[Comploiny [N Complexity | NP completeness
Definition of P

NP-completeness
P: decision problems for which there is a polytime algorithm.

Bruno MARTIN,] Problem \ Description \ Algorithm \ Yes \ No ‘
University of Nice - Sophia Antipolis Multiple | is x a multiple of y | division 51, 17 51, 16
mailto:Bruno.Martin@unice.fr Rel. prime ged(x,y) =17 E“d’id 34, 39 34, 51
http://deptinfo.unice.fr/ bmartin/mathmods.html Primes Is x prime? AKS'02 53 51
lsolve .3.?X that Gauss [3111_12] {‘2‘] F?ﬂ [%]
satisfies Ax = b? Edmonds 0315] L36 o11] L1

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

Decision problem NP : Non-deterministic polynomial time

o [1is a set of strings (a language) Through the intuition of a certification algorithm;
@ Instance: string s over a finite alphabet @ views things from a “boss” viewpoint
o Algorithm A decides problem M: A(s) = yes iff s € I @ doesn’t determine whether s € Il on its own; rather it checks

_ o _ _ _ a proposed (short enough) proof/certificate t that s € I
A runs in polynomial time if for every string s, A(s) terminates in

at most p(fs) steps, where p is some polynomial. Definition

C(s,t) is a certifier for 1 if Vs € M, 3t st C(s, t) = yes (t=
certificate or witness)

PRIMES: M = {2,3,5,7,11,13,17,23,29,31,37, ...}

Algorithm [Agrawal, Kayal and Saxena, 2002] p(ts) = fs® NP : decision problems for which there is a polytime certifier

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

Certifiers and certificates: composites A brief history of complexity

COMPOSITES: given s € N, is s composite? o Key problem: TSP; Karp tried to solve TSP in the 60's.
o In the 60's, complexity theory was introduced by Rabin,

McNaughton, Yamada and Hartmanis, Stearns introduced the
word complexity in 1965 with a model of computation and the

first results on the structure of complexity classes.
def C(s,t) @ In the 60's, Edmonds introduced the notion of good algorithm

as a polytime algorithm on the size of the problem encoding.
@ P and NP were introduced in 1971 by Cook who proved that

Instance s = 437 669 SAT is NP -complete and that all NP -complete problems
Certificate t = 541 or 809 reduce to SAT. TSP is among those problems and there's no

hope for finding an efficient algorithm for solving TSP.
@ Karp introduces the notion of reduction to prove that 21

problems are NP -complete

Certificate: a nontrivial factor t of s. Note that such a certificate
exists iff s composite. Moreover, fit < s

Certifier

if t<=1 or t>=s

return false

elsif s is a multiple of t
return true

else

return false

end @ Since then, a million-$ conjecture is to decide wether
end
Thus, COMPOSITES is in NP P =NP

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

P vs NP Polynomial transformation

P C NP : polytime algorithm particular case of a certifier (£ <).

What about the converse? Problem X polytime reduces (Cook) to problem Y if arbitrary
instances of X can be solved using:

@ polytime number of standard computation step, plus

IfT1 € NP , s € 1 s of size n can be decided by an algorithm in
time O(2P("). @ polytime number of calls to oracle that solves Y

Proof: For every string s € " accepted by a certifier, there is a
polynomial p and a certificate t € XP(") s.t. time(C(s, t)) < p(n).
We can generate all the t possible strings and test whether C(s, t)
is true within p(n) steps. The overall running time of this
algorithm is p(n)tZP(" = 0(29(") for a polynomial q

Problem X polytime transforms (Karp) to problem Y (X o Y) if
given any input x to X, we can construct an input y = f(x) to Y
st x is a yes instance of X iff y is a yes instance of Y with fy
polynomial in §x and f polytime computable.

Definition

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

Some properties Howto: Establishing NP -completeness of [1

IfX < Y then, We should prove that any problem in NP transforms to I1...
Q Y € P implies X € P But once we've established a first “natural NP -complete”
Q X &P impliesY &P problem, other fall like dominoes since:

© If A€ P decides Y, since X oc ¥, one can design B a Let X NP, Y € NP . If X is NP -complete and X Y, then Y
polytime algorithm for deciding X: y € Y with A(y) =yes, & MNP camee

B(x) = A(f(x))

@ assume A € P decides Y. Since X o< Y, one can design B € P Recipe to establish NP -completeness of I1:
for deciding X: let x € X and y = f(x) € Y. B(x) = A(f(x)) @ show that M € NP
and since Ac P and f € P, X € P, a contradiction. @ choose a NP -complete problem X
© prove X I

Lemma (Transitivity)
If X xY and Y < Z, then X x Z

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

NP -completeness The first NP -complete problem

Y is NP -complete if Y € NP with the property that for every o] .
problem X € NP , X o Y. Cook proved that the satisfiability problem is NP -complete:
INSTANCE : U set of variables; C, collection of clauses over U
Suppose Y NP_Comp/ete. Then Y is po/ytlme decidable Iff QUESTION : DoeS there eXiSt a Va|uati0n WhICh Satisﬁes C?

