Master Mathmods, may 14, 2012

NP and intractability

1 Back to TSP

Assuming that the HC is an NP-complete problem, prove that TSP is NP-complete.
HAMILTONIAN CIRCUIT (HC):
Instance: A graph $G=(V, E)$
QUESTION : Does G contain a simple circuit that includes all the vertices of G ?
TRAVELING SALESMAN (TSP):
INSTANCE: A finite set $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of cities, a distance $d\left(c_{i}, c_{j}\right) \in \mathbb{Z}^{+}$for each pair of cities $c_{i}, c_{j} \in C$, and a bound $B \in \mathbb{Z}^{+}$.
QUESTION: Is there a tour of all the cities having total length no more than B, that is, an ordering $\left\langle c_{\pi(1)}, c_{\pi(2)}, \ldots, c_{\pi(m)}\right\rangle$ of C such that:

$$
\left(\sum_{i=1}^{m-1} d\left(c_{\pi(i)}, c_{\pi(i+1)}\right)\right)+d\left(c_{\pi(m)}, c_{\pi(1)}\right) \leqslant B ?
$$

2 More difficult: subset sum [from last year's exam]

Now, can you find a polytime transformation from SUBSET SUM to PARTITION? SUBSET SUM
Instance: A finite set A of positive integers, a positive integer B
QUESTION : Is there a $A^{\prime} \subseteq A$ such that the sum of the elements in A^{\prime} is exactly B ?

PARTITION

Instance : A finite multiset A of positive integers
Question : Are there 2 sets B and $C: B \cup C=A, B \cap C=\varnothing$ and $\sum_{b \in B} b=\sum_{c \in C} c$?

