Complexity NP -completen

Definition of P

NP-completeness

Complexity

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html P: decision problems for which there is a polytime algorithm.

Problem	Description	Algorithm	Yes	No
Multiple	is x a multiple of y	division	51, 17	51, 16
Rel. prime	gcd(x, y) = 1?	Euclid	34, 39	34, 51
Primes	is x prime?	AKS'02	53	51
lsolve	$\exists ?x \text{ that}$	Gauss	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$	[199][1]
	satisfies $Ax = b$?	Edmonds	$\begin{bmatrix} 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix} \begin{bmatrix} 2 \\ 36 \end{bmatrix}$	

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

Complexity NP -complet

NP : Non-deterministic polynomial time

Π is a set of strings (a language)

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

• Instance: string s over a finite alphabet Σ

• Algorithm A decides problem Π : A(s) = yes iff $s \in \Pi$

Complexity

A runs in polynomial time if for every string s, A(s) terminates in at most $p(\sharp s)$ steps, where p is some polynomial.

Example

Decision problem

PRIMES: $\Pi = \{2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, ...\}$ Algorithm [Agrawal, Kayal and Saxena, 2002] $p(\sharp s) = \sharp s^8$ Through the intuition of a certification algorithm;

- views things from a "boss" viewpoint
- doesn't determine whether s ∈ Π on its own; rather it checks a proposed (short enough) proof/certificate t that s ∈ Π

Definition

C(s, t) is a **certifier** for Π if $\forall s \in \Pi, \exists t \text{ st } C(s, t) = \text{yes } (t = \text{certificate or witness})$

NP : decision problems for which there is a polytime certifier

・ロト・●・・ ●・・ ●・・ ●・ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Complexity NP -completeness

Certifiers and certificates: composites

COMPOSITES: given $s \in \mathbb{N}$, is s composite? Certificate: a nontrivial factor t of s. Note that such a certificate exists iff s composite. Moreover, $\sharp t \leq \sharp s$

Certifier

def C(s,t)
 if t<=1 or t>=s
 return false
 elsif s is a multiple of t
 return true
 else
 return false
 end
end
Thus, COMPOSITES is in NP

Complexity

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

P vs NP

 $P \subseteq NP$: polytime algorithm particular case of a certifier $(t = \varepsilon)$. What about the converse?

Theorem

If $\Pi \in NP$, $s \in \Pi$ s of size n can be decided by an algorithm in time $O(2^{p(n)})$.

Proof: For every string $s \in \Sigma^n$ accepted by a certifier, there is a polynomial p and a certificate $t \in \Sigma^{p(n)}$ s.t. time $(C(s, t)) \leq p(n)$. We can generate all the t possible strings and test whether C(s, t) is true within p(n) steps. The overall running time of this algorithm is $p(n) \sharp \Sigma^{p(n)} = O(2^{q(n)})$ for a polynomial q

• Key problem: TSP; Karp tried to solve TSP in the 60's.

Complexity

- In the 60's, complexity theory was introduced by Rabin, McNaughton, Yamada and Hartmanis, Stearns introduced the word complexity in 1965 with a model of computation and the first results on the structure of complexity classes.
- In the 60's, Edmonds introduced the notion of good algorithm as a polytime algorithm on the size of the problem encoding.
- P and NP were introduced in 1971 by Cook who proved that SAT is NP -complete and that all NP -complete problems reduce to SAT. TSP is among those problems and there's no hope for finding an efficient algorithm for solving TSP.
- Karp introduces the notion of reduction to prove that 21 problems are NP -complete
- Since then, a million-\$ conjecture is to decide wether

P = NP

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへで

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

Complexity NP -completeness

Polynomial transformation

Definition

Problem X polytime reduces (Cook) to problem Y if arbitrary instances of X can be solved using:

- polytime number of standard computation step, plus
- polytime number of calls to oracle that solves Y

Definition

Problem X polytime transforms (Karp) to problem Y ($X \propto Y$) if given any input x to X, we can construct an input y = f(x) to Y st x is a yes instance of X iff y is a yes instance of Y with $\sharp y$ polynomial in $\sharp x$ and f polytime computable.

Complexity NP -completeness

Some properties

Lemma

If $X \propto Y$ then,

- $Y \in P$ implies $X \in P$
- **②** $X \notin P$ *implies* $Y \notin P$
- If A ∈ P decides Y, since X ∝ Y, one can design B a polytime algorithm for deciding X: y ∈ Y with A(y) =yes, B(x) = A(f(x))
- assume A ∈ P decides Y. Since X ∝ Y, one can design B ∈ P for deciding X: let x ∈ X and y = f(x) ∈ Y. B(x) = A(f(x)) and since A ∈ P and f ∈ P, X ∈ P, a contradiction.

