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Decision problem

Π is a set of strings (a language)

Instance: string s over a finite alphabet Σ

Algorithm A decides problem Π: A(s) = yes iff s ∈ Π

A runs in polynomial time if for every string s, A(s) terminates in
at most p(!s) steps, where p is some polynomial.

Example

PRIMES: Π = {2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, ...}
Algorithm [Agrawal, Kayal and Saxena, 2002] p(!s) = !s8
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Definition of P

P: decision problems for which there is a polytime algorithm.

Problem Description Algorithm Yes No

Multiple is x a multiple of y division 51, 17 51, 16
Rel. prime gcd(x , y) = 1? Euclid 34, 39 34, 51

Primes is x prime? AKS’02 53 51

lsolve
∃?x that Gauss [

0 1 1
2 4 −2
0 3 15

] [
4
2
36

] [
1 0 0
1 1 1
0 1 1

] [
1
1
1

]
satisfies Ax = b? Edmonds
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NP : Non-deterministic polynomial time

Through the intuition of a certification algorithm;

views things from a “boss” viewpoint

doesn’t determine whether s ∈ Π on its own; rather it checks
a proposed (short enough) proof/certificate t that s ∈ Π

Definition

C (s, t) is a certifier for Π if ∀s ∈ Π,∃t st C (s, t) = yes (t=
certificate or witness)

NP : decision problems for which there is a polytime certifier
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Certifiers and certificates: composites

COMPOSITES: given s ∈ N, is s composite?
Certificate: a nontrivial factor t of s. Note that such a certificate
exists iff s composite. Moreover, !t ≤ !s

Certifier

def C(s,t)
if t<=1 or t>=s
return false
elsif s is a multiple of t
return true
else
return false
end
end

Instance s = 437 669
Certificate t = 541 or 809

Thus, COMPOSITES is in NP
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P vs NP

P ⊆ NP : polytime algorithm particular case of a certifier (t = ε).
What about the converse?

Theorem

If Π ∈ NP , s ∈ Π s of size n can be decided by an algorithm in
time O(2p(n)).

Proof: For every string s ∈ Σn accepted by a certifier, there is a
polynomial p and a certificate t ∈ Σp(n) s.t. time(C (s, t)) ≤ p(n).
We can generate all the t possible strings and test whether C (s, t)
is true within p(n) steps. The overall running time of this
algorithm is p(n)!Σp(n) = O(2q(n)) for a polynomial q

Bruno MARTIN, University of Nice - Sophia Antipolis mailto:Bruno.Martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.htmlNP-completeness

Complexity NP -completeness

A brief history of complexity

Key problem: TSP; Karp tried to solve TSP in the 60’s.
In the 60’s, complexity theory was introduced by Rabin,
McNaughton, Yamada and Hartmanis, Stearns introduced the
word complexity in 1965 with a model of computation and the
first results on the structure of complexity classes.
In the 60’s, Edmonds introduced the notion of good algorithm
as a polytime algorithm on the size of the problem encoding.
P and NP were introduced in 1971 by Cook who proved that
SAT is NP -complete and that all NP -complete problems
reduce to SAT. TSP is among those problems and there’s no
hope for finding an efficient algorithm for solving TSP.
Karp introduces the notion of reduction to prove that 21
problems are NP -complete
Since then, a million-$ conjecture is to decide wether

P = NP
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Polynomial transformation

Definition

Problem X polytime reduces (Cook) to problem Y if arbitrary
instances of X can be solved using:

polytime number of standard computation step, plus

polytime number of calls to oracle that solves Y

Definition

Problem X polytime transforms (Karp) to problem Y (X ∝ Y ) if
given any input x to X , we can construct an input y = f (x) to Y
st x is a yes instance of X iff y is a yes instance of Y with !y
polynomial in !x and f polytime computable.
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Some properties

Lemma

If X ∝ Y then,

1 Y ∈ P implies X ∈ P

2 X '∈ P implies Y '∈ P

1 If A ∈ P decides Y , since X ∝ Y , one can design B a
polytime algorithm for deciding X : y ∈ Y with A(y) =yes,
B(x) = A(f (x))

2 assume A ∈ P decides Y . Since X ∝ Y , one can design B ∈ P
for deciding X : let x ∈ X and y = f (x) ∈ Y . B(x) = A(f (x))
and since A ∈ P and f ∈ P, X ∈ P, a contradiction.

Lemma (Transitivity)

If X ∝ Y and Y ∝ Z, then X ∝ Z
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NP -completeness

Definition

Y is NP -complete if Y ∈ NP with the property that for every
problem X ∈ NP , X ∝ Y .

Theorem

Suppose Y NP-complete. Then Y is polytime decidable iff
P = NP

⇐ If P = NP , then Y polytime solvable since Y ∈ NP

⇒ Suppose Y can be solved in polytime.

