NP-completeness

Bruno MARTIN

University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/mathmods.html

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br NP-completeness

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br NP-completeness

Decision problem

Complexity NP -completeness

Π is a set of strings (a language)

- Instance: string s over a finite alphabet Σ
- Algorithm A decides problem $\Pi: A(s)=$ yes iff $s \in \Pi$

A runs in polynomial time if for every string $s, A(s)$ terminates in at most $p(\sharp s)$ steps, where p is some polynomial.

Example
 PRIMES: $\Pi=\{2,3,5,7,11,13,17,23,29,31,37, \ldots\}$ Algorithm [Agrawal, Kayal and Saxena, 2002] $p(\sharp s)=\sharp s^{8}$

Through the intuition of a certification algorithm;

- views things from a "boss" viewpoint
- doesn't determine whether $s \in \Pi$ on its own; rather it checks a proposed (short enough) proof/certificate t that $s \in \Pi$

Definition

$C(s, t)$ is a certifier for Π if $\forall s \in \Pi, \exists t$ st $C(s, t)=$ yes ($t=$ certificate or witness)

NP : decision problems for which there is a polytime certifier
P : decision problems for which there is a polytime algorithm.

Problem	Description	Algorithm	Yes	No
Multiple	is x a multiple of y	division	51,17	51,16
Rel. prime	$\operatorname{gcd}(x, y)=1$?	Euclid	34,39	34,
Primes	is x prime?	AKS'02	53	51
Isolve	$\exists ? x$ that	Gauss	$\left[\begin{array}{ccc}0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15\end{array}\right]\left[\begin{array}{cc}4 \\ 2 \\ 36\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$

COMPOSITES: given $s \in \mathbb{N}$, is s composite?
Certificate: a nontrivial factor t of s. Note that such a certificate exists iff s composite. Moreover, $\sharp t \leq \sharp s$
Certifier
def C(s,t)
if $t<=1$ or $t>=s$
return false
elsif s is a multiple of $t \quad$ Instance $s=437669$
return true
else
return false
end
end
Thus, COMPOSITES is in NP

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br NP-completeness

P vs NP

Complexity
NP -completeness

What about the converse?

Theorem

If $\Pi \in \mathrm{NP}, s \in \Pi$ of size n can be decided by an algorithm in time $O\left(2^{p(n)}\right)$.

Proof: For every string $s \in \Sigma^{n}$ accepted by a certifier, there is a polynomial p and a certificate $t \in \Sigma^{p(n)}$ s.t. time $(C(s, t)) \leq p(n)$. We can generate all the t possible strings and test whether $C(s, t)$ is true within $p(n)$ steps. The overall running time of this algorithm is $p(n) \sharp \Sigma^{p(n)}=O\left(2^{q(n)}\right)$ for a polynomial q

A brief history of complexity

- Key problem: TSP; Karp tried to solve TSP in the 60's.
- In the 60's, complexity theory was introduced by Rabin, McNaughton, Yamada and Hartmanis, Stearns introduced the word complexity in 1965 with a model of computation and the first results on the structure of complexity classes.
- In the 60's, Edmonds introduced the notion of good algorithm as a polytime algorithm on the size of the problem encoding.
- P and NP were introduced in 1971 by Cook who proved that SAT is NP -complete and that all NP -complete problems reduce to SAT. TSP is among those problems and there's no hope for finding an efficient algorithm for solving TSP.
- Karp introduces the notion of reduction to prove that 21 problems are NP -complete
- Since then, a million-\$ conjecture is to decide wether

$$
P=N P
$$

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br
NP-completeness
Complexity \quad NP -completeness
Polynomial transformation

```
Lemma
If \(X \propto Y\) then,
(1) \(Y \in \mathrm{P}\) implies \(X \in \mathrm{P}\)
(2) \(X \notin \mathrm{P}\) implies \(Y \notin \mathrm{P}\)
```

(1) If $A \in \mathrm{P}$ decides Y, since $X \propto Y$, one can design B a polytime algorithm for deciding $X: y \in Y$ with $A(y)=$ yes, $B(x)=A(f(x))$
(2) assume $A \in \mathrm{P}$ decides Y. Since $X \propto Y$, one can design $B \in \mathrm{P}$ for deciding X : let $x \in X$ and $y=f(x) \in Y . B(x)=A(f(x))$ and since $A \in \mathrm{P}$ and $f \in \mathrm{P}, X \in \mathrm{P}$, a contradiction.

