7- Exploration Problems

Bruno MARTIN,
University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/mathmods.html

- Greedy Algorithm: a heuristic strategy: try to make, at each step, the optimal choice compatible with the previous and hope that this sequence of choices leads to the optimal solution.

Generally linear algorithms

- Dynamic Programming: divide the "problem entries" into as many subsets as needed. The problem is solved on every subset using the previous solutions to compute the result of the current subset. Finding a way to split the set is not always possible.

Typically polynomial algorithms

- Brute-Force Search: When the previous methods don't work. Consider every subset of elements and find the optimal one.

These algorithms are clearly exponential

- Find a clever way to order the elements \Rightarrow ordered set
- start from the empty set $(F=\varnothing)$ and iterate on the ordered set
- add the elements one by one, adding the current element if it is compatible with the previous ones
- at the end of the iteration, you might have an optimal solution

Finding the best ordering is not always possible :
Greedy algorithms don't always lead to an optimal solution

Only some problems are known to be solvable by greedy algorithms:

- the Huffman's codes for data encoding (data compression)
- the (dummy) unique resource allocation
- the Dantzig's algorithm for the graph shortest path problem
- the Kruskal's algorithm for graph's minimum spanning tree
- the (dummy) task-scheduling problem

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br \quad 7- Exploration Problems

There's only a polynomial number of subproblems and thus some subproblems might have to be solved many times (remember Fibonacci)

The solution is to store intermediate solutions in a table

- divide the set into as many subsets as required
- solve the problem on every subset using the previous solutions to compute the result of the current subset

These are polynomial-time algorithms

Finding the way to split the set is not always possible.
There is often no way to divide a problem into a small number of subproblems whose solution can be combined to solve the original. In such a case you may divide the problem (and the subproblems) into as many subproblems as necessary.
The latter clearly has an exponential time complexity.

DP Examples:

- Floyd's algorithm for solving the all-pairs shortest paths problem in a graph
- Warshall's algorithm for transitive closure
- matrix chain product
- ...

In a divide-and-conquer problem:

- you solve a large problem by spliting it into independent smaller subproblems
- Solving them independently solves the global problem
- Example: quicksort algorithm

The most famous example of dynamic programming is Floyd's algorithm which finds all the shortest paths in a valuated graph.

It stores the shortest path between each pair of vertices in a matrix It works by considering all vertices one by one. For each vertex k, it considers every pair of vertices $i \rightarrow j$. When there exists a
shortest path from i to j going through k it stores the new cost in the Matrix $[i, j]$
When we end the three loops $O(n)$, the Matrix contains every shortest path
Already seen in a previous lecture

$\begin{array}{r} \text { Exploration problems } \\ \text { Greedy algorithms } \\ \text { Dynamic programming } \\ \text { Exhaustive search } \end{array}$
The Matrix Chain Product

You multiply these three matrices $A[4,3] \times B[3,5] \times C[5,1]$:
$\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43}\end{array}\right) \times\left(\begin{array}{lllll}b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35}\end{array}\right) \times\left(\begin{array}{l}c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \\ c_{51}\end{array}\right)$
There are two possible parenthesizations
$(A[4,3] \times B[3,5]) \times C[5,1]$ and $A[4,3] \times(B[3,5] \times C[5,1])$ The numbers of scalar multiplications are :
$4 \times 3 \times 5+4 \times 5 \times 1=80$ for the first parenthesization and $4 \times 3 \times 1+3 \times 5 \times 1=27$ for the second
Problem: When multiplying $A_{1} A_{2} \ldots A_{n}$, find the parenthesization
that minimizes the total number of scalar multiplications required

Let $M[i, j]$ be the minimum number of scalar multiplications
required to compute $A_{i} A_{i+1} \ldots A_{j}$
When $i=j$ the cost is clearly 0
When $i<j$, the optimal parenthesization splits the product in

$$
M[i, j]= \begin{cases}0 & \text { if } i=j \\ \min \left(M[i, k]+M[k+1, j]+r_{i-1} r_{k} r_{j}\right) & \text { if } i \leq k<j\end{cases}
$$

The recursive algorithm of the above recurrence is exponential

The Matrix Chain Product

$$
\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right) \text { for } i \leq k<j\left(A_{i} \text { is of size }\left[r_{i-1} \times r_{i}\right]\right)
$$

Notice that to compute $M[i, j]$ we need to have previously computed $M[i, k]$ and $M[k+1, j]$
We take a matrix $M_{[n \times n]}$ to store the intermediate computations
We record the number of multiplications needed to compute A_{1} by A_{2}, A_{2} by A_{3}, \ldots in $M[1,2], M[2,3], \ldots$
To find the best way to compute $A_{1} A_{2} A_{3}$:

- For $\left(A_{1} A_{2}\right) A_{3}$ the result is $M[1,2]+r_{0} r_{2} r_{3}$
- For the other $A_{1}\left(A_{2} A_{3}\right)$ the result is $r_{0} r_{1} r_{3}+M[2,3]$
- We compare them and store the smallest in $M[1,3]$


```
m[2, 5] = min{
    m[2, 3] + m[4, 5] + r1 r3 r5
    m[2,4] + m[5] + r1 r4 r5
    m[2] +m[3,5] + r1 r2 r5
        }
```