Lemma (Transitivity)

If $X \propto Y$ and $Y \propto Z$, then $X \propto Z$

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

Complexity NP -completeness

NP -completeness

Definition

Y is NP -complete if $Y\in\mathsf{NP}\,$ with the property that for every problem $X\in\mathsf{NP}\,$, $X\propto Y.$

Theorem

Suppose Y NP-complete. Then Y is polytime decidable iff $\mathsf{P}=\mathsf{NP}$

- $\ \ \leftarrow \ \ \mathsf{If}\ \mathsf{P}=\mathsf{NP}\ ,\ \mathsf{then}\ Y\ \mathsf{polytime}\ \mathsf{solvable}\ \mathsf{since}\ Y\in\mathsf{NP}$
- \Rightarrow Suppose Y can be solved in polytime.
 - Let X be any problem in NP . Since $X \propto Y$, we can solve X in polytime. This implies NP $\subseteq P$
 - We already know $\mathsf{P} \subseteq \mathsf{NP}\,$ thus $\mathsf{P} = \mathsf{NP}\,$

Are there any "natural" NP -complete problems?

runo MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

・ロト・日本・日本・日本・ シック

Howto: Establishing NP -completeness of Π

We should prove that any problem in NP transforms to Π ...

But once we've established a first "natural NP -complete" problem, other fall like dominoes since:

Lemma

Let $X \in NP$, $Y \in NP$. If X is NP -complete and $X \propto Y$, then Y is NP -complete.

Recipe to establish NP -completeness of Π :

- $\textcircled{O} \text{ show that } \Pi \in \mathsf{NP}$
- 2 choose a NP -complete problem X
- **③** prove $X \propto \Pi$

・ロト・日本・モン・モン・ロークへの

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

Complexity NP -completeness The first NP -complete problem

Cook proved that the satisfiability problem is NP -complete:

INSTANCE : U set of variables; C, collection of clauses over UQUESTION : Does there exist a valuation which satisfies C?

Theorem (Cook)

SAT is NP -complete

But another kind of reduction and the precise notion of a computation model are required to prove this.

Complexity NP -completeness

Satisfiability problem

 $U = \{u_1, u_2, \ldots, u_n\}$ a set of variables $t: U \rightarrow \{0, 1\}$ a *truth assignment* of the variables of U t(u) = 1 iff u is true and t(u) = 0 iff u is false. For $u \in U$. u and \overline{u} are literals. *u* is true by *t* iff t(u) = 1 and \overline{u} is true by *t* iff t(u) = 0. A *clause* C is a set of literals which is the disjunction of the literals.

Example

 $\{u_1, \overline{u_3}, u_8\} \Leftrightarrow u_1 \lor \neg u_3 \lor u_8$ true for $t(u_1) = 1$ or $t(u_3) = 0$ or $t(u_8) = 1$.

A set of clauses is satisfiable iff there exists a truth assignment for U satisfying simultaneously all the clauses of C. Equiv., if there is a truth assignment which satisfies the conjunction of the clauses.

NP -completeness

Complexity

Example

Let $U = \{u_1, u_2\}$ and $C = (\{u_1, \overline{u_2}\}, \{\overline{u_1}, u_2\})$ or equivalently, $(u_1 \vee \neg u_2) \wedge (u_2 \vee \neg u_1).$

This is a yes-instance for the next truth assignment:

u_1	<i>u</i> ₂	$(u_1 \vee \neg u_2) \wedge (u_2 \vee \neg u_1)$
0	0	1
1	1	1
0	1	0
1	0	0

INSTANCE : A collection $C = \{c_1, c_2, \dots, c_m\}$ of clauses over a finite set of variables U such that for all i, $|c_i| = 3$ QUESTION : Does there exist a truth assignment of U which satisfies simultaneously all the clauses of C?

Theorem

3-SAT is NP -complete.

 $3-SAT \in NP$: Given a truth assignment of U, the satisfiability of the formula can be checked by a polytime algorithm.