Lemma (Transitivity)

If $X \propto Y$ and $Y \propto Z$, then $X \propto Z$

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br NP-completeness

Complexity NP -completeness
NP -completeness

Definition
 Y is NP -complete if $Y \in$ NP with the property that for every problem $X \in$ NP , $X \propto Y$.

Theorem

Suppose Y NP-complete. Then Y is polytime decidable iff $\mathrm{P}=\mathrm{NP}$
\Leftarrow If $\mathrm{P}=\mathrm{NP}$, then Y polytime solvable since $Y \in \mathrm{NP}$
\Rightarrow Suppose Y can be solved in polytime.

- Let X be any problem in NP. Since $X \propto Y$, we can solve X in polytime. This implies NP $\subset P$
- We already know $P \subseteq N P$ thus $P=N P$

We should prove that any problem in NP transforms to П..
But once we've established a first "natural NP -complete" problem, other fall like dominoes since:

Lemma

Let $X \in N P, Y \in N P$. If X is NP -complete and $X \propto Y$, then Y is NP -complete.

Recipe to establish NP -completeness of Π :
(1) show that $\Pi \in \mathrm{NP}$
(2) choose a NP -complete problem X
(3) prove $X \propto \Pi$

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

The first NP -complete problem

Cook proved that the satisfiability problem is NP -complete

Instance : U set of variables; C, collection of clauses over U Question : Does there exist a valuation which satisfies C ?

Theorem (Cook)

SAT is NP -complete
But another kind of reduction and the precise notion of a computation model are required to prove this.

Are there any "natural" NP -complete problems?
$U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ a set of variables
$t: U \rightarrow\{0,1\}$ a truth assignment of the variables of U
$t(u)=1$ iff u is true and $t(u)=0$ iff u is false.
For $u \in U, u$ and \bar{u} are literals.
u is true by t iff $t(u)=1$ and \bar{u} is true by t iff $t(u)=0$.
A clause C is a set of literals which is the disjunction of the literals.

Example

$\left\{u_{1}, \overline{u_{3}}, u_{8}\right\} \Leftrightarrow u_{1} \vee \neg u_{3} \vee u_{8} \operatorname{true}$ for $t\left(u_{1}\right)=1$ or $t\left(u_{3}\right)=0$ or $t\left(u_{8}\right)=1$.
A set of clauses is satisfiable iff there exists a truth assignment for U satisfying simultaneously all the clauses of C. Equiv., if there is a truth assignment which satisfies the conjunction of the clauses.

Let $U=\left\{u_{1}, u_{2}\right\}$ and $C=\left(\left\{u_{1}, \overline{u_{2}}\right\},\left\{\overline{u_{1}}, u_{2}\right\}\right)$ or equivalently, $\left(u_{1} \vee \neg u_{2}\right) \wedge\left(u_{2} \vee \neg u_{1}\right)$.
This is a yes-instance for the next truth assignment:

u_{1}	u_{2}	$\left(u_{1} \vee \neg u_{2}\right) \wedge\left(u_{2} \vee \neg u_{1}\right)$
0	0	1
1	1	1
0	1	0
1	0	0

Instance : A collection $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of clauses over a finite set of variables U such that for all $i,\left|c_{i}\right|=3$
Question : Does there exist a truth assignment of U which satisfies simultaneously all the clauses of C ?

Theorem

3-SAT is NP -complete.
3-SAT \in NP : Given a truth assignment of U, the satisfiability of the formula can be checked by a polytime algorithm.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto: Br
SP-completeness
SAT $\propto 3-$ Complexity
NP -completeness

We consider an instance of SAT
$U=\left\{u_{1}, \ldots, u_{n}\right\}$ set of variables and $C=\left\{c_{1}, \ldots, c_{m}\right\}$ set of clauses
We build a collection C^{\prime} of clauses of 3 literals over a set U^{\prime} of variables such that C^{\prime} is satisfiable iff C is satisfiable.
We define the variables of 3-SAT:
Each clause $c_{j} \in C$ will be represented by an equivalent collection of clauses c_{j}^{\prime} of three literals which will use the original variables from U which occur in c_{j} and auxiliary variables from U_{j}^{\prime} which will be used only by clauses c_{j}^{\prime}. Thus,

$$
U^{\prime}=U \cup\left(\cup_{j=1}^{m} U_{j}^{\prime}\right) \text { and } C^{\prime}=\cup_{j=1}^{m} c_{j}^{\prime}
$$

We build c_{j}^{\prime} and U_{j}^{\prime} from $c_{j}=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$, where the z_{i} 's are literals derived from the variables in U. To build U_{j}^{\prime} and c_{j}^{\prime}, there are several cases depending on the value of k (number of literals):

- $k=1: c_{j}$ has a single literal; $U_{j}^{\prime}=\left\{y_{j}^{1}, y_{j}^{2}\right\}$ and

$$
c_{j}^{\prime}=\left\{\left\{z_{1}, y_{j}^{1}, y_{j}^{2}\right\},\left\{z_{1}, y_{j}^{1}, \overline{y_{j}^{2}}\right\},\left\{z_{1}, \overline{y_{j}^{1}}, y_{j}^{2}\right\},\left\{z_{1}, \overline{y_{j}^{1}}, \overline{y_{j}^{2}}\right\}\right\}
$$

or, more easily, we can have anything!

- $k=2$: In this case, $U_{j}^{\prime}=\left\{y_{j}^{1}\right\}$ and

$$
c_{j}^{\prime}=\left\{\left\{z_{1}, z_{2}, y_{j}^{1}\right\},\left\{z_{1}, z_{2}, \overline{y_{j}^{1}}\right\}\right\}
$$

- $k=3$: This is the simplest case since c_{j} already is a clause of 3 literals; thus $U_{j}^{\prime}=\varnothing$ and $c_{j}^{\prime}=\left\{\left\{c_{j}\right\}\right\}$
(0) $k>3$: more difficult: $U_{j}^{\prime}=\left\{y_{j}^{i}: 1 \leq i \leq k-3\right\}$ and

$$
c_{j}^{\prime}=\left\{\left\{z_{1}, z_{2}, y_{j}^{1}\right\}\right\} \cup\left\{\left\{\overline{y_{j}^{\prime}}, z_{i+2}, y_{j}^{i+1}\right\}: 1 \leq i \leq k-4\right\} \cup\left\{\overline{y_{j}^{k-3}}, z_{k-1}, z_{k}\right\}
$$

Conversely, if t^{\prime} satisfies C^{\prime}, we check that the restriction of t^{\prime} to the variables of U also satisfies C. We have proved $\models C \Leftrightarrow \vDash C^{\prime}$.

Rest to check that the transformation is polynomial.
It suffices to count the number of 3 -clauses in C^{\prime} which is upper-bounded by a polynomial in $m n$. Thus the size of the instances of 3-SAT is upper-bounded by a polynomial function in the size of SAT instances. Since all the details of the construction are immediate, we have a polynomial transformation from SAT to 3-SAT. satisfied and thus that $t^{\prime} \models c_{j}^{\prime}$.
$t \vDash C . t$ can be extended in $t^{\prime} \models C^{\prime}$: since the variables in $U^{\prime} \backslash U$ are partitioned into U_{j}^{\prime} and the variables in every U_{j}^{\prime} only occur in the clauses of c_{j}^{\prime}, we just show how to extend t to the $U_{j}^{\prime} 1$ by 1 .

- U_{j}^{\prime} comes from case 1. or 2. t is extended in t^{\prime} arbitrarily, like $t^{\prime}(y)=1, \quad \forall y \in U_{j}^{\prime}$
- U_{j}^{\prime} comes from case 3. $t=t^{\prime}$
- U_{j}^{\prime} comes from case 4. Let $c_{j}=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ with $k>3$.

