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1 Design and analysis of a string matching algorithm [6 points]

A common problem in algorithmics is the one of finding all occurrence(s) of a pattern string p
within another string or body of text T. It occurs for instance in text processing or in bioinfor-
matics. More precisely, the pattern string will be denoted by p = p[0,...,m — 1]; its length is
equal to m. The text string is denoted by T = T[0,...,n — 1]; its length is equal to n. Both
strings are build over a finite set of characters called an alphabet denoted by ¥. We will design

and analyse the brute force algorithm for solving this problem.

1. [2 points] Design a procedure PrefixMat ch which takes as an input p and'T and returns true
if p is a prefix of T. Let us recall that a word u is a prefiz of a word w.if there exists a
word v (possibly empty) such that w = u-v where - denotes the concatenation of two words.

Example:

PrefixMatch(aba,abaaabaabh)=> true
PrefixMatch(bb,abaaabaabb)=> false
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2. [2 points] Design a procedure Substring which takes as an input p and T and outputs
the index of every occurrence of p in T or NIL if there is none. Of course, you can use
Prefixmatch repeatedly.

Example:

Substring(aba,abaaabaabb)=> 0,4
Substring(bb, abaaabaabb)=> 8
Substring(bab,abaaabaabb)=> NIL
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3. [2 points] What is the worst-case time-complexity of your algorithm? (Please provide a
detailed analysis)
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2 Easy subset-sum problems

The goal of this problem is to solve easy instances of the subset-sum problem that we recall below:
INSTANCE : Let A[0,..,n—1] an array of n distinct integer valued items, an integer B, the bound.

QUESTION : Is there a subset of A for which the sum of its items equals B?
There are easy instances of this problem when the elements of A form.a super-increasing sequence.

Definition 1 A super-increasing sequence is one in-which the next term of the sequence is greater
than the sum of all preceding tems. , '

The sequence A = [1,2,5, 10, 19] fulfills the property. This is the case only when A is sorted.

1. (1 point) Design an algorithm which returns true when A is .sort'ed and false otherwise.
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2. (1 point) Check the behavior of your algorithm on the array A = [1,2, 5,10,19].

3. (1 point) What is the time-complexity of your algorithm (in the worst case)?
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Since we know that A is sorted, rest to check if its elements form a super-increasing sequence.

4. (1 point) Design an algorithm for checking if A’s elements form a super-increasing sequence.
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5. (1 point) What is the time-complexity of your algorithm (in the worst case)?
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After all the previous carefuls checks, we have to find a polynomial-time greedy algorithm for
solving the subset-sum problem. We first consider a useful property expressed in Lemma 1.

Lemma 1 A valid bound B is uniquely decomposable with elements of A.

6. (1 point) Prove the statement of Lemma 1 (or admit its result). - 4'\’\—
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7. (2 points) By using lemma 1, design an algorithm for solving the subset-sum problem. [Hint:
start with comparing the bound B with the elements in A from the greatest to the smallest].
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8. (1 point) What is the time-complexity of your algorithm (in the worst case)?
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9. (1 point) Use your algorithm.for finding a sdluti_on to A=[1,2,5,10,19] and B = 16:
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and to see that A =[1,2,5,10,19] and B = 22 has no solution: .
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3 Algorithms on graphs [4 points]

This exercise uses the topological sort as described in the 2d lecture. Its behavior is recalled below:
o Run a recursive depth first search on the graph; . k |
e Print each vertex before exiting the depth first §earch procedure on this vertex;

e After the end of the depth first search on all the vertices, you get a reverse topological
sorting,. :

This exercise is a case study of this particular sort.

1. (2 points) Before breakfast, Mr G. has a problem when getting ready: he sometimes dresses
out of order. For example, he might put his shoes on before putting the socks on, so he will
have to take the shoes off, put the socks on and than the shoes back on. there is also a shirt,
tie, belt, shorts, pants, watch and jacket that have to be put on in a certain order. Help him
to dress thanks to a topological sort. Please detail the behavior of the algorithm.
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2. (1 point) Can you find (without running the depth first search algorithm again) another
ordering for the previous dressing problem?
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3. (1 point) Can you provide an (obvious) lower bound to the number of solutions for this
particular instance of the problem? Please explain which property on the vertices of the
graph helps you in finding this bound.
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