Let X be any problem in NP . Since X ∝ Y , we
can solve X in polytime. This implies NP ⊆ P
We already know P ⊆ NP thus P = NP

Are there any “natural” NP -complete problems?
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Howto: Establishing NP -completeness of Π

We should prove that any problem in NP transforms to Π...

But once we’ve established a first “natural NP -complete”
problem, other fall like dominoes since:

Lemma

Let X ∈ NP , Y ∈ NP . If X is NP -complete and X ∝ Y , then Y
is NP -complete.

Recipe to establish NP -completeness of Π:

1 show that Π ∈ NP

2 choose a NP -complete problem X

3 prove X ∝ Π
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The first NP -complete problem

Cook proved that the satisfiability problem is NP -complete:

Instance : U set of variables; C , collection of clauses over U
Question : Does there exist a valuation which satisfies C?

Theorem (Cook)

SAT is NP -complete

But another kind of reduction and the precise notion of a
computation model are required to prove this.
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Satisfiability problem

U = {u1, u2, . . . , un} a set of variables
t : U → {0, 1} a truth assignment of the variables of U
t(u) = 1 iff u is true and t(u) = 0 iff u is false.
For u ∈ U, u and u are literals.
u is true by t iff t(u) = 1 and u is true by t iff t(u) = 0.
A clause C is a set of literals which is the disjunction of the literals.

Example

{u1, u3, u8}⇔ u1 ∨¬u3 ∨ u8 true for t(u1) = 1 or t(u3) = 0 or t(u8) = 1.

A set of clauses is satisfiable iff there exists a truth assignment for
U satisfying simultaneously all the clauses of C . Equiv., if there is
a truth assignment which satisfies the conjunction of the clauses.
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Example

Let U = {u1, u2} and C = ({u1, u2}, {u1, u2}) or equivalently,
(u1 ∨ ¬u2) ∧ (u2 ∨ ¬u1).
This is a yes-instance for the next truth assignment:

u1 u2 (u1 ∨ ¬u2) ∧ (u2 ∨ ¬u1)
0 0 1
1 1 1
0 1 0
1 0 0
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3-SAT

Instance : A collection C = {c1, c2, . . . , cm} of clauses over a
finite set of variables U such that for all i , |ci | = 3
Question : Does there exist a truth assignment of U which
satisfies simultaneously all the clauses of C?

Theorem

3-SAT is NP -complete.

3-SAT∈ NP : Given a truth assignment of U, the satisfiability of
the formula can be checked by a polytime algorithm.
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SAT∝3-SAT

We consider an instance of SAT
U = {u1, . . . , un} set of variables and
C = {c1, . . . , cm} set of clauses
We build a collection C ′ of clauses of 3 literals over a set U ′ of
variables such that C ′ is satisfiable iff C is satisfiable.
We define the variables of 3-SAT:
Each clause cj ∈ C will be represented by an equivalent collection
of clauses c ′j of three literals which will use the original variables
from U which occur in cj and auxiliary variables from U ′

j which will
be used only by clauses c ′j . Thus,

U ′ = U ∪
(
∪m

j=1U
′
j

)
and C ′ = ∪m

j=1c
′
j
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Clauses of 3-SAT

We build c ′j and U ′
j from cj = {z1, z2, . . . , zk}, where the zi ’s are

literals derived from the variables in U. To build U ′
j and c ′j , there

are several cases depending on the value of k (number of literals):

1 k = 1 : cj has a single literal; U ′
j = {y1

j , y2
j } and

c ′j = {{z1, y
1
j , y2

j }, {z1, y
1
j , y2

j }, {z1, y1
j , y2

j }, {z1, y1
j , y2

j }}

or, more easily, we can have anything!
2 k = 2 : In this case, U ′

j = {y1
j } and

c ′j = {{z1, z2, y
1
j }, {z1, z2, y1

j }}
3 k = 3 : This is the simplest case since cj already is a clause of

3 literals; thus U ′
j = ∅ and c ′j = {{cj}}

4 k > 3 : more difficult: U ′
j = {y i

j : 1 ≤ i ≤ k − 3} and

c ′j = {{z1, z2, y
1
j }}∪{{y i

j , zi+2, y
i+1
j } : 1 ≤ i ≤ k−4}∪{yk−3

j , zk−1, zk}
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|= C ⇒|= C ′

t |= C . t can be extended in t ′ |= C ′: since the variables in U ′ \ U
are partitioned into U ′

j and the variables in every U ′
j only occur in

the clauses of c ′j , we just show how to extend t to the U ′
j 1 by 1.

U ′
j comes from case 1. or 2. t is extended in t ′ arbitrarily, like

t ′(y) = 1, ∀y ∈ U ′
j .

U ′
j comes from case 3. t = t ′

U ′
j comes from case 4. Let cj = {z1, z2, . . . , zk} with k > 3.