Since $t \models c_{j}$, there exists ℓ such that $t\left(z_{\ell}\right)=1$.

$$
\text { - } \ell=1,2: t^{\prime}\left(y_{j}^{i}\right)=0,1 \leq i \leq k-3
$$

- $\ell=k-1, k: t^{\prime}\left(y_{j}^{i}\right)=1,1 \leq i \leq k-3$
- otherwise : $t^{\prime}\left(y_{j}^{i}\right)=1,1 \leq i \leq \ell-2$ \&

$$
t^{\prime}\left(y_{j}^{i}\right)=0, \ell-1 \leq i \leq k-3
$$

We easily check that for all these choices, all the clauses of c_{j}^{\prime} are

Complexity
NP -completeness

Instance : ϕ a boolean formula in CNF with clauses of degree exactly 2.
Question : is ϕ satisfiable?

Theorem

$2-S A T \in \mathrm{P}$
We build a graph whose vertices are the variables and the negation of the variables and such that for every clause $I_{i} \vee I_{j}$ we have an implication $\neg l_{j} \rightarrow l_{j}$ and $\neg l_{j} \rightarrow l_{i}$. We then compute the transitive closure of the graph by a polytime algorithm.

Graph associated with
$\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)$

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

NP-completeness

Complexity NP -completeness

All problems below are NP -complete and reduce to one another.

6 basic kinds of NP-complete problems and paradigmatic samples

- Packing problems: SET-PACKING, INDEPENDANT-SET
- Covering problems: SET-COVER, VERTEX-COVER
- Constraint satisfaction problems: SAT, 3-SAT
- Sequencing problems: HAM-CYCLE, TSP
- Partitioning problems: 3D-MATCHING, 3-COLOR
- Numerical problems: SSP, KNAPSACK

Practice: most NP problems are either in P or NP -complete. Notable exceptions: Factoring, graph isomorphism, Nash equilibrium
Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness
Asymmetry of NP Complexity NP -completeness

We only need to have short proofs of yes-instances

Example

SAT vs TAUTOLOGY

- Can prove a CNF formula is satisfiable by giving a truth assignment
- How can we prove that a formula is not satisfiable?

SAT is NP -complete and proved polynomially equivalent with TAUTOLOGY but how can we classify TAUTOLOGY which is not even known to be in NP ?

NP: Decision problems for which there is a polytime certifier

Definition

Given a decision problem Π, its complement $\bar{\Pi}$ is the same problem with the yes and no answers reverse.

Example

$$
\begin{aligned}
\bar{x} & =\{0,1,4,6,8,9,10,12,14,15, \ldots\} \\
x & =\{2,3,5,7,11,13,17,23,29, \ldots\}
\end{aligned}
$$

co-NP : complements of decision problems in NP Ex: TAUTOLOGY, PRIMES,...

- If $X \in N P \cap$ co-NP then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
- $P \subseteq N P \cap$ co-NP
- Fundamental open question: does $\mathrm{P}=\mathrm{NP} \cap$ co-NP ?
- Mixed opinions
- Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P
- Linear Programming by Khachiyan, 1979
- Primality testing by Agrawal, Kayal and Saxena, 2002

Fact: Factoring is NP \cap co-NP but not known to be in P .

Fundamental question: Does NP = co-NP ?

- do yes-instances have succinct certificate iff no-instances do?
- consensus opinion: no

Theorem

If NP \neq co - NP , then $\mathrm{P} \neq \mathrm{NP}$

- P is closed under complement
- if $P=N P$, then NP closed under complement
- equivalently, NP = co-NP
- This is the contrapositive of the theorem

Already known: Primes \in co-NP. Suffices to prove that Primes \in NP
Theorem (Pratt)
An odd integer s is prime iff there exists an integer $1<t<s$ s.t for all prime divisors p of $s-1$,

$$
\begin{array}{llll}
t^{s-1} & \equiv & \bmod s \\
t^{(s-1) / p} & \not \equiv & 1 & \bmod s
\end{array}
$$

Certificate and certifier

- Input $s=437677$
- Certificate: $t=17$ and a prime factorization of $s-1=2^{2} .3 .36473$ which also needs a recursive certificate to guarantee that 3 and 36473 are primes
- Certifier
- check $s-1=2^{2} .3 .36473$
- check $17^{(s-1) / 2} \equiv 437676 \bmod s$
- check $17^{(s-1) / 3} \equiv 329415 \bmod s$
- check $17^{(s-1) / 36473} \equiv 305452 \bmod s$
by using repeated squaring algorithm