P =0 Theorem (Cook)
< If P= NP, then Y polytime solvable since Y € NP SAT is NP -complete

= Suppose Y can be solved in polytime.

But another kind of reduction and the precise notion of a

o Let X be any problem in NP . Since X oc Y, we computation model are required to prove this.
can solve X in polytime. This implies NP C P

o We already know P C NP thus P = NP

Are there any “natural” NP -complete problems?

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

Satisfiability problem 3-SAT

U={u,u,...,us} a set of variables
t:U— {0,1} a truth assignment of the variables of U

t(u) = 1 iff u is true and t(u) = 0 iff u is false. INSTANCE : A collection C = {c1, ¢2,...,cm} of clauses over a
For u € U, u and T are literals. finite set of variables U such that for all 7, |¢;| =3

u is true by t iff t(u) = 1 and @ is true by t iff t(u) = 0. QUESTION : Does there exist a truth assignment of U which

A clause C is a set of literals which is the disjunction of the literals. satisfies simultaneously all the clauses of C?

{u1, T3, ug} < 1y V -z V ug true for t(u1) =1 or t(uz) =0 or t(ug) = 1. 3-SAT is NP -complete.

A set of clauses is satisfiable iff there exists a truth assignment for 3-SATe NP : Given a truth assignment of U, the satisfiability of
U satisfying simultaneously all the clauses of C. Equiv., if there is the formula can be checked by a polytime algorithm.

a truth assignment which satisfies the conjunction of the clauses.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

Example SAT x3-SAT

We consider an instance of SAT

Let U= {u1,u} and C = ({u1, U2}, {T1, u2}) or equivalently, U= {u,...,un} set of variables and

(1 V=) A (w2 V —uy). C={ca,...,cm} set of clauses
We build a collection C’ of clauses of 3 literals over a set U’ of

This is a yes-instance for the next truth assignment: . : e _ _ > 9
variables such that C’ is satisfiable iff C is satisfiable.

ur up | (U1 Vo) A (w2 V) We define the variables of 3-SAT:

0 O 1 Each clause ¢; € C will be represented by an equivalent collection
1 1 1 of clauses ch of three literals which will use the original variables

0 1 0 from U which occur in ¢; and auxiliary variables from UJ’ which will
1 0 0 be used only by clauses cJ’ Thus,

U'=UU (UL U) and C' = U, ¢

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

Clauses of 3-SAT = 0 ==

We build ch and UJf from ¢; = {z1, 22, ..., z«}, where the z's are
literals derived from the variables in U. To build U’ and ¢, there

are several cases depending on the value of k (number of literals): Conversely, if t’ satisfies C’, we check that the restriction of t’ to

@ k=1: ¢ has asingle literal; Lj_[l = {}’1'17}’12} and the variables of U also satisfies C. We have proved = C < C'.

1.2 1.2 12 2
CJ{ ={z,y;.yi L {2,y ’)/1'2}7 {Zlvyjlvyj h {Zluyjlayf}} Rest to check that the transformation is polynomial.

or, more easily, we can have anything!

. , 1 It suffices to count the number of 3-clauses in C’ which is
@ k=2:Inthis case, Ui = {y; } and

upper-bounded by a polynomial in mn. Thus the size of the

Cf _ {{21’22’},1,1}7 {21722,)/1-1}} mstahces of 3—SAT is upper—Pounded by a pcIJIynomlaI function in

o _ . _ the size of SAT instances. Since all the details of the construction

© k =3: This is the simplest case since ¢; already is a clause of are immediate, we have a polynomial transformation from SAT to
3 literals; thus U; = @ and ¢/ = {{;}} 3-SAT.

