
Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

7- Exploration Problems

Bruno MARTIN,
University of Nice - Sophia Antipolis
mailto:Bruno.Martin@unice.fr

http://deptinfo.unice.fr/~bmartin/mathmods.html

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Exploration Problems

We search algorithms for solving the following class of problems:

We are given a set E with N elements

Each element e has a cost: value(e)

We have a predicate C on the subsets of E

The problem is to find a set F ⊆ E for which:

the predicate C (F ) evaluates to true�
e∈F value(e) is maximal (or minimal in some cases)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Methods for solving exploration problems

Greedy Algorithm: a heuristic strategy : try to make, at each
step, the optimal choice compatible with the previous and
hope that this sequence of choices leads to the optimal
solution. Generally linear algorithms

Dynamic Programming: divide the “problem entries” into
as many subsets as needed. The problem is solved on every
subset using the previous solutions to compute the result of
the current subset. Finding a way to split the set is not always
possible. Typically polynomial algorithms

Brute-Force Search: When the previous methods don’t
work. Consider every subset of elements and find the optimal
one. These algorithms are clearly exponential

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Greedy algorithm pattern

Find a clever way to order the elements ⇒ ordered set

start from the empty set (F = ∅) and iterate on the ordered
set

add the elements one by one, adding the current element if it
is compatible with the previous ones

at the end of the iteration, you might have an optimal solution

Finding the best ordering is not always possible :
Greedy algorithms don’t always lead to an optimal solution

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems



Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Problems tractable by greedy algorithms

Only some problems are known to be solvable by greedy algorithms:

the Huffman’s codes for data encoding (data compression)

the (dummy) unique resource allocation

the Dantzig’s algorithm for the graph shortest path problem

the Kruskal’s algorithm for graph’s minimum spanning tree

the (dummy) task-scheduling problem

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Unique resource allocation : the (dummy) car renter

A renter wishes to rent 1 car to the max. number of customers.
There’s a set of rental requests, the constraint is that the
chosen requests don’t overlap

the requests are sorted in increasing order of ending dates

iterate on the requests in order. If the current request does
not overlap the last chosen request, select it

This algorithm gives an optimal solution
Notice : if you want to maximize the renting duration this
algorithm won’t give the optimal solution even if you sort the
requests by increasing duration : a 3-day renting is incompatible
with two 2-day rentings)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Kruskal’s method for minimum spanning tree

G = (V ,E ) is a weighted graph of order n; find a spanning tree
with the minimum weight

consider each vertex of V as a tree

sort the edges vi → vj by increasing weight

For each edge e = v → u

if v and u belong to the same tree, you can’t add the edge
without creating a cycle and the edge is discarded
else you add the edge and do the union of the two trees
In fact, at a step, you add the shortest edge e = vi → vj that
doesn’t add a cycle

stop when no more edge can be added

The running time of kruskal’s algorithm is O(�E log �E )

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Dynamic Programming

There’s only a polynomial number of subproblems and thus some
subproblems might have to be solved many times (remember
Fibonacci)

The solution is to store intermediate solutions in a table

divide the set into as many subsets as required

solve the problem on every subset using the previous solutions
to compute the result of the current subset

These are polynomial-time algorithms

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems



Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Dynamic Programming

Finding the way to split the set is not always possible.
There is often no way to divide a problem into a small number of
subproblems whose solution can be combined to solve the original.
In such a case you may divide the problem (and the subproblems)
into as many subproblems as necessary.
The latter clearly has an exponential time complexity.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

DP is not a divide-and-conquer strategy

In a divide-and-conquer problem:

you solve a large problem by spliting it into independent
smaller subproblems

Solving them independently solves the global problem

Example: quicksort algorithm

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Example of Dynamic Programming

DP Examples:

Floyd’s algorithm for solving the all-pairs shortest paths
problem in a graph

Warshall’s algorithm for transitive closure

matrix chain product

...

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The Floyd’s Example of Dynamic Programming

The most famous example of dynamic programming is Floyd’s
algorithm which finds all the shortest paths in a valuated graph.

It stores the shortest path between each pair of vertices in a matrix
It works by considering all vertices one by one. For each vertex k ,
it considers every pair of vertices i → j . When there exists a
shortest path from i to j going through k it stores the new cost in
the Matrix [i , j ]
When we end the three loops O(n), the Matrix contains every
shortest path
Already seen in a previous lecture

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems



Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The Matrix Chain Product

You multiply these three matrices A[4, 3]× B[3, 5]× C [5, 1]:





a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43



×




b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35



×





c11

c21

c31

c41

c51





There are two possible parenthesizations
(A[4, 3]× B[3, 5])× C [5, 1] and A[4, 3]× (B[3, 5]× C [5, 1])
The numbers of scalar multiplications are :
4× 3× 5 + 4× 5× 1 = 80 for the first parenthesization and
4× 3× 1 + 3× 5× 1 = 27 for the second
Problem: When multiplying A1A2...An, find the parenthesization
that minimizes the total number of scalar multiplications required

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The Matrix Chain Product

Let M[i , j ] be the minimum number of scalar multiplications
required to compute AiAi+1...Aj

When i = j the cost is clearly 0
When i < j , the optimal parenthesization splits the product in
(Ai ...Ak)(Ak+1...Aj) for i ≤ k < j (Ai is of size [ri−1 × ri ])

M[i , j ] =

�
0 if i = j

min(M[i , k] +M[k + 1, j ] + ri−1rk rj) if i ≤ k < j

The recursive algorithm of the above recurrence is exponential

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The DP Solution to the Matrix Chain Product

Notice that to compute M[i , j ] we need to have previously
computed M[i , k] and M[k + 1, j ]
We take a matrix M[n×n] to store the intermediate computations
We record the number of multiplications needed to compute A1 by
A2, A2 by A3, ... in M[1, 2],M[2, 3], ...
To find the best way to compute A1A2A3:

For (A1A2)A3 the result is M[1, 2] + r0r2r3

For the other A1(A2A3) the result is r0r1r3 +M[2, 3]

We compare them and store the smallest in M[1, 3]

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

m[2, 5] = min{

m[2, 3] + m[4, 5] + r1 r3 r5

m[2, 4] + m[5] + r1 r4 r5

m[2] + m[3, 5] + r1 r2 r5

}

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems



Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The DP Solution to the Matrix Chain Product

We continue for all triples, then for successive group of four, ..., by
continuing that way we obtain at the end the best way to multiply
the matrices
The time-complexity for computing the optimal parenthesization of
the matrices is in O(n3)
The space-complexity is in O(n2) (the auxiliary matrix M[n,n])

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Problems with Dynamic Programming

It may be impossible to combine the solutions of smaller
subproblems to form the solution of the larger one.

The number of small subproblems to solve may be
unacceptably large

None has precisely characterized which problems can be
solved with dynamic programming

There are many hard problems for which dynamic
programming does not seem to be applicable (TSP)

There are many ”easy problems” for which it is less efficient
than a standard algorithm (for example the ones for which the
greedy algorithm applies)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Exhaustive Search

When greedy algorithms and dynamic programming don’t work we
need an exhaustive search of the subsets of E
The algorithm becomes exponential
You must try to cut the choices during the computation
Examples of exponential algorithms are :

The Queens problem

The Travelling Salesman problem

...

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The 8 queens problem

Place 8 queens on a chess board so that
none of them catches any other one.
Exponential algorithm explores the

�64
8

�

solutions.
Some choices can be “cut” by testing the
conflicts every time you try to place a
queen. Eg, when adding new queen, you
can test for each previously placed queen
whether there’s a conflict:

on the line, complexity is 88

on the line and the column,
complexity is 8!

on the line, the column and on the 2
diagonals

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems



Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The Travelling Salesman Problem

Most famous problem of exhaustive search:
Given n cities, find the shortest route

connecting them all with no city visited twice.

