hashing: Pr{h(ki) = h(kj)} = 1/M ⇒ E [Xij] = 1/M

expected number of elements examined in a successful search:

E



 1

N

N�

i=1



1 +
N�

j=i+1

Xij







 (1)

�N
j=i+1

Xij=� of elements inserted after xi into the same slot as xi .

(1) = 1

N

�N
i=1

�
1 +

�N
j=i+1

E [Xij]
�
= 1

N

�N
i=1

�
1 +

�N
j=i+1

1

M

�
=

1 + 1

NM

�N
i=1

(N − i) = 1 + 1

NM

��N
i=1

N −
�N

i=1
i
�
=

1 + 1

NM

�
N2 − N(N+1)

2

�
= 1 + N−1

2M

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Expected cost – interpretation

if N = O(M), then α = N/M = O(M)/M = O(1)

searching takes constant time on the average

insertion is O(1) in the worst case

deletion takes O(1) worst-case time for doubly linked lists

hence, all dictionary operations take O(1) time on average
with hash tables with chaining

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Another structure for Hash Table: Linear Probing

When the number of elements N can be estimated in advance
You can avoid using any linked list

You store N records in a table of size M > N
Empty places in the table help you for collision resolution
It is called the linear probing

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Searching and Inserting in Linear Probing

If the place HashTable[hash(key)] is already busy

If the keys match, the search is successful

Else there is a collision

You search at the next place i + 1

If the place is free, the search is unsuccessful and you have
found a place to insert your record

Else if the keys match, the search is successful

If the keys differ try the next position i + 2

But be careful the position after i is i + 1 mod M

And check that the table is not full otherwise the iteration
won’t terminate

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Example

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Problem with Linear Probing

Suppose you like to perform the operation of suppression
To suppress an element in the Hash Table, you search it, you
remove it from the array and the place is free again. Is it so simple?
Suppose key1 and key2 (different) hash to the same address i

you insert key1 first at position i

you try to insert key2 at position i , you find it busy, and you
finally insert it at position i + 1

now you suppress key1. The place i becomes free

you search key2: it hashes at a free position i : its search is
unsuccessful but key2 is in the table

A place may have three status: free, busy and suppress

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Performances in Hash Table with linear probing

This hashing works because it guarantees that when you search for
a particular key you look at every key that hashes to the same
table address
In linear probing when the table begins to fill up, you also look to
other keys: 2 different collision sets may be stuck together:
clustering problem

Linear probing is very slow when tables are almost full because of
the clustering problem
And when the table is full you cannot continue to use it

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Eliminating the Clustering Problem

Instead of examining each successive entry, we use a second hash

function to compute a fixed increment to use for the sequence
(instead of using 1 in linear probing)
Depending on the choice of the second hash function, the program
may not work : obviously 0 leads to an infinite loop

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Conclusion on Hashing

Hashing is a classical problem in CS: various algorithms have been
studied and are widely used
There are many empirical and analytic results that make utility of
Hashing evident for a broad variety of applications
Hashing is prefered to binary tree searches for many
applications because it is simple to implement and can provide
very fast constant searching times when space is available for a
large enough table

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

Hashing in Ruby

zip=Hash.new

zip={"06000" => "Nice", "06100" => "Nice", "06110" => "Le Cannet",

"06130" => "Grasse", "06140" => "Coursegoules", "06140" => "Tourrettes

sur Loup", "06140" => "Vence", "06190" => "Rocquebrune Cap Martin",

"06200" => "Nice", "06230" => "Saint Jean Cap Ferrat", "06230" =>

"Villefranche sur Mer"}

zip["06300"]="Nice" # adds a new entry

zip.keys=>["06140", "06130", "06230", "06110", "06000", "06100",

"06200", "06300", "06190"]

zip.values=>["Vence", "Grasse", "Villefranche sur Mer", "Le Cannet",

"Nice", "Nice", "Nice", "Nice", "Rocquebrune Cap Martin"]

zip.select { |key,val| val="Nice"}=>[["06000", "Nice"], ["06100",

"Nice"], ["06200", "Nice"], ["06300", "Nice"]]

zip.index "Nice" => "06000"

zip.each {|k,v| puts "#{k}/#{v}"}=>

06140/Vence

06130/Grasse

06230/Villefranche sur Mer

06110/Le Cannet

06000/Nice

06100/Nice

06200/Nice

06300/Nice

06190/Rocquebrune Cap Martin

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://www.i3s.unice.fr/~bmartin/mathmods.html7- Hashing