Exhaustive Search

We continue for all triples, then for successive group of four, ..., by continuing that way we obtain at the end the best way to multiply the matrices
The time-complexity for computing the optimal parenthesization of the matrices is in $O\left(n^{3}\right)$
The space-complexity is in $O\left(n^{2}\right)$ (the auxiliary matrix $\left.M_{[n, n]}\right)$

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 7-Exploration Problems

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 7-Exploration Problems

The 8 queens problem $\left.\begin{array}{r}\text { Exploration problems } \\ \text { Greedy algorithms } \\ \text { Dynamic programming } \\ \text { Exhaustive search }\end{array} \right\rvert\,$

Place 8 queens on a chess board so that none of them catches any other one. Exponential algorithm explores the $\binom{64}{8}$ solutions.
Some choices can be "cut" by testing the conflicts every time you try to place a queen. Eg, when adding new queen, you can test for each previously placed queen whether there's a conflict:

- on the line, complexity is 8^{8}
- on the line and the column,
 complexity is 8 !
- on the line, the column and on the 2 diagonals

Most famous problem of exhaustive search: Given n cities, find the shortest route connecting them all with no city visited twice.

Arises naturally in a number of important applications and has been extensively studied Still unthinkable to solve huge instances. Difficult problem because it seems there's no way to avoid checking the length of a very large number of possible routes. [http://www.tsp.gatech.edu]

TSP on 33 cities for a contest in 1962.

A robber is in a room filled with N types of items of varying weight and value. He has a knapsack of capacity M to carry the goods. The knapsack Problem : Find the combination of items that the robber should choose for his knapsack in order to maximize the total value of all the items he takes.
Depending on the kind of items and the capacity's value M, this problem can be solved with the three types of algorithms previously introduced

Greedy algorithm: When items are fractionnable (gold's powder, flour, ...). You can then compute and sort by decreasing order all value/weight. You fill your knapsack by taking the largest quantity of the greatest value per kilo, then the second more expensive, ..
Dynamic-Programming: When the items are not fractionnable and when the capacity is an integer: you consider an array $C[n]$ where $C[i]$ stores the highest value that can be achieved with a knapsack of capacity i. You combine the already computed values to achieved the next one
Exhaustive-search: When the items are not fractionnable and when the capacity is a real number, no efficient algorithm is known. You need to explore all the possibilities. When inserting a new item, you can just cut the choices by verifying that you do not exceed the capacity of the knapsack

```
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 7- Exploration Problems
```

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS
\qquad
\qquad

\qquad

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 7-Exploration Problems

EMEDO NP-COMPLEIL PROBEAS IN RESTAURANT ORDERS

A robber is in a room filled with n items of varying integer weights and values over positive reals. He has a knapsack of capacity W (a weight limit) to carry the goods

Find a subset S st. the constraint $\sum_{k \in S} w_{k} \leq W$ is observed in order to maximize the total value $\max =\sum_{k \in S} v_{k}$. We embedd the problem in an $n \times W$ array of problems and solve those problems successively. For $0 \leq i \leq n$ and $0 \leq j \leq W, m[i, j]$ denotes the max value of the knapsack problem restricted to $S \subseteq\{1, \ldots, i\}$ under weight limit j. The heart of the solution is the recurrence

$$
m[i, j]=\max \left\{m[i-1, j], v_{i}+m\left[i-1, j-w_{i}\right]\right\}
$$

if in the optimal solution $i \notin S$ then $m[i, j]=m[i-1, j]$; otherwise we gain value v_{i} and have to maximize from the remaining objects under the remaining weight limit $j-w_{i}$ (assuming $j \geq w_{i}$). The optimum will be the greatest of these two values.

Exploration problems Greedy algorithms
 ynamic programming Exhaustive search

The DP algorithm for the knapsack problem

You partition a set of integer-weighted items into two subsets of equal weight
You have a finite set A of items with integer values, is there a subset A^{\prime} such that $\Sigma_{a \in A^{\prime}}$ value $(a)=\Sigma_{a \in A \backslash A^{\prime}}$ value (a)

```
We have \(m[0, k]=m[k, 0], \forall k \geq 0\)
for i in 0..n
    \(\mathrm{m}[\mathrm{i}, 0]=0\)
end
for \(j\) in 1..W
    \(m[0, j]=0\)
end
for \(i\) in \(1 . . n\)
    for j in 1..W \# expresses the value of the next \(\mathrm{m}[i, j]\)
        if \(\mathrm{j}<\mathrm{w}[\mathrm{i}]\)
            m[i,j]=m[i-1,j] \# item i cannot be selected
        else \(m[i, j]=\max \{m[i-1, j], v[i]+m[i-1, j-w[i]]\}\)
        end
        end
end
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br 7- Exploration Problems
```


When N becomes very big:

- Polynomial Problems remain tractable
- While Non deterministic Polytime Problems become practically intractable

The difference between those two classes of problem have been formalized and is the object of the study of the NP-completeness