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

NP -completeness

SAT∝3-SAT

We consider an instance of SAT $U = \{u_1, \ldots, u_n\}$ set of variables and $C = \{c_1, \ldots, c_m\}$ set of clauses We build a collection C' of clauses of 3 literals over a set U' of variables such that C' is satisfiable iff C is satisfiable. We define the variables of 3-SAT: Each clause $c_i \in C$ will be represented by an equivalent collection of clauses c'_i of three literals which will use the original variables from U which occur in c_j and auxiliary variables from U'_j which will be used only by clauses c'_i . Thus,

$$U' = U \cup \left(\cup_{i=1}^m U'_i \right)$$
 and $C' = \cup_{i=1}^m c'_i$

Clauses of 3-SAT

We build c'_i and U'_i from $c_j = \{z_1, z_2, \ldots, z_k\}$, where the z_i 's are literals derived from the variables in U. To build U'_i and c'_i , there are several cases depending on the value of k (number of literals):

Complexity

• k = 1: c_j has a single literal; $U'_i = \{y_i^1, y_i^2\}$ and

$$c'_{j} = \{\{z_{1}, y_{j}^{1}, y_{j}^{2}\}, \{z_{1}, y_{j}^{1}, \overline{y_{j}^{2}}\}, \{z_{1}, \overline{y_{j}^{1}}, y_{j}^{2}\}, \{z_{1}, \overline{y_{j}^{1}}, \overline{y_{j}^{2}}\}\}$$

NP -completenes

- or, more easily, we can have anything!
- 2 k = 2: In this case, $U'_i = \{y_i^1\}$ and

$$c'_j = \{\{z_1, z_2, y_j^1\}, \{z_1, z_2, \overline{y_j^1}\}\}$$

- **(**) k = 3: This is the simplest case since c_i already is a clause of 3 literals; thus $U'_i = \emptyset$ and $c'_i = \{\{c_i\}\}$
- k > 3: more difficult: $U'_i = \{y^i_i : 1 \le i \le k 3\}$ and

Complexity

$$c'_{j} = \{\{z_{1}, z_{2}, y_{j}^{1}\}\} \cup \{\{\overline{y_{j}^{i}}, z_{i+2}, y_{j}^{i+1}\} : 1 \le i \le k-4\} \cup \{\overline{y_{j}^{k-3}}, z_{k-1}, z_{k}\}$$

o MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completenes

$\models C \Rightarrow \models C'$

 $t \models C$. *t* can be extended in $t' \models C'$: since the variables in $U' \setminus U$ are partitioned into U'_i and the variables in every U'_i only occur in the clauses of c'_i , we just show how to extend t to the U'_i 1 by 1.

- U'_i comes from case 1. or 2. t is extended in t' arbitrarily, like $t'(y) = 1, \quad \forall y \in U'_j.$ • U'_i comes from case 3. t = t'
- U'_j comes from case 4. Let $c_j = \{z_1, z_2, \dots, z_k\}$ with k > 3. Since $t \models c_i$, there exists ℓ such that $t(z_\ell) = 1$.

•
$$\ell = 1, 2: t'(y_j^i) = 0, 1 \le i \le k - 3$$

• $\ell = k - 1, k: t'(y_j^i) = 1, 1 \le i \le k - 3$
• otherwise: $t'(y_j^i) = 1, 1 \le i \le \ell - 2$ &
 $t'(y_i^i) = 0, \ell - 1 \le i \le k - 3$

We easily check that for all these choices, all the clauses of c'_i are satisfied and thus that $t' \models c'_i$.

$\models C \Leftarrow \models C'$

Conversely, if t' satisfies C', we check that the restriction of t' to the variables of U also satisfies C. We have proved $\models C \Leftrightarrow \models C'$.

NP -completenes

Rest to check that the transformation is polynomial.

Complexity

It suffices to count the number of 3-clauses in C' which is upper-bounded by a polynomial in *mn*. Thus the size of the instances of 3-SAT is upper-bounded by a polynomial function in the size of SAT instances. Since all the details of the construction are immediate, we have a polynomial transformation from SAT to 3-SAT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

uno MARTIN, University of Nice - Sophia Antipolis mailto:Br

NP -completenes

And for 2-SAT?

INSTANCE : ϕ a boolean formula in CNF with clauses of degree exactly 2.

QUESTION : is ϕ satisfiable?

Theorem

2-SAT $\in P$

We build a graph whose vertices are the variables and the negation of the variables and such that for every clause $l_i \vee l_i$ we have an implication $\neg I_i \rightarrow I_i$ and $\neg I_i \rightarrow I_i$. We then compute the transitive closure of the graph by a polytime algorithm.