Arises naturally in a number of important
applications and has been extensively studied.
Still unthinkable to solve huge instances.
Difficult problem because it seems there’s no
way to avoid checking the length of a very
large number of possible routes.
[http://www.tsp.gatech.edu]

A
TSP on 33 cities for a
contest in 1962.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The Knapsack Problem

A robber is in a room filled with N types of items of varying weight
and value. He has a knapsack of capacity M to carry the goods.
The knapsack Problem : Find the combination of items that the
robber should choose for his knapsack in order to maximize the
total value of all the items he takes.
Depending on the kind of items and the capacity’s value M, this
problem can be solved with the three types of algorithms previously
introduced

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Three Variants of the Knapsack Problem

Greedy algorithm: When items are fractionnable (gold’s powder,
flour, ...). You can then compute and sort by decreasing order all
value/weight. You fill your knapsack by taking the largest quantity
of the greatest value per kilo, then the second more expensive, ...
Dynamic-Programming: When the items are not fractionnable
and when the capacity is an integer: you consider an array C [n]
where C [i ] stores the highest value that can be achieved with a
knapsack of capacity i . You combine the already computed values
to achieved the next one
Exhaustive-search: When the items are not fractionnable and
when the capacity is a real number, no efficient algorithm is
known. You need to explore all the possibilities. When inserting a
new item, you can just cut the choices by verifying that you do not
exceed the capacity of the knapsack

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

A particular knapsack problem

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems



Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The dynamic-programming of the Knapsack Problem

A robber is in a room filled with n items of varying integer weights and
values over positive reals. He has a knapsack of capacity W (a weight
limit) to carry the goods

Find a subset S st. the constraint
�

k∈S wk ≤ W is observed in order to
maximize the total value max =

�
k∈S vk . We embedd the problem in an

n ×W array of problems and solve those problems successively.
For 0 ≤ i ≤ n and 0 ≤ j ≤ W , m[i , j ] denotes the max value of the
knapsack problem restricted to S ⊆ {1, . . . , i} under weight limit j .
The heart of the solution is the recurrence

m[i , j ] = max{m[i − 1, j ], vi +m[i − 1, j − wi ]}

if in the optimal solution i �∈ S then m[i , j ] = m[i − 1, j ]; otherwise we

gain value vi and have to maximize from the remaining objects under the

remaining weight limit j − wi (assuming j ≥ wi ). The optimum will be

the greatest of these two values.
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The DP algorithm for the knapsack problem

We have m[0, k] = m[k , 0], ∀k ≥ 0

for i in 0..n

m[i,0]=0

end

for j in 1..W

m[0,j]=0

end

for i in 1..n

for j in 1..W # expresses the value of the next m[i,j]

if j<w[i]

m[i,j]=m[i-1,j] # item i cannot be selected

else m[i,j]=max { m[i-1,j], v[i]+m[i-1,j-w[i]] }

end

end

end
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The Subset-Sum Problem

In a set of integer-valued items, you search a subset where the sum
of the item’s values is a given integer b.
You have a finite set A of items with integer values, and an integer
b, is there a subset A� such that Σa∈A�value(a) = b

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems

Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

The Partition Problem

You partition a set of integer-weighted items into two subsets of
equal weight
You have a finite set A of items with integer values, is there a
subset A� such that Σa∈A�value(a) = Σa∈A\A�value(a)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems



Exploration problems
Greedy algorithms

Dynamic programming
Exhaustive search

Polynomial Problem versus “Exponential” Problem

When N becomes very big :

Polynomial Problems remain tractable

While Non deterministic Polytime Problems become
practically intractable

The difference between those two classes of problem have been
formalized and is the object of the study of the NP-completeness

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html7- Exploration Problems