Q k>3 : more difficult: Uj ={yj : 1</ < k—3}and

¢ = {{21;227}/1-1}}U{{)7f, Zi+2,)/f+1} 1<i < k*4}U{yjk_3,Zk717Zk}

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

== C’ And for 2-SAT?

t = C. t can be extended in t' |= C': since the variables in U’ \ U
are partitioned into UJf and the variables in every UJf only occur in

/ H /
the clauses of ¢j, we just show how to extend t to the U 1 by 1. INSTANCE : ¢ a boolean formula in CNF with clauses of degree

o U! comes from case 1. or 2. t is extended in t’ arbitrarily, like exactly 2.

t'(y)=1 Vye UJ{- QQUESTION : is ¢ satisfiable?
o U! comes from case’ 3. t =t/

° (/J’ comes from case 4. Let ¢; = {z1,25,...,zc} with k > 3.
Since t |= ¢, there exists ¢ such that t(z) = 1. 2-SAT € P

0 (=12:t(y)=0,1<i<k-3

o l=k—1k:t(y)=11<i<k-3 We build a graph whose vertices are the variables and the negation
o otherwise : t’(yj") =1,1<i<(-2& of the variables and such that for every clause /; V /; we have an
t/(yf) =0,(—-1<i<k-3 implication —/; — [; and —/; — I;. We then compute the transitive

closure of the graph by a polytime algorithm.

We easily check that for all these choices, all the clauses of cJ’ are
satisfied and thus that t' |= c.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness
Graph associated with Some NP -complete problems
¢ = (X1 \V Xg) VAN (X1 vV _|X3) A (—|X1 V X2) VAN (X2 V X3)

6 basic kinds of NP-complete problems and paradigmatic samples:
@ Packing problems: SET-PACKING, INDEPENDANT-SET
@ Covering problems: SET-COVER, VERTEX-COVER
@ Constraint satisfaction problems: SAT, 3-SAT
@ Sequencing problems: HAM-CYCLE, TSP
@ Partitioning problems: 3D-MATCHING, 3-COLOR
@ Numerical problems: SSP, KNAPSACK

Practice: most NP problems are either in P or NP -complete.
Notable exceptions: Factoring, graph isomorphism, Nash
equilibrium

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

NP-completeness Asymmetry of NP

All problems below are NP -complete and reduce to one another. We only need to have short proofs of yes-instances

E

Example
SAT vs TAUTOLOGY

o o Can prove a CNF formula is satisfiable by giving a truth
I assignment

TMDEFENDENT SET DIR-HAM-CYOLE GRAPH 3-COLOR SUBSET-5UM

\ \ \ @ How can we prove that a formula is not satisfiable?
[SAT is NP -complete and proved polynomially equivalent with
RTEX R HAM-CYELE PLANAR 3-COLOR SCHEDULING
| l [TAUTOLOGY but how can we classify TAUTOLOGY which is not
i o even known to be in NP 7

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness Complexity NP -completeness

NP and co-NP Good characterizations

NP: Decision problems for which there is a polytime certifier

Given a decision problem I, its complement I is the same problem
with the yes and no answers reverse.

Example

{0,1,4,6,8,9,10,12,14,15, ...}
{2,3,5,7,11,13,17,23,29, ...}

> X
I

co-NP : complements of decision problems in NP
Ex: TAUTOLOGY, PRIMES,...

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness

NP = co-NP ?

Fundamental question: Does NP = co-NP 7
@ do yes-instances have succinct certificate iff no-instances do?

@ consensus opinion: no

IFNP # co— NP , then P # NP .

@ P is closed under complement

o if P=NP , then NP closed under complement
@ equivalently, NP =co-NP

@ This is the contrapositive of the theorem

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

o If X € NP Nco-NP then:
e for yes instance, there is a succinct certificate
o for no instance, there is a succinct disqualifier
o PC NP Nnco-NP
o Fundamental open question: does P = NP N co-NP 7

o Mixed opinions
e Many examples where problem found to have a non-trivial
good characterization, but only years later discovered to be
in P
o Linear Programming by Khachiyan, 1979
o Primality testing by Agrawal, Kayal and Saxena, 2002

Fact: Factoring is NP N co-NP but not known to be in P.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness

Primes € NP N co-NP

Already known: Primeseco-NP. Suffices to prove that PrimeseNP .

Theorem (Pratt)

An odd integer s is prime iff there exists an integer 1 < t < s s.t
for all prime divisors p of s — 1,

t571

= 1 mods
ts=U/p £ 1

mod s

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

Complexity NP -completeness

Certificate and certifier

@ Input s = 437677

o Certificate: t = 17 and a prime factorization of
s — 1 = 22.3.36473 which also needs a recursive certificate to
guarantee that 3 and 36473 are primes

o Certifier

check s — 1 =22.3.36473

check 17(6=1/2 = 437676 mod s

check 17(5-1/3 = 320415 mod s

check 17(s—1)/36473 = 305452 mod s

by using repeated squaring algorithm

®© 66 o o

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bx NP-completeness