・ロト ・聞 ト ・目 ト ・目 ・ うへぐ

Complexity NP -completeness

Graph associated with

$\phi = (x_1 \vee x_2) \land (x_1 \vee \neg x_3) \land (\neg x_1 \vee x_2) \land (x_2 \vee x_3)$

Complexity NP -completeness

Some NP -complete problems

6 basic kinds of NP-complete problems and paradigmatic samples:

- Packing problems: SET-PACKING, INDEPENDANT-SET
- Covering problems: SET-COVER, VERTEX-COVER
- Constraint satisfaction problems: SAT, 3-SAT
- Sequencing problems: HAM-CYCLE, TSP
- Partitioning problems: 3D-MATCHING, 3-COLOR
- Numerical problems: SSP, KNAPSACK

Practice: most NP problems are either in P or NP -complete. Notable exceptions: Factoring, graph isomorphism, Nash equilibrium

◆□▶ ◆舂▶ ◆差▶ ◆差▶ →差 − のへぐ

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

Complexity NP -completeness

Asymmetry of NP

We only need to have short proofs of yes-instances

Example

SAT vs TAUTOLOGY

- Can prove a CNF formula is satisfiable by giving a truth assignment
- How can we prove that a formula is not satisfiable?

SAT is NP -complete and proved polynomially equivalent with TAUTOLOGY but how can we classify TAUTOLOGY which is not even known to be in NP ?

All problems below are NP -complete and reduce to one another.

NP -completeness

Complexity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

NP-completeness

NP and co-NP

Complexity

NP -completeness

Definition

Given a decision problem $\Pi,$ its complement $\overline{\Pi}$ is the same problem with the yes and no answers reverse.

Example $\overline{X} = \{0, 1, 4, 6, 8, 9, 10, 12, 14, 15, ...\}$

 $X \hspace{.1 in} = \hspace{.1 in} \{2,3,5,7,11,13,17,23,29,\ldots\}$

co-NP : complements of decision problems in NP Ex: TAUTOLOGY, PRIMES,...

Complexity

(ロト (日本 (ヨト (ヨト (ヨト))) Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

NP -completeness

NP = co-NP ?

Fundamental question: Does NP = co-NP ?

- do yes-instances have succinct certificate iff no-instances do?
- consensus opinion: no

Theorem

If NP \neq co - NP , then P \neq NP .

- P is closed under complement
- ${\ensuremath{\, \circ }}$ if ${\ensuremath{\mathsf{P}}}={\ensuremath{\mathsf{NP}}}$, then NP closed under complement
- equivalently, NP =co-NP
- This is the contrapositive of the theorem

Good characterizations

- If $X \in NP \cap co-NP$ then:
 - for yes instance, there is a succinct certificate
 - for no instance, there is a succinct disqualifier
- $\bullet \ P \subseteq NP \ \cap \text{co-}NP$
- Fundamental open question: does $\mathsf{P}=\mathsf{NP}\ \cap \mathsf{co}\text{-}\mathsf{NP}$?
 - Mixed opinions
 - Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P
 - Linear Programming by Khachiyan, 1979
 - Primality testing by Agrawal, Kayal and Saxena, 2002

Fact: Factoring is NP \cap co-NP but not known to be in P.

・ロト・4 聞 ト・4 音 ト・音 ・ のへで

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness

Complexity NP -completeness

$\mathsf{Primes} \in \mathsf{NP} \ \cap \mathsf{co-NP}$

Already known: $\mathsf{Primes}{\in}\mathsf{co}{\text{-}\mathsf{NP}}.$ Suffices to prove that $\mathsf{Primes}{\in}\mathsf{NP}$.

Theorem (Pratt)

An odd integer s is prime iff there exists an integer 1 < t < s s.t for all prime divisors p of s - 1,

```
t^{s-1} \equiv 1 \mod s
t^{(s-1)/p} \not\equiv 1 \mod s
```

Certificate and certifier

- Input *s* = 437677
- Certificate: t = 17 and a prime factorization of $s 1 = 2^2.3.36\,473$ which also needs a recursive certificate to guarantee that 3 and 36 473 are primes
- Certifier
 - check $s 1 = 2^2 \cdot 3.36473$
 - check $17^{(s-1)/2} \equiv 437676 \mod s$
 - check $17^{(s-1)/3} \equiv 329415 \mod s$
 - check $17^{(s-1)/36473} \equiv 305452 \mod s$

by using repeated squaring algorithm

<ロ> 4日> 4日> 4日> 4日> 4日> 9000

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Br NP-completeness