Since t |= cj , there exists # such that t(z!) = 1.
# = 1, 2 : t ′(y i

j ) = 0, 1 ≤ i ≤ k − 3
# = k − 1, k : t ′(y i

j ) = 1, 1 ≤ i ≤ k − 3
otherwise : t ′(y i

j ) = 1, 1 ≤ i ≤ #− 2 &

t ′(y i
j ) = 0, #− 1 ≤ i ≤ k − 3

We easily check that for all these choices, all the clauses of c ′j are
satisfied and thus that t ′ |= c ′j .
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|= C ⇐|= C ′

Conversely, if t ′ satisfies C ′, we check that the restriction of t ′ to
the variables of U also satisfies C . We have proved |= C ⇔|= C ′.

Rest to check that the transformation is polynomial.

It suffices to count the number of 3-clauses in C ′ which is
upper-bounded by a polynomial in mn. Thus the size of the
instances of 3-SAT is upper-bounded by a polynomial function in
the size of SAT instances. Since all the details of the construction
are immediate, we have a polynomial transformation from SAT to
3-SAT.
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And for 2-SAT?

Instance : φ a boolean formula in CNF with clauses of degree
exactly 2.
Question : is φ satisfiable?

Theorem

2-SAT ∈ P

We build a graph whose vertices are the variables and the negation
of the variables and such that for every clause li ∨ lj we have an
implication ¬li → lj and ¬lj → li . We then compute the transitive
closure of the graph by a polytime algorithm.
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Graph associated with
φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ x3)

x2

¬x3

¬x1

x3 x1

¬x2
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NP-completeness

All problems below are NP -complete and reduce to one another.
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Some NP -complete problems

6 basic kinds of NP-complete problems and paradigmatic samples:

Packing problems: SET-PACKING, INDEPENDANT-SET

Covering problems: SET-COVER, VERTEX-COVER

Constraint satisfaction problems: SAT, 3-SAT

Sequencing problems: HAM-CYCLE, TSP

Partitioning problems: 3D-MATCHING, 3-COLOR

Numerical problems: SSP, KNAPSACK

Practice: most NP problems are either in P or NP -complete.
Notable exceptions: Factoring, graph isomorphism, Nash
equilibrium
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Asymmetry of NP

We only need to have short proofs of yes-instances

Example

SAT vs TAUTOLOGY

Can prove a CNF formula is satisfiable by giving a truth
assignment

How can we prove that a formula is not satisfiable?

SAT is NP -complete and proved polynomially equivalent with
TAUTOLOGY but how can we classify TAUTOLOGY which is not
even known to be in NP ?
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NP and co-NP

NP: Decision problems for which there is a polytime certifier

Definition

Given a decision problem Π, its complement Π is the same problem
with the yes and no answers reverse.

Example

X = {0, 1, 4, 6, 8, 9, 10, 12, 14, 15, ...}
X = {2, 3, 5, 7, 11, 13, 17, 23, 29, ...}

co-NP : complements of decision problems in NP
Ex: TAUTOLOGY, PRIMES,...
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NP = co-NP ?

Fundamental question: Does NP = co-NP ?

do yes-instances have succinct certificate iff no-instances do?

consensus opinion: no

Theorem

If NP '= co− NP , then P '= NP .

P is closed under complement

if P = NP , then NP closed under complement

equivalently, NP =co-NP

This is the contrapositive of the theorem
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Good characterizations

If X ∈ NP ∩ co-NP then:
for yes instance, there is a succinct certificate
for no instance, there is a succinct disqualifier

P ⊆ NP ∩ co-NP

Fundamental open question: does P = NP ∩ co-NP ?
Mixed opinions
Many examples where problem found to have a non-trivial
good characterization, but only years later discovered to be
in P

Linear Programming by Khachiyan, 1979
Primality testing by Agrawal, Kayal and Saxena, 2002

Fact: Factoring is NP ∩ co-NP but not known to be in P.
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Primes ∈ NP ∩ co-NP

Already known:Primes∈co-NP. Suffices to prove that Primes∈NP .

Theorem (Pratt)

An odd integer s is prime iff there exists an integer 1 < t < s s.t
for all prime divisors p of s − 1,

ts−1 ≡ 1 mod s
t(s−1)/p '≡ 1 mod s
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Certificate and certifier

Input s = 437 677

Certificate: t = 17 and a prime factorization of
s − 1 = 22.3.36 473 which also needs a recursive certificate to
guarantee that 3 and 36 473 are primes

Certifier
check s − 1 = 22.3.36 473
check 17(s−1)/2 ≡ 437676 mod s
check 17(s−1)/3 ≡ 329415 mod s
check 17(s−1)/36473 ≡ 305452 mod s

by using repeated squaring algorithm